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Degree of Approximation of Conjugate of a Function 
Belonging to (N,p,q) Class by Matrix Summability Means of 
Conjugate Fourier Series
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ABSTRACT. An assumption of moderate hypothesis for series has to be generalized (N, p, q) summable by using the
concept of Fourier series. Further, we develop new and well-known arbitrary results from the main result. Validation
of the theorems done by the previous finding of theorems of summability. In this way, the system stability can be
improved by finding the conditions for (N, p, q) summability.
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1. INTRODUCTION

The hoary, hackneyd and hazy concept of convergence of infinite series was contingent upon
robust foundation with the emergence of Cauchy’s enduring work course d’Analyses algebraic
in 1821 and Abel’s researches(see [1]) on the binomial series in 1826. Nonetheless, it was noticed
after perusal that certain non- convergent series, specially in Dynamical Astronomy provided
almost correct results. In 1890 “a theory of divergent series” was propounded which was pi-
oneering work for the first time. It was at this very time a” paper on the multiplication series
ware published by no less a personality than by Cesàro(see [1]). For most of the seminal and
pioneering mathematical analyst the theory of series, whose sequence of partial sums fluctu-
ate, has been at the core of creative activity. Through relentless endeavours made by multiple
eminent mathematicians that fruitful and satisfactory methods were conceived and concretised
towards the fag end of the last century and in the early year of the present century. The method
devised was so as to associate them with process closely associated with Cauchy’s concept of
convergence of which certain values may be called their sums in a reasonable manner. To elab-
orate and elucidate further. Summability Szàsz and Hardy(see [1]), the process of associating
generalized sum, imparted a natural generalization of classical concept of convergence Hob-
son, Titchmarsh and is therefore responsible, within the domain applicability, an extensive and
former rejected series which used to be forbidden as divergent. In this way, the idea of con-
vergence has been deemed and dubbed as sweeping generalization, for it was needless to say,
natural to peruse the possibility of putting forward the concept of convergence. Indeed just as
the concept of convergence has resulted in the extension under the general title of summability
(Kogbetliantz), the idea of ordinary and absolute convergence have contributed to the devel-
opment of ordinary and absolute summability in the same way. Thus, the concept of uniform
convergence would have definitely underscored the concept uniform summability highlighted
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prominently by analyst.

Let {Sm(x)} denote the mth partial sums of
∑

am and we define two non-negative sequences
{pn} and {qn} are such that

Pa =
a∑

b=0

pb

Qa =
a∑
b

qb

and

Ra =
a∑
b

pa−b qa

The sequence to sequences transformation

λp,q
a (z) =

1

Ra

a∑
b=0

pa−bqbSb(z) as a → ∞,

defines the sequence {Sb(z)} of the (N,p,q) means of the sequences {Sb(z)}, generated by the
sequence of coefficients {pa} and {qa}.
If λp,q

a (z) → S(z), then the given series
∑

am is said to be (N, p, q) summable to S(z) at Z in E.
If λp,q

a (z) − S(z) = 0(1), a → ∞ uniformly in a. domain E, then the infinite series
∑

am is
(N, p, q) summable uniformly in a domain E to S(z).

Let χ(y) be periodic function with the period 2π and Lebesgue integrable function of y in
(−π, π).The Fourier series of the given function χ(y) is denoted by

χ(y) ≈ a0
2

+
∞∑

m=1

(am cos my + bmsin my)(1.1)

Its conjugate series is
∞∑

m=1

(bmcos my − amsin my).(1.2)

We have

ξ(z) = χ(y + z) + χ(y − z)− 2χ(z),

ζ(z) = χ(y + z)− χ(y − z),

υ(z) =

∫ z

v

∣∣ξ(v)∣∣dv,
η(z) =

∫ z

o

∣∣ξ(v)∣∣dv,
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Np,q
a (z) =

1

2πRa

a∑
b=v

pa−bqb.
sin(b+ 1

2 )z

sin z
2

,

N̄p,q
a (z) =

1

2πRa

a∑
b=v

pa−bqb.
cos(b+ 1

2 )z

sin z
2

,

τ =

(
1

z

)
, the integral part of

1

z
,

χ̄a(y) =
π

2

∫ π

1
a

ξ(u)cot
u

2
du

and

χ̄a(y) = lim
a→∞

χ̄a(y).

