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Abstract 

The idea of this study, we introduce two technique, first technique general n-

ordered for objective function in conic model according to expansion of Taylor 

, the second technique, anew secant equation so is modification of the scaled 

BFGS method. A wonderful characteristic of the proposed method is that it 

possesses a globally convergent despite the absence of a convexity postulate 

on the goal function.  And  The numerical results proved the efficiency of the 

new technology compared with the classical method. 
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1. Introduction 

Davidon [7] was the first to propose using conic models for optimization. Sorensen [6] soon 

after developed an algorithm for updating collinear scalings, the superlinear rate of 

convergence he was able to achieve. There is a strong connection between this work and those 

by Grandinetti [16] and Ariyawansa [15]. A solution to the issue of developing algorithms that 

minimise a conic objective function in a finite number of steps was then addressed . Gourgeon 

and Nocedal [13], and others considered this problem and developed conjugate gradient 

analogues to solve it. 

We describe a few basic properties of conic functions in constrained optimization problems 

and how they are defined. 

min 𝑄(𝑥) … (1) 

s.t 

𝑒𝑖 ≤ 0 for i=1,2,……,p 

𝑐𝑗 = 0 for j=1,2,……,m 

𝑄 ∶ 𝑅𝑛 → 𝑅 Smooth function 𝑒𝑖 is inequality constrained and 𝑐𝑗 equality constrained [14]. 

As mentioned in the previous research [1], it is possible to construct an unconstrained objective 

function as follows 

Φ(𝑥, 𝜎) = 𝑄(𝑥) + 𝜎Ε(𝑥) … (2) 

Where 𝜇 → 0 and [7] defines E (x): 

http://philstat.org.ph/
mailto:elaf.sulaiman@uomosul.edu.iq
mailto:emantarik@gmail.com
mailto:emantarik@gmail.com


Mathematical Statistician and Engineering Applications 

ISSN: 2094-0343 

2326-9865 

Vol. 71 No. 4 (2022) 

http://philstat.org.ph 

708 

 

 

Ε(𝑥) = ∑𝑚 
1

 
 

… (3) 
𝑙=1 𝑒𝑙(𝑥) 

we derivative the functions we get : 

∇Φ(𝑥, 𝜎) = ∇(𝑄(𝑥)) + 𝜎 ∑𝑚 (
 −1   

) ∇ 𝑒 (𝑥) … (5) 
𝑙=1 

𝑒𝑙
2(𝑥) 𝑙 

Now we'll look at the second half, which is an unconstrained optimization method that will 

help us apprehend in problem (2), where Φ: 𝑅𝑛 → 𝑅 a continuous real-valued and accessible 

derivation function. It's an iterative process.[1] 

we will write any 𝑥0 ∈ 𝑅𝑛 as 𝑥 = 𝑥0 + 𝑠 . The conic function is defined in light of this 

vantage position. 

 
𝑄(𝑥) = 𝑄(𝑥 

 
+ 𝑠) = 𝑄 +   

ℊ0𝑠    
+ 

1 
 

𝑠𝑇Α𝑠 
 

(6) 
0 0  

1−𝑎𝑇𝑠 

 

2 (1−𝑎𝑇𝑠)2 

We can consider that ℊ(𝑥𝑘+1) = ∇Φ(𝑥𝑘+1, 𝜎𝑘+1) (7) 

Such that ℊ0 , 𝑎 ∈ 𝐑𝑛 and 𝐴 is an 𝑛 × 𝑛 a matrix with a positive definiteness and symmetry. 

The horizon vector is called a and the domain of Q is called 𝐷, i.e., 𝐷 = {𝑥: 1 − 𝑎𝑇𝑠 ≠ 0}. 

Since the term 𝑠/(1 − 𝑎𝑇𝑠) it is evident that by letting it appear in the second term on the right- 

hand side of (6), and twice in the third term 

 
𝑤 =  

𝑠 

1−𝑎𝑇𝑠 

the conic function becomes a quadratic in the variable 𝑤, 

(8) 

 

𝑄(𝑥) = 𝑄(𝑥 + 𝑠) = 𝑄 + ℊ𝑇 1 𝑇 
 

 

(9) 

0 0 0 𝑤 + 
2 

𝑤 Α𝑤 ≡ ℎ(𝑤) 
 

We can say that s by using the term : 

 
𝑠 =  

𝑤 

1+𝑎𝑇𝑤 

To simplify the formulas we define 

𝛾(𝑥) = 1 − 𝑎𝑇𝑠 = 
1

 
1+𝑎𝑇𝑤 

 
 

(10) 

 

 

(11) 

so that 𝑤 = 𝑠/𝛾. We call 𝐻 = {𝑥: 1 − 𝑎𝑇𝑠 = 0} It's important to remember that if 𝛾(𝑥)𝛾(𝑦) < 
0, then 𝑥 and 𝑦 are on opposite sides of H the single hyperplane, and vice versa. We'll need to 

figure out how to relate the derivative of 𝑄 to the derivative of ℎ. Since 
 

𝑄(𝑥) = 𝑄(𝑥0 + 𝑠) = 𝑄 (𝑥0 +  
𝑤 

1+𝑎𝑇𝑤 
) = ℎ(𝑤) (12) 

it follows from the chain rule that 

ℎ′(𝑤) = 𝛾(𝑥)(𝐼 − 𝑎𝑠𝑇)ℊ(𝑥) (13) 

so that gradient of 𝑄 is denoted by ℊ [18]. As an example function for minimizing, the conic 

(7) is most beneficial if it has only one minimizer. The conditions [13] guarantee this. 

𝛢 > 0 and 𝑎𝑇Α−1ℊ0 ≠ 1 (14) 
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𝑘 𝑘 

𝑘 

𝑘 𝑘 

𝑘 

𝑘 

𝑘 

𝑘 

It will be called a normal conic function if it holds. With Broyden [10], Fletcher [11], Goldfarb 

(12) and Shanno (13), we have a well-known quasi-Newtonian BFGS approach. The BFGS 

approach is quick and efficient, and it is now utilised to solve unconstrained and constrained 

optimization problems in a variety of optimization tools. For small and medium-sized 

unconstrained optimization problems, the BFGS approach proven to be one of the most 

efficient quasi-Newton methods. Dennis and Moré [20, 1] provided an outstanding exposition 

of the theoretical features of this method's characteristics and convergence. where 

approximation to the hessian of function positive definite and symmetric 

 

So, the search for BFGS direction is achieved as a solution of the linear algebraic system. 