2. KNOWN RESULTS

There are a lot of interesting generalizations that have been achieved by many researchers
( see [1-5]). Among them, Tripathi and Singh (see [6] ) has established the following theorems
on Nr̈olund summability of Fourier series and its conjugate series.
Theorem A:- Let us suppose that A(z) and B(z) are two positive functions of z.
If

υ(z) =

∫ z

0

∣∣∣∣ξ(u)∣∣∣∣du =

[A( 1
z

)
.pτ

B

(
Pτ

) ]
(2.3)

and

A(a)Pa = O[B(Pa)](2.4)

as a → ∞, then the given Fourier series χ(y) i.e. (1.1) at z = y is summable (N, pa) to χ(y)
such that Pa → 0 as a → ∞, where {pa} is real non-negative and non-increasing sequence.

Theorem B:- Let us suppose that A(z) and B(z) are two positive functions of z and {pn} is
a real non-negative and non-increasing sequences as in theorem A.
Then if,

η(z) =

∫ z

0

∣∣∣∣ξ(v)∣∣∣∣dv = o

[A( 1
z

)
.pτ

B

(
Pτ

) ]
(2.5)

as z → +0, then the (1.2) of (1.1) is summable (N, pa) to

1

2π

∫ π

0

ξ(z)cot
z

2
dz

at every point of the domain E, where this integral exists.
The above results motivates us to study the degree of approximation of a function in more gen-
eralized as popular cases.Therefore, an attempts to make an advance of this note, we study the
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degree of approximation of a periodic function by (N, p, q) summability of series in the follow-
ing forms:

Theorem 1:- let us suppose that A(z) and B(z) are two positive function depend on z and
A(z), B(z) and z.A(z)

B(z) increases monotonically with z. Let {pa} and {qa} are two positive mono-
tonically decreasing sequences of constants with their partial sums Pa → 0, Qb → 0 as a, b → ∞.
If

a∑
b=0

∣∣∣∣∆(pa−bqb

)∣∣∣∣ = O

(
Ra.a

−1

)
(2.6)

A(a).Ra = O

(
B(Ra)

m

)
(2.7)

as a → ∞ where m ϵ[0, 1] and

υ(z) =

∫ z

0

∣∣∣∣ξ(v)∣∣∣∣dv = O

[
A(z)qτ

{B(Rτ )}m

]
(2.8)

uniformly in a set E in which ξ(y) is bounded, then the given series (1.1) is (N, p, q) summable
in the domain E to the sum ξ(y).

Theorem 2:- Let {pa} and {qb} are the same as in the theorem 1, satisfying the condition
(2.6) and A(z) and B(z) are the same as above satisfying the condition (2.7), if

η(z) =

∫ z

0

∣∣∣∣ξ(v)∣∣∣∣dv = O

[
A(z)qτ

{B(Rτ )}m
,(2.9)

as z → ∞, m ϵ[0, 1] uniformly in the domain E, then the (1.2) of (1.1) is (N, p, q) summable
uniformly in E to the sum

χ̄(y) =
1

2π

∫ π

0

χ(u) cot
u

2
du(2.10)

whenever the integral exists uniformly in the domain E.
To prove the theorems, we follow a series of lemmas.
Lemma1 (see [7]): For 0 ≤ a < b ≤ ∞, 0 ≤ z ≤ 2π,∣∣∣∣ ∫ b

j=a

pm−j qje
ijz

∣∣∣∣ < CRτ .