𝑑𝑘   = −Β−1    ℊ (15) 

Where ℊ𝑘 is the gradient . In (14) the matrix 𝐵𝑘 is the BFGS approximation to the Hessian 

∇2𝑄(𝑥𝑘) of 𝑄 at 𝑥𝑘, being updated by the classical formula: 
 

Β𝑘+1 = Β𝑘 − 
𝐵𝑘𝑠𝑘𝑠𝑇𝐵𝑘  +

 
𝑠𝑇𝐵𝑘𝑠𝑘 

𝑇 
𝑘 , (16) 

𝑦𝑇𝑠𝑘 

𝑘 = 0,1, …, where 𝑠𝑘 = 𝑥𝑘+1 − 𝑥𝑘 and𝑦𝑘 = ℊ𝑘+1 − ℊ𝑘. An important property of the BFGS 

updating formula (16), which we call standard𝐵𝐹𝐺𝑆, is that 𝐵𝑘+1 inherits the positive 
definiteness of 𝐵𝑘 if 𝑦𝑇𝑠𝑘 > 0. The condition 𝑦𝑇𝑠𝑘 > 0 holds 

𝑘 𝑘 

The Line searches are frequently use to ensure the global convergence of nonlinear constrained 

optimization . The so-called strong Wolfe line search is use here, in which the step length 𝛼𝑘 

in (6) is determined in such a way that [23,22] 

𝑄𝑘+1 − 𝑄𝑘 ≤ 𝛿𝛼𝑘ℊ𝑇𝑑𝑘 (17) 

|ℊ𝑇    𝑑𝑘| ≤ −𝜎ℊ𝑇𝑑𝑘 (18) 
𝑘+1 𝑘 

where the positive constants 𝜎 and 𝛿 satisfy 0 < 𝜎 < 𝛿 < 1. We note that the condition 𝑦𝑇𝑠𝑘 > 
0 is also guaranteed to hold if the stepsize 𝛼𝑘 is determined by the exact line search: 

min{𝑄(𝑥𝑘 + 𝛼𝑑𝑘), 𝛼 > 0}. Since 𝐵𝑘 is positive definite, the search direction 𝑑𝑘 generated by 

(15) is a descent direction of 𝑄 at 𝑥𝑘, no matter whether the Hessian is positive definite or not. 

Then we'll go through the next two qualities, which will be crucial in our subsequent study. If 

𝑑𝑘 holds for each search direction, we say the descent condition holds. 

ℊT𝑑𝑘 < 0   ∀ 𝑘 ⩾ 0         (19) 

adding, the sufficient descent condition holds if ∃ 𝑐 > 0 constant so all direction 𝑑𝑘, obtain 

ℊT𝑑𝑘 ⩽ −𝑐∥ℊ 2 for all 𝑘 ⩾ 0. (20) 
 

 

2. The Generalization conic model 

We have derived a general formula for the conic model, where we expanded the conic model 

and expanded the space to degree n, and this reduces the cutting error, which makes us obtain 

more accurate results. This model has several cases where for the time being, we assume that 

𝑦𝑘𝑦 

𝑘∥ 
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     𝑠 

f is sufficiently smooth. We were able to identify a unique scalar for ξ. using the n-order Taylor 

expansion for the objective conic function around the iterate: 

 

The general form of the conic model is: 
 

ℊ𝑇 1 𝑄𝑘+1 = 𝑄𝑘 + 𝑘 + 𝑠𝑇𝐺𝑠 
+ 

1 𝑠𝑇(𝐶𝑠)𝑠 
+ 

1 𝑠𝑇(𝐹(𝑠)𝑠)𝑠 
+

 1 𝑠𝑇((𝑈(𝑠)𝑠)𝑠)𝑠 
+

 

… … 
1

 

(1−𝑎𝑇𝑠) 

𝑠𝑇(𝑉𝑛−1)𝑠 

2! (1−𝑎𝑇𝑠)2 3! (1−𝑎𝑇𝑠)3 

(21) 

4!  (1−𝑎𝑇𝑠)4 5! (1−𝑎𝑇𝑠)5 

(𝑛−1)! (1−𝑎𝑇𝑠)𝑛−1 

Where 𝑠 = 𝑥𝑘+1 − 𝑥, 𝑇𝑘+1 ∈ ℝ𝑛×𝑛×𝑛, 𝑉𝑘+1 ∈ ℝ𝑛×𝑛×𝑛×𝑛 and 𝑈𝑘+1 ∈ ℝ𝑛×𝑛×𝑛×𝑛×𝑛 are 

symmetric and 

𝑠𝑇(𝐶 
𝑛 

𝑠)𝑠 =  ∑ ∂3𝑄(𝑥𝑘+1) 
𝑠𝑖 𝑠𝑗𝑠𝑙 

𝑘+1 

𝑖,𝑗,𝑙=1 
∂𝑥𝑖 ∂𝑥𝑗 ∂𝑥𝑙 

𝑠𝑇((𝐹 
𝑛 

𝑠)𝑠)𝑠 = ∑ ∂4𝑄(𝑥𝑘+1) 
𝑠𝑖𝑠𝑗𝑠𝑙𝑠𝑚  

𝑘+1 

𝑖.𝑗,𝑙,𝑚=1 
∂𝑥𝑖 ∂𝑥𝑗 ∂𝑥𝑙 ∂𝑥𝑚 

𝑠𝑇 (((𝑈 
𝑛 

𝑠)𝑠)𝑠) 𝑠 = ∑ ∂5𝑄(𝑥𝑘+1) 
𝑠𝑖 𝑠𝑗𝑠𝑙𝑠𝑚𝑠𝑛  

𝑘+1 

𝑖.𝑗,𝑙,𝑚,𝑛=1 
∂𝑥𝑖 ∂𝑥𝑗 ∂𝑥𝑙 ∂𝑥𝑚 ∂𝑥𝑛 

Now determined the derivative of eq . (21) then multiplying with s we get : 