Lemma 2:- If Ra → ∞, a → ∞ and the conditions (2.6) is satisfied, then

aqa = O(Ra), a → ∞

Proof:- we have
a∑

b=1

∣∣∣∣∆(pa−b qb)

∣∣∣∣ = O(Raa
−1)

⇒
n∑

b=1

b

∣∣∣∣∆(pa−b qb)

∣∣∣∣ = O(Ra)
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Now,
a−2∑
b≥1

∆b.
b∑

m=1

∆(pa−m qm) + (a+ b)
a−1∑
b=1

∆(pa−b qb)

=
a−b∑
b=1

∆a(pa−1 q1 − p0 qa) + (a+ 1)(pa−1 q1 − p0 qa)

=
a∑

b=1

pa−b qa − paqo − aqapo

and therefore

a qa po = Ra −
a−b∑
k=1

b∆(pa−b qb)− pa qo

⇒ a qa = O(Ra), a → ∞.

Lemma 3 (see [6]):- If 0 ≤ z ≤ 1
a , then Np,q

a (z) = O(a)
Proof:- we have

∣∣∣∣Np,q
a (z)

∣∣∣∣ 1

2πRn

∣∣∣∣ a∑
b=0

pa−b qb.
sin(b+ 1

2 )z

sin z
2

∣∣∣∣
= O

{
1

Ra

∣∣∣∣ a∑
b=0

(2b+ 1)pa−b qb

∣∣∣∣}

= O

[
2a+ 1

Ra

a∑
b=1

a−b∑
qb

]

= O(a), a → ∞

Lemma 4:- For 1
a ≤ z ≤ δ < π,

Np,q
a (a) = O

(
Rτ

zRa

)
Proof:- We have

Np,q
a (z) =

1

2πRa

a∑
b=0

pa−b qb
sin(b+ 1

2 )Z

sin z
2

⇒
∣∣∣∣Np,q

a (z) =
1

2πRa

∣∣∣∣ a∑
b=0

pa−b qb.
sin(b+ 1

2 )z

sin z
2

∣∣∣∣
=

1

2πRa
× 1

|sin z
2 |

∣∣∣∣Im a∑
b=0

pa−b qb.exp(i(a− b) +
1

2
z)

∣∣∣∣
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=
1

2πRa
× 1

|Sin z
2 |

×
∣∣∣∣Im(e ιz

2

a∑
b=0

pa−b qbe
ι(a−b)z

)∣∣∣∣
≤ 1

2πRa
× 1

z

∣∣∣∣ a∑
b=0

pa−b qbe
i(a−b)z

∣∣∣∣
= O

(
Rτ

Raz

)
(by lemma 1)

Lemnma 5:- For 0 ≤ z ≤ 1
a ,

N̄p,q
a (z) = O(a).

The proof is similar to that of lemma 3.
Lemma 6:- For 1

a ≤ z ≤ δ < π,

N̄p,q
a (z) = o

(
Rτ

zRa

)
, a → ∞.

Proof:
We have

N̄ (p.q)
a (z) =

1

2πRa

a∑
b=0

pa−b qbx
cos(b+ 1

2 )z

sin z
2

⇒
∣∣∣∣N̄p,q

a (z)

∣∣∣∣ = 1

2πRa

∣∣∣∣ a∑
b=0

pa−b qb.
cos
(
a− b+ 1

2

)
z

sin z
2

∣∣∣∣
≤ 1

2πRa
× 1

|sin z
2 |

×
∣∣∣∣Re

a∑
b=0

pa−b qbe
i(a−b+ 1

2 )z

∣∣∣∣
=

1

2πRa
× 1

|sin z
2 |

×
∣∣∣∣Re

(
e

iz
2

a∑
b=0

pa−b qb e
i(a−b)z

)∣∣∣∣
≤ 1

2πRa

∣∣∣∣ a∑
b=0

pa−b qb e
i(a−b)z

∣∣∣∣
= o

(
Rτ

zRa

)
, (by lemma 4)

Proof of theorem 1: Let Ga(y) denote the ath partial sum of (1.1) at a point z = y in a domain
E, then

Ga(y)− χ(y) =
1

2π

∫ π

0

{
ξ(z).sin

(
a+ 1

2

)
z

sin z
2

}
dz.

Thus by following (**), we may write

λp,q
a (y)− χ(y) =

1

Ra

a∑
b=0

pa−b qb

{
Gb(z)− χ(y)

}
1

2πRa

a∑
b=0

pa−b qb
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×
∫ π

0

ξ.
sin
(
b+ 1

2

)
z

sin z
2

dz

=

∫ π

0

(z)

{
1

2πRa

a∑
b=0

pa−b qb ×
sin
(
b+ 1

2

)
z

sin z
2

}
dz

=

∫ π

0

χ(z)Np,q
a (z)dz

=

(∫ 1
a

0

+

∫ δ

1
a

+

∫ π

δ

)
χ(z) Np,q

a (z)dz(2.11)

= B1 +B2 +B3 (say).(2.12)

We have to show that ∫ π

0

(z)Np,q
a (z)dz = (1), as a → ∞(2.13)

uniformly in E.

Now, 0 ≤ z ≤ 1

a
,

B1 =

∫ 1
a

0

ξ(z)Np,q
a (z)dz

⇒ |B1| =
∣∣∣∣ ∫ 1

a

0

ξ(z)Np,q
a (z)dz

∣∣∣∣
= O(a)

∫ 1
a

0

χ(z)dz, ( using lemma (3))

= (a).O

[
A(z). qa

B(R− a)
m

]
, (using 8),

= O

[
A(z) Ra

B(R− a)
m

]
, (using lemma (2)),

= O(1), a → ∞(2.14)

unifrmly in the domain E.
For 1

a ≤ z ≤ δ,

B2 =

∫ δ

1
a

ξ(z)Np,q
a (z)dz

⇒ |B2| = O

[ ∫ δ

1
a

∣∣∣∣ξ(z)∣∣∣∣∣∣∣∣Np,q
a (z)

∣∣∣∣dz]
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= O

(
1

Ra

)∫ δ

1
a

∣∣∣∣ξ(z)∣∣∣∣Rτ

z
dz

= O

[
1

Ra

{
υ(z)

Rτ

z

}δ

1
a

]
+O

[
1

Ra

∫ δ

1
a

{
υ(z)

Rτ

z2
dz

}]
+O

(
1

Ra

∫ δ

1
a

υ(z)
1

z
d (Rτ )

)

= B2.1 +B2.2 +B2.3 (say)(2.15)

Now,

B2.1 =

[
1

Ra

{
υ(z)

Rτ

z

}δ

1
a

]

= O

(
1

a

)
+O

[
aA(a) qa{
B (Ra)

}m

]

= O
(
R−1

a

)
+O

[
A(a)Ra{
µ (Ra)

}m

]

= O(1), a → ∞(2.16)

uniformly in E.

B2.2 = O
(
R−1

a

) ∫ δ

1
a

[
υ(z)

Rτ

z2
dz

]

= O(1) +O

[
1

Ra

a−1∑
c−1

∫ c+1

c

υ

(
1

v

)
R[v]dv

]
But ∫ c+1

c

υ

(
1

v

)
R[v]dv ≤ υ

(
1

c

)
Rc =

[
A(c) qc Rc

{B(Rc)}m

]
= O(qc), c → ∞ unioformly in E.

Thus,

B2.2 = O(1) +O(R−1
a ).O

(
q−1∑
c=1

qc

)

= O(1) +O(1), as → ∞ uniformly in E,

For

B2.3 = O

[
R−1

a

∫ δ

1
a

υ(z)
1

z
dRτ

]
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= O

[
R−1

a

∫ δ

1
a

υ

(
1

u

)
z dR[v]

]

= O(1) +O

(
R−1

a

{ a−1∑
c=1

Rc υ

(
1

c

)})

= O(1) +O

[
1

Ra

a−1∑
c=1

A(c)Rc qc
{B(Rc)}m

]

= O(1) +O(1)