𝑠𝑇ℊ 𝑠𝑇ℊ + 
𝑠𝑇𝐺𝑠 

+ 
1  𝑠𝑇(𝐶(𝑠)𝑠 )𝑠 

+ 
1  𝑠𝑇(𝐹(𝑠)𝑠)𝑠 

+ 
1  𝑠𝑇𝑈(𝑠)𝑠𝑠𝑠𝑆 

+   … (22)
 

𝑘+1 = 𝑘 (1−𝑎𝑇𝑠) 2!  (1−𝑎𝑇𝑠)2 3!  (1−𝑎𝑇𝑠)3 4!  (1−𝑎𝑇𝑠)4 

next mathematical operations and abbreviations we get: 

𝑠𝑇𝐺𝑠 = (1 − 𝑎𝑇𝑠)𝑠𝑇ℊ − (1 − 𝑎𝑇𝑠)𝑠𝑇ℊ − 
1 𝑠𝑇(𝐶𝑠 )𝑠𝑠 

− 
1 𝑠𝑇(𝐹(𝑠)𝑠𝑠𝑠)𝑠 …   (23) 

𝑘+1 𝑘 2! (1−𝑎𝑇𝑠) 3!    (1−𝑎𝑇𝑠)2 

𝑠𝑇𝐺𝑠 = 2(1 − 𝑎𝑇𝑠)2(𝑄 − 𝑄 ) − 2(1 − 𝑎𝑇𝑠)ℊ𝑇 𝑠 − 
1 𝑠𝑇(𝐶𝑠)𝑠 

− 
1

 
 

 
𝑠𝑇𝐹(𝑠)𝑠)𝑠 + 

𝑘+1 𝑘 

…. (24) 

𝐾 3 (1−𝑎𝑇𝑠) 12(1−𝑎𝑇𝑠)2 

 

Now by Multiply 4 by 𝜀 
 

𝜀𝑠𝑇𝐺𝑠 = 2𝜀(1 − 𝑎𝑇𝑠)2(𝑄 − 𝑄 

 
) − 2𝜀(1 − 𝑎𝑇𝑠)ℊ𝑇 𝑠 − 

𝗌 𝑠𝑇(𝐶𝑠)𝑠 
− 
 

𝑘+1 𝑘 𝐾 3 (1−𝑎𝑇𝑠) 
𝗌 

 
 

12(1−𝑎𝑇𝑠)2 
𝑠𝑇𝐹(𝑠)𝑠)𝑠 + ⋯ (25) 

 

And Multiply 3 by (𝜀 − 1) 
 

(𝜀 − 1)𝑠𝑇𝐺𝑠 = (𝜀 − 1)(1 − 𝑎𝑇𝑠)𝑠𝑇ℊ 

 

 
(𝜀 − 1)(1 − 𝑎𝑇𝑠)𝑠𝑇ℊ 

 
− 

(𝗌−1) 𝑠𝑇(𝐶𝑠 )𝑠𝑠 
−

 

(𝗌−1) 𝑠𝑇(𝐹(𝑠)𝑠𝑠𝑠)𝑠 
+ …. (26)

 
𝑘+1− 𝑘 2! (1−𝑎𝑇𝑠) 

3! (1−𝑎𝑇𝑠)2 
 

Then subtracting 26 from 25 we obtained: 
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𝑇( ) 

𝑘 

𝑇( ) 

𝑄𝑘+1 = 𝑄   + 𝑘
𝑘 

𝑘 

     𝑠 

𝑘 

𝑠 + ( 

𝑘 

𝑘 

𝑠𝑇𝐺𝑠 = 2𝜀(1 − 𝑎𝑇𝑠)2(𝑄𝑘+1 − 𝑄𝑘+1) + (−𝜀 − 1)(1 − 𝑎𝑇𝑠)ℊ𝑇𝑠 − (𝜀 − 1)(1 − 𝑎𝑇𝑠)ℊ𝑇 𝑠 + 
    (𝗌−3) (𝗌−2) 

( ) 𝑠 𝐶𝑠 𝑠𝑠 − ( 
𝑘 

)𝑠𝑇(𝐹(𝑠)𝑠𝑠𝑠 + ⋯ (27) 
𝑘+1 

6(1−𝑎𝑇𝑠) 12(1−𝑎𝑇𝑠)2 
 

The formula when 𝜀 = 𝑛 

𝑆𝑇𝐺𝑆 = 2𝑛(1 − 𝑎𝑇𝑠)2(𝑄𝑘+1 − 𝑄𝑘+1) − (𝑛 + 1)(1 − 𝑎𝑇𝑠)ℊ𝑇𝑠 − (𝑛 − 1)(1 − 𝑎𝑇𝑠)ℊ𝑠 + 
   (𝑛−3) (𝑛−2) 

( ) 𝑠 𝐶𝑠 𝑠𝑠 ∗ ( )𝑠𝑇(𝐹(𝑠)𝑠𝑠𝑠 + ⋯ (28) 
6(1−𝑎𝑇𝑠) 12(1−𝑎𝑇𝑠)2 

 

This is suggested general formula for conic model 

Locking that we can be return to all model as 

for n=1 the linear model we don’t have derivative 

𝑄𝑘+1 = 𝑄𝑘 (29) 

for n=2 the quadratic we have first derivative g 
 

      ℊ
𝑇𝑠 

(1−𝑎𝑇𝑠) 
(30) 

𝑠𝑇𝐺𝑠 = 2(2)𝜆2(𝑄𝑘+1 − 𝑄𝑘+1) − (3)𝜆ℊ𝑇𝑠 − (1)𝜆ℊ𝑇 𝑠 

 
𝑠𝑇𝐺𝑠 = 4𝜆2(𝑄𝑘+1 − 𝑄𝑘+1) − 2 𝜆(ℊ 

𝑘 
 

+ ℊ
𝑘+1 

𝑘+1 
 

)𝑇𝑠 + 𝜆𝑦𝑇𝑠 

and n=3 conic model we have first and second derivative g ,G 
 

ℊ𝑇 1 𝑄𝑘+1 = 𝑄𝑘 + 𝑘 + 𝑠𝑇𝐺𝑠 (31) 
(1−𝑎𝑇𝑠) 2! (1−𝑎𝑇𝑠)2 

Then the general formula for conic model: 

𝑠𝑇𝐺𝑘𝑠 = 2𝑛𝜆(1 − 𝑎𝑇𝑠)2(𝑄𝑘+1 − 𝑄𝑘+1) − (𝑛 + 1)(1 − 𝑎𝑇𝑠)ℊ𝑇𝑠 − (𝑛 − 1)(1 − 

𝑎𝑇𝑠)ℊ𝑇 (𝑛−3)    
) 𝑠𝑇(𝐶𝑠)𝑠𝑠 ∗ ( 

(𝑛−2)
 )𝑠𝑇(𝐹(𝑠)𝑠𝑠𝑠 (32) 

𝑘+1 6(1−𝑎𝑇𝑠) 12(1−𝑎𝑇𝑠)2 

 

3. Generalzation secant equation in constrained optimization: 

Second, we develop a novel class of modified secant equations to achieve high order accuracy 

in approximating the goal function's second-order curvature. Then, we propose a novel 

SCALCG algorithm modification. 

As a next step, we investigated the modified secant equation proposed by (32) 𝐵𝑘, The new 

approximation of 𝐺𝑘 , should be taken into consideration. 
 

𝑠𝑇𝐵𝑘𝑠 = 2𝑛𝜆2(𝑄𝑘+1 − 𝑄𝑘+1) − 𝑛 𝜆(ℊ + ℊ
𝑘+1 

)𝑇𝑠 + 𝜆𝑦𝑇𝑠 (33) 

Let 𝜃 = 2𝜆(𝑄𝑘+1 − 𝑄𝑘+1) − (ℊ𝑘 + ℊ𝑘+1)𝑇𝑠 (34) 

𝑠𝑇𝐵𝑘𝑠 = 𝑛 𝜆𝜃 + 𝜆𝑦𝑇𝑠 = 𝑆𝑦̂ (35) 

𝑘 

𝑘 
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The suggested of new quasi-Newton equation: 

𝐵𝑘𝑠 = 𝑦̂ (36) 

Where 

𝑦̂ = 𝜆𝑦𝑇 + 
𝑛 𝜆𝜃 

𝑢 (37) 
 

𝑘 𝑠𝑇𝑢 

with 𝑠𝑇𝑢 ≠ 0 and u ∈ ℜn. 

The vectors 𝑠𝑘, 𝑦𝑘 , ℊ𝑘 
, ℊ

𝑘+1 For as long as the inside product 𝑠𝑇𝑢 ≠ 0 is still usable you have 

a few alternatives for substituting the vector u since the choice 𝑢 = 𝑠𝑇 invariance aspect of the 

QN method is not satisfied, we choose to adopt a different approach 𝑢 = 𝑦𝑘 [13]. 

The standing by 𝑢 = 𝑦𝑘 This means the Q.N. equation’s can be reduced to the next formula. 

𝑦̂ = 𝜆𝑦𝑇 +  
𝑛 𝜆𝜃  

𝑦 
 

(38) 
𝑘 𝑠𝑇𝑦𝑘     

𝑘 

Let 𝜚 = 1 + 
𝑛 𝜃

 
𝑠𝑇𝑦𝑘 

𝐵𝑘𝑠 = 𝑦̂ =  𝜆𝜚𝑦𝑘 (39) 

It is now possible to adapted quasi-Newton updating formulas when 𝑦𝑘 is changed by 𝑦̂  . As a 

result the inverse BFGS formula given By 

𝐻𝑘+1 = (𝐼 − 𝑝𝑘𝑠𝑘𝑦𝑇)𝐻𝑘(𝐼 − 𝑝𝑘𝑦𝑘𝑠𝑇) + 𝑝𝑘𝑠𝑘𝑠𝑇 (40) 
𝑘 

 

Then 

𝑘 𝑘 

 

𝐻̂𝑘+1  = (𝐼 − 𝑝𝑘𝑠𝑘𝑦̂𝑇)𝐻̂𝑘(𝐼 − 𝑝𝑘𝑦̂𝑘𝑠𝑇) + 𝑝𝑘𝑠𝑘𝑠𝑇 

 
Where 𝑦̂ =  𝜆𝜚𝑦𝑘 

𝑘 𝑘 𝑘 

 

𝐻̂𝑘+1  = (𝐼 − 𝑝𝑘𝑠𝑘 𝜆𝜚𝑦𝑇)𝐻̂𝑘(𝐼 − 𝑝𝑘 𝜆𝜚𝑦𝑘𝑠𝑇) + 𝑝𝑘𝑠𝑘𝑠𝑇 (41) 
𝑘 𝑘 𝑘 

𝐻̂ = (𝐼 − 𝑝  𝑠  𝑦𝑇)𝐻̂  (𝐼 − 𝑝   𝜆𝑠𝑇) + 
𝑝𝑘 𝑠  𝑠𝑇 (42) 

𝑘+1 𝑘  𝑘   𝑘 𝑘 𝑘 𝑘 𝜆𝜚 𝑘  𝑘 
 

Where 𝜚 = 1 + 
𝑛 𝜃

 
𝑠𝑇𝑦𝑘 

, 𝑝 = 
1

 
𝑠𝑇𝑦𝑘 

 

 

4. Properties of the modified QN method 

Convergence analysis 

Assumption: 1 [16] 

i. The level set ℑ = {𝑥 ∣ 𝑄(𝑥) ⩽ 𝑄(𝑥1)} is bounded, namely, there exists a constant 𝐵 > 

0   such that ∥ 𝑥 ∥⩽ 𝐵 for all 𝑥 ∈ 𝔍 (43) 

Denote 𝑐̅̅𝑜̅ℑ to be the closed convex hull 
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( 
T T 

ii. In some neighborhood 𝑁  of ̅𝑐̅𝑜̅ℑ, 𝑄  is continuously differentiable, and its gradient is 

globally Lipschitz continuous, namely, there exists a constant 𝐿 > 0 such that 

∥ ℊ(𝑥) − ℊ(𝑦) ∥⩽ 𝐿 ∥ 𝑥 − 𝑦 ∥   for all 𝑥, 𝑦 ∈ 𝑁. (44) 

It is well known that the convex closure of a bounded set in ℝ𝑛 is still bounded. 

As a result, when combined with Assumption i ̅𝑐̅𝑜̅ℑ is a bounded convex subset in ℝ𝑛. As a 

result, Assumption ii holds for any function 𝑄 that meets Assumption i and has Lipschitz 

gradientg locally. Furthermore, we can see from (43) and (44) that there is a constant 𝛾 > 0 

such that ∥ ℊ(𝑥) ∥⩽ 𝛾 for all 𝑥 ∈ 𝔍 (45) 

Lemma 1. 

Provided Assumptions i , ii, and the descent condition are accurate. Let 𝛼𝑘 be found through 

the line search of strong Wolfe. Then there's 

|𝜃𝑘| ⩽ L∥𝑠𝑘∥2 (46) 

Wherever L is the same it is from Assumption ii. 

Proof: 

Because 𝛼𝑘 derived from the S.W.C search eq. (19) 

We        know    that    𝑥𝑘 ∈ 𝔍: = {𝑥 ∣ 𝑄(𝑥) ⩽ 𝑄(𝑥1)}     for    ∀   𝑘 ⩾ 1. (47) 

From the other aspect, we know that there exists a mean value theorem. 𝜁𝑘 ∈ [0,1] such that 

𝑄𝑘+1 − 𝑄𝑘 = ℊ(𝑥𝑘 + 𝜁𝑘  𝑥𝑘+1 − 𝑥𝑘))  (𝑥𝑘+1 − 𝑥𝑘) = ℊ(𝑥𝑘 + 𝜁𝑘𝑠𝑘)  𝑠𝑘. (48) 

From (47) we get : 

𝑥𝑘 + 𝜁𝑘𝑠𝑘 = 𝑥𝑘 + 𝜁𝑘(𝑥𝑘+1 − 𝑥𝑘) (49) 

As a result of the formulation of 𝖯𝑘 

𝑇 

𝜃 = 2𝜆(𝑄𝑘+1 − 𝑄𝑘+1) − (ℊ𝑘 + ℊ𝑘+1)  𝑠 

= 2𝜆ℊ(𝑥𝑘 + 𝜁𝑘𝑠𝑘)T𝑠𝑘 − ℊ𝑇𝑠 − ℊ𝑇 𝑠 
𝑘 𝑘+1 

‖𝜃‖ ≤ ‖ℊ𝑘 − 𝜆ℊ(𝑥𝑘 + 𝜁𝑘𝑠𝑘) ‖
𝑇
𝑠𝑘 − ‖ℊ𝑘+1 − 𝜆ℊ(𝑥𝑘 + 𝜁𝑘𝑠𝑘)   ‖

𝑇
𝑠𝑘 

≤ [‖ℊ𝑘   − 𝜆ℊ(𝑥𝑘 + 𝜁𝑘𝑠𝑘)   ‖ + ‖ℊ𝑘+1 − 𝜆ℊ(𝑥𝑘 + 𝜁𝑘𝑠𝑘)   ‖]‖𝑠𝑘‖ 

≤ [‖ℊ𝑘   − 𝜆ℊ(𝑥𝑘 + 𝜁𝑘𝑠𝑘)   ‖ + ‖ℊ𝑘+1 − 𝜆ℊ(𝑥𝑘 + 𝜁𝑘𝑠𝑘)   ‖]‖𝑠𝑘‖ 

≤ [‖ℊ𝑘   − 𝜆ℊ(𝑥𝑘 + 𝜁𝑘𝑠𝑘)   ‖ + ‖ℊ𝑘+1 − 𝜆ℊ(𝑥𝑘 + 𝜁𝑘𝑠𝑘)   ‖]‖𝑠𝑘‖ 

≤ [𝜆𝐿𝜁𝑘‖𝑠𝑘‖ + 𝜆𝐿(1 − 𝜁𝑘)‖𝑠𝑘‖]‖𝑠𝑘‖ 

≤ 𝜆L‖𝑠𝑘‖2 

The initial inequality is derived of triangle inequality with Cauchy–Schwartz inequality, and 

the next inequality has derived of Assumption ii and(49). now we complete. 
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𝑘 𝑘+1 

𝑘 

Corollary 1 

Suppose that Assumption I and ii hold for 𝑦̂ defined by 

𝐵𝑘𝑠 = 𝑦̂ 
 

Where  
𝑦̂ = 𝜆𝑦𝑇 +  

𝑛 𝜆𝜃  
𝑦 

 

𝑘 𝑠𝑇𝑦𝑘 𝑘 
 

 
 

We have 

𝜃 = 2𝜆(𝑄𝑘+1 − 𝑄𝑘+1) − (ℊ + ℊ )𝑇𝑠 

‖𝑦̂‖ ≤ 𝐿‖𝑠𝑘‖ (50) 

Proof: 

Considering lemma 1 and assuptions I &ii hold and become 𝜆 ∈ [0,1] we have 
 

‖𝑦̂  ‖ = ‖𝜆𝑦𝑇 +  
𝑛 𝜆𝜃  

𝑦 
 

‖ (51) 
𝑘 𝑘 

𝑠𝑇𝑦𝑘     
𝑘 

‖𝑦𝑘‖ ≤ 𝐿‖𝑠𝑘‖ (52) 
 

≤ 𝜆‖𝑦𝑘 ‖ + 
𝑛 𝜆‖𝜃‖‖𝑦𝑘‖ 

‖ 𝑠𝑇𝑦𝑘‖ 
(53) 

By lemma ‖𝜃‖ ≤ 𝜆L‖𝑆𝑘‖2 
 

≤ 𝜆𝐿‖𝑠𝑘 ‖ + 
𝑛 𝜆𝜆L‖𝑠𝑘‖2𝐿‖𝑠𝑘‖ 

‖ 𝑠𝑇𝑦𝑘‖ 
(54) 

 

≤ [𝜆𝐿 + 
𝑛 𝜆2L2‖𝑠𝑘‖2

] ‖𝑠 
 

‖ (55) 

‖ 𝑠𝑇𝑦𝑘‖ 𝑘 

≤ 𝑁‖𝑠𝑘‖ (56) 

Where 𝑁 = [𝜆𝐿 + 
𝑛 𝜆2L2‖𝑠𝑘‖2

] 
‖ 𝑠𝑇𝑦𝑘‖ 

Theorem 1 

If  𝑠𝑇𝑦̂𝑘  > 0 ∀𝑘 then G is symmetric positive definite . 

Proof 

we have 𝑦̂ = 𝜆𝑦𝑇 +  
𝑛 𝜆𝜃  

𝑦 
 

𝑘 𝑠𝑇𝑦𝑘     
𝑘 

By multiply by 𝑠𝑇 
 

𝑠𝑇𝑦̂ = 𝜆𝑠𝑇𝑦 + 
𝑛 𝜆𝜃  

𝑠𝑇𝑦
 

 

(57) 
𝑘   𝑘 𝑘   𝑘 

𝑠𝑇𝑦𝑘     
𝑘   𝑘 
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𝑘+1 𝑘 

𝑘 

𝑘 

𝑘   𝑘 𝑘   𝑘+1 𝑘   𝑘 

𝑠𝑇𝑦̂𝑘  = 𝜆𝑠𝑇𝑦𝑘  + 𝑛 𝜆𝜃 (58) 
𝑘 𝑘 

 

𝜃 = 2𝜆(𝑄𝑘+1 − 𝑄𝑘+1) − (ℊ + ℊ  )𝑇𝑠 (59) 

 
𝑠𝑇𝑦̂𝑘  = 𝜆𝑠𝑇(ℊ + ℊ   ) + 𝑛 𝜆2𝜆(𝑄𝑘+1 − 𝑄𝑘+1) − (ℊ + ℊ )𝑇𝑠 (60) 

𝑘 𝑘 𝑘+1 𝑘 𝑘+1 𝑘 

𝑠𝑇𝑦̂ = 2𝑛𝜆2(𝑄𝑘+1 
 

− 𝑄𝑘+1 ) + 𝜆(1 − 𝑛)𝑠𝑇ℊ −𝜆(1 + 𝑛)𝑠𝑇ℊ 

 

𝑇 

(61) 
 

By strong wolfe line search 

 
𝑠𝑇𝑦̂𝑘  ≤ 2𝑛𝜆2𝛿𝛼𝑘ℊ𝑇𝑑𝑘 +  𝜆(1 − 𝑛)𝛼𝑘𝜎2ℊ𝑇𝑑𝑘 − 𝜆(1 + 𝑛)𝛼𝑘ℊ𝑇𝑑𝑘 (62) 

𝑘 𝑘 𝑘 𝑘 

𝑠𝑇𝑦̂𝑘  ≤ [2𝑛𝜆2𝛿 + 𝜆(1 − 𝑛)𝜎2 −  𝜆(1 + 𝑛)]𝛼𝑘ℊ𝑇𝑑𝑘 (63) 
𝑘 𝑘 

 
Because 𝑠𝑇𝑔𝑘   = 𝛼𝑘ℊ𝑇𝑑𝑘 < 0 

𝑘 𝑘 

There exist constant 𝑀 < 0 

𝑀 = 2𝑛𝜆2𝛿 + 𝜆(1 − 𝑛)𝜎2 − 𝜆(1 + 𝑛) < 0 (64) 

𝑠𝑇𝑦̂𝑘  ≤ 𝑀𝛼𝑘ℊ𝑇𝑑𝑘  ≥ 0 (65) 
𝑘 𝑘 

𝑠𝑇𝑦̂𝑘  ≥ 0 (66) 

 
 

Theorem 2 
 

Say the sufficiently Q (x) is smooth, and the ‖Sk ‖ is adequately tiny, then obtain 
 

𝑠𝑇𝐺 𝑠 − 𝑠𝑇𝑦̂ = 
−1 𝐹𝑛+1 + 𝑂 ‖s ‖𝑛+2 (67) 

𝑘 𝑘   𝑘 (𝑛+1)𝜆𝑛−1 k 
 

𝑠𝑇𝐺 𝑠 − 𝑠𝑇𝑦 = 
−1 𝐹𝑛+1 + 𝑂 ‖s ‖𝑛+2 (68) 

𝑘 

 

Proof 

𝑘   𝑘 
 

𝑛𝜆𝑛−1 

 
 

ℊ𝑇𝑠 

 
 
 

1 𝑠𝑇𝐺𝑠 

k 
 
 
 
 

1 𝑠𝑇(𝐶𝑠)𝑠 1 𝑠𝑇(𝐹(𝑠)𝑠)𝑠 1 𝑠𝑇((𝑈(𝑠)𝑠)𝑠)𝑠 
𝑄𝑘+1 = 𝑄𝑘 +

  𝑘    + 
𝜆 2! 𝜆2 

+ 
3! 𝜆3 

+ 
4! 𝜆4 

+ 
5! 𝜆5 + 

For n=1 
 

𝑠𝑇𝐺  𝑠 − 𝑠𝑇𝑦̂   = 
−1  

𝐹2 + 𝑂 ‖s 
 

‖3 (69) 
𝑘 𝑘   𝑘 2 k 

𝑠𝑇𝐺𝑘𝑠 − 𝑠𝑇𝑦𝑘 = −1 𝐹2 + 𝑂 ‖sk‖3 

𝐹2 = 𝑠𝑇𝐺𝑠 

n= 2 
 

𝑠𝑇𝐺  𝑠 − 𝑠𝑇𝑦̂ = 
−1 

𝑠𝑇(𝐶𝑠)𝑠 + 𝑂 ‖s 
 

‖4 (70) 
𝑘 𝑘   𝑘 3𝜆 k 
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𝑠𝑇𝐺 𝑠 − 𝑠𝑇𝑦 = 
−1 

𝑠𝑇(𝐶𝑠)𝑠 + 𝑂 ‖s ‖4 
 

𝑘 

 
n=k 

𝑘   𝑘 2𝜆 k 

 

𝑠𝑇𝐺 𝑠 − 𝑠𝑇𝑦̂ = 
−1 𝑉𝑘+1 + 𝑂 ‖s ‖𝑘+2 (71) 

𝑘 𝑘   𝑘 (𝑘+1)𝜆𝑘−1 k 
 

𝑠𝑇𝐺 𝑠 − 𝑠𝑇𝑦   = 
−1

 𝑉𝑘+1 + 𝑂 ‖s ‖𝑘+2 
𝑘 𝑘   𝑘 

 

𝑘𝜆𝑘−1 k 

Now prove for n=k+1 
 

𝑠𝑇𝐺 𝑠 − 𝑠𝑇𝑦̂ = 
−1 𝑉𝑘+2 + 𝑂 ‖s ‖𝑘+3 (72) 

𝑘 𝑘   𝑘 (𝑘+2)𝜆𝑘 k 
 

𝑠𝑇𝐺 𝑠 − 𝑠𝑇𝑦   = 
−1

 𝑉𝑘+2 + 𝑂 ‖s ‖𝑘+3 
𝑘 𝑘   𝑘 

 

(𝑘 + 1)𝜆𝑘 k 
 

5. Quality of global convergence 

The quality global convergence of the QN technique with upgrades satisfying the modified QN 

equation is presented in this section. the BFGS matrix with line searches subject to the 

conditions of Wolfe (17) and (18). The result has global convergence on uniformly convex 

functions [19] . the BFGS technique be demonstrated The assumptions of next about the Q (x) 

and ℊ (x) are required. 

Assumption 2. [3] 

(a)A double differentiable continuously 𝑄(𝑥) has The objective function, and for a known 

point𝑥0, the equal set Ω = {𝑥: 𝑄(𝑥) ≤ 𝑄(𝑥0)} is convex. 

 

 

 

 

 

 
 

𝑘−1 
 

If 𝑢 = 𝑠𝑘−1 the form (iv) is happy with 𝜇 = 1 and if 𝑢 = 𝑦𝑘−1 it holds with 𝜇 = 𝜎1/𝜎2 so 

𝜎1 and 𝜎2 positive coefficients so that 𝜎1 ∥ 𝑣 ∥2≤ 𝑣𝑇𝐺(𝑥)𝑣 ≤ 𝜎2 ∥ 𝑣 ∥2 clamps ∀ 𝑥 close 𝑥∗ 

& some vector 𝑣 in ℜ𝑛 . 

Now The present theorem is used to investigate the convergence of the BFGS is global for 

uniformly convex functions that obey conditions (17) and (18). 

Theorem 3. 

Assume for a given point𝑥0, the function 𝑄(𝑥) meets conditions (i)-(ii), and that𝐵0 is 

symmetric positive definite. There are positive constants Å1, Å2, Å3 and Å4 if the sequence {𝑥𝑘} 

(b) Close by occur constants is positive 𝑚 and 𝑀 so   

𝑚 ∥ 𝑧 ∥2≤ 𝑧𝑇𝐺𝑧 ≤ 𝑀 ∥ 𝑧 ∥2 (73) 

for all 𝑧 ∈ ℜ𝑛 

(c) At be existent a constant 𝐿 > 0 such that 

 
and 𝑥 ∈ Ω. 

∥ ℊ(𝑥) − ℊ(𝑦) ∥≤ 𝐿 ∥ 𝑥 − 𝑦 ∥ ∀𝑥, 𝑦 ∈ Ω. (74) 
  

(d) |𝑠𝑇 𝑢| ≥ 𝜇 ∥ 𝑢 ∥ ∥𝑠𝑘−1∥, 𝜇 ∈ (0,1] 
 

(75) 
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𝑘  

𝑘 

𝑘  

𝑇 

created by the BFGS technique with step length 𝛼𝑘 satisfying requirements (1) and (2) is not 

terminated at some point 𝑥𝑘 with ℊ𝑘 = 0, such that: 

∥𝑦̂𝑘∥2 
𝑠𝑇𝑦̂ ≤ Å1 
𝑘  𝑘 

𝑠 
𝑇𝐵𝑘𝑠𝑘 

≤ Å 𝛼 
𝑠𝑇𝑦̂𝑘 

∥𝐵𝑘𝑠𝑘∥2 
 

 𝑠𝑇𝐵 𝑠 

2    𝑘 
 

𝛼𝑘 ≥ Å3 cos2 𝜃 
𝑘    𝑘  𝑘 𝑘 

|  𝑦̂𝑇𝐵𝑘𝑠𝑘| 
≤ Å 𝛼𝑘 

 
 

𝑠𝑇𝑣𝑘 4 cos 𝜃𝑘 
 

When all k are kept constant, the converges of sequence {xk} is unique minimizer x∗ of f (x). 
 

First : ∥𝑦̂𝑘∥
2

 
𝑠   𝑦̂ ≤ Å1 (76) 

 
Proof: 

𝑘   𝑘 

 

𝑦̂ = 𝜆𝑦𝑇 +  
𝑛 𝜆𝜃  

𝑦 
 

(77) 
𝑘 𝑠𝑇𝑦𝑘     

𝑘 

‖𝑦̂‖ = 𝜆‖𝑦 ‖ + 
𝑛 𝜆‖𝜃‖ 

‖𝑦
 

 

‖ (78) 
𝑘 

 

By assumes 

 

 

 

 
Then we have 

‖ 𝑠𝑇𝑦𝑘‖ 𝑘  

 
‖ 𝑠𝑇𝑦𝑘‖ ≥ 𝑀‖𝑠𝑘‖‖𝑦𝑘‖ 

‖𝑦𝑘‖ ≤ 𝐿‖𝑠𝑘‖ 

‖𝜃‖ ≤ 𝑁‖𝑠𝑘‖2 

 

‖𝑦̂‖ ≤ 𝜆𝐿‖𝑠  ‖ + 
𝑛 𝜆𝑁 

‖𝑠 
 

‖ (79) 
𝑘 𝑀 𝑘 

 

‖𝑦̂‖ ≤ [𝜆𝐿 + 
𝑛 𝜆𝑁

] ‖𝑠 
 

‖ (80) 
𝑀 𝑘 

 

‖𝑦̂‖ ≤ 𝜕‖𝑠𝑘‖ (81) 

Where 𝜕 = [𝜆𝐿 + 
𝑛 𝜆𝑁

] 
𝑀 

By uniform convex 

𝑠𝑇𝑦̂𝑘  ≥ 𝛾𝜆 𝑠𝑇𝑦𝑘  ≥ 𝛾𝑚‖𝑠𝑘‖2 (82) 

‖𝑦̂‖2 ≤ 𝜕2‖𝑠𝑘‖2 (83) 
 

‖𝑦̂‖2 ≤  
𝜕2

 

𝛾𝑚 

 
‖𝑦̂‖2   

≤  
𝜕2 

  

𝑠𝑇𝑦̂𝑘 

 
≤ Å 

(84) 

 
(85) 

𝑠𝑇𝑦̂𝑘 𝛾𝑚 1 
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𝑘 

𝑘 

𝑘 𝑘 

𝑘 

𝑘 𝑘 

𝑘 

𝑘 𝑘+1 𝑘 

𝑘 𝑘+1 𝑘 

𝑘 

𝑘 

𝑘 𝑘 𝑘 

𝑘 

𝑘 

𝑘 

 
 

Second : 

Proof : 

𝑠𝑇𝐵𝑘𝑠𝑘 

𝑠𝑇𝑦̂𝑘 
≤ Å2𝛼𝑘 (86) 

From 𝑐𝑜𝑠𝜃 = 

We have 

‖𝑠𝑘‖𝑠𝑇𝐵𝑘𝑠𝑘 
 

‖𝐵𝑘𝑠𝑘‖‖𝑠𝑘‖2 
= 

𝑠𝑇𝐵𝑘𝑠𝑘 

‖𝐵𝑘𝑠𝑘‖‖𝑠𝑘‖ 

𝑠𝑇𝐵𝑘𝑠𝑘 = ‖𝐵𝑘𝑠𝑘‖‖𝑠𝑘‖𝑐𝑜𝑠𝜃 ....................... a 

‖𝐵𝑘𝑠𝑘‖ = 𝛼𝑘‖ℊ𝑘‖ ....................................... b 

− ℊ 𝑇𝑠𝑘 = ‖ℊ ‖‖𝑠𝑘‖𝑐𝑜𝑠𝜃 ............................. c 

𝜃 = 2𝜆(𝑄𝑘+1 − 𝑄𝑘+1) − (ℊ𝑘 

From wolf condition 

+ ℊ
𝑘+1 

)𝑇𝑠 (87) 

−(𝑄𝑘+1 − 𝑄𝑘+1) ≥ −𝛿𝛼𝑘 ℊ 𝑇𝑑𝑘 

𝜃 ≥ −2𝜆 − 𝛿𝛼𝑘 ℊ 𝑇𝑑𝑘 − ℊ 𝑇𝑠𝑘 − ℊ 𝑇𝑠𝑘 

𝜃 ≥ 2𝜆𝛿𝛼𝑘 ℊ 𝑇𝑑𝑘 − 𝛼𝑘 ℊ 𝑇𝑑𝑘 −  ℊ 𝑇𝑠𝑘 (88) 

By wolf condition 
𝜎1ℊ𝑇𝑑𝑘 ≤ ℊ𝑇 𝑑𝑘 ≤ −𝜎2ℊ𝑇𝑑𝑘 

𝑘 𝑘+1 𝑘 

𝜃 ≥ 2𝜆𝛿𝛼𝑘 ℊ𝑘 
𝑇𝑑𝑘 − 𝛼𝑘𝜎1ℊ𝑇𝑑𝑘 −  ℊ 𝑇𝑠𝑘

 

𝜃 ≥ 2𝜆𝛿 ℊ 𝑇𝑠𝑘 − 𝜎1 ℊ 𝑇𝑠𝑘 − ℊ 𝑇𝑠𝑘 

𝜃 ≥ [2𝜆𝛿 − 𝜎1 − 1] ℊ 𝑇𝑠𝑘 

𝜃 ≥ 𝑁 ℊ𝑇𝑠𝑘 (89) 

Where 𝑁 = [2𝜆𝛿 − 𝜎1 − 1] 
 

𝑠𝑇𝑦̂ = 𝜆𝑠𝑇𝑦 + 
𝑛 𝜆𝜃 

𝑠𝑇𝑦
 

 

𝑘 𝑘  𝑘 𝑠𝑇𝑦𝑘 𝑘   𝑘 

 

𝑠𝑇𝑦̂ = 𝜆𝑠𝑇𝑦 + 𝑛 𝜆𝜃 
𝑘 𝑘  𝑘 

From 𝑦𝑇𝑠𝑘 = ℊ𝑇 𝑠𝑘 − ℊ𝑇𝑠𝑘 ≥ −(1 − 𝐵)ℊ𝑇𝑠𝑘 
𝑘 𝑘+1 𝑘 𝑘 

 
−(1 − 𝐵)ℊ𝑇𝑠𝑘 ≤ 𝑦𝑇𝑠𝑘 

𝑘 
 

𝑠𝑇𝑦̂ = 𝜆𝑠𝑇𝑦 

𝑘 

 
+ 𝑛 𝜆𝜃 

𝑘 𝑘  𝑘 

𝑠𝑇𝑦̂ ≥ −𝜆(1 − 𝐵)ℊ𝑠𝑘 + 𝑛 𝜆𝑁 ℊ 𝑇𝑠𝑘
 

 

 
 

Now by a,b,c we obtain 

𝑠𝑇𝑦̂ ≥ −𝜆[1 − 𝐵 − 𝑛 𝑁] ℊ 𝑇𝑠𝑘
 

 

𝑠𝑇𝐵𝑘𝑠𝑘 = −𝛼𝑘 ℊ 𝑇𝑠𝑘
 

𝑘 

𝑘 

𝑘 

𝑘 
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𝑘 

𝑘 

𝑘 

𝑇 

𝑘 𝑘 

𝑘 

𝑘 

𝑘 

𝑘 

𝑘 

𝑘 

𝑘 𝑘 

𝑘 

𝑘 𝑘 

𝑘 

𝑘 

𝑘 𝑘 

𝑘 

Then 

𝑠