= O(1), as → ∞(2.17)

uniformly i E.
Then (14) becomes

B2 = O(1), as a → ∞(2.18)

uniformly in the domain E.
Again,

B3 =

∫ π

δ

χ(z)Np,q
a (z)dz

⇒ |B3| = O

[ ∫ π

δ

∣∣∣∣χ(z)∣∣∣∣ ∣∣∣∣Np,q
a (z)

∣∣∣∣dz]
= O(1), as a → ∞(2.19)

uniformly in the domain E by virtue of Riemann- Lebesgue theorem and regularity of the
method of summation.
Now, using the help of (13), (18) and (19), we get∫ π

0

ξ(z)Np,q
a (z)dz = O(1),

a → ∞ uniformly in the domain E.
Proof of the theorem 2:-
Let Ḡa(y) denote the ath partial sum of (1.2) at the point z = y in E, then

Ḡa(y) =
1

2π

∫ π

0

ξ(z)
cos t

2 − cos(a+ 1
2 )z

sin z
2

dz.

Thus, by the following (**), we may write

λ−p,q
a (y)− 1

2π

∫ π

0

ζ(z) cot
z

2
dz =

1

Ra

a∑
b=0

pa−b qb Ḡa(z)−
1

2π

∫ π

0

ζ(z) cot
z

2
dz

=

∫ π

0

1

2πRa

a∑
b=0

pa−b qb ×
{
cos(b+ 1

2 )z

sin z
2

}
ζ(z)dz
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=
−1

2π

∫ π

0

ζ(z) cot
z

2
dz −

∫ π

0

ζ(z).
1

2πRa

a∑
b=0

pa−b qb.
cos(b+ 1

2 )z

sin z
2

dz

= −
∫ π

0

ζ(z)N̄p,q
a (z)dz

= −D say,

where

D =

∫ π

0

ζ(z)N̄p,q
a (z)dz.

now we have to show that ∫ π

0

ζ(z)N̄p,q
a zdz = O(1)(2.20)

as a → ∞ , uniformly in given E.
For 0 < δ < π,

D =

∫ π

0

ζ(z)N̄p,q
a (z)dz

=

{∫ 1
a

0

+

∫ π

1
a

+

∫ π

δ

}
ζ(z)N̄p,q

a (z)dz

= D1 +D2 +D3 (say)(2.21)

For D1,

D1 =

∫ 1
a

0

ζ(z)N̄p,q
a (z)dz

⇒ |D1| = O

[ ∫ 1
a

0

∣∣∣∣ζ(z)∣∣∣∣ ∣∣∣∣N̄p,q
a (z)

∣∣∣∣dz]

= O

[
a

∫ 1
a

0

∣∣∣∣ζ(z)∣∣∣∣dz]

= O(a).O

[
A(a)qa

{B(Ra)}m

]
(using lemma (5) and eqn (8))

= O

[
A(a)Ra

{B(Ra)}m

]
, (using (8))

= O(1), as a → ∞(2.22)

uniformly in a domain E.
Also,

D2 =

∫ δ

1
a

ζ(z)N̄p,q
a (z)dz

Mathematical Statistician and Engineering Applications 
ISSN: 2094-0343 

2326-9865

Vol. 71 No. 4 (2022) 
http://philstat.org.ph 

330



⇒ |D2| = O

[ ∫ δ

1
a

∣∣∣∣ζ(z)∣∣∣∣∣∣∣∣N̄p,q
a (z)

∣∣∣∣dz]

= O

[
R−1

a

∫ δ

1
a

∣∣∣∣ζ(z)∣∣∣∣Rτ

z
dz

]
= O(1), a → ∞(2.23)

uniformly in a domain E.
Similarly, we can show that

|D3| = O(1), a → ∞(2.24)

uniformly in a domain E by virtue of Riemann-Lebesgue theorem and regularity of the method
of summation.
In this way, using the help of (20), (21), (22), (23) and (24) we get∫ π

0

ζ(z)N̄p,q
a (z)dz = O(1),

as a → ∞, uniformly in a domain E.
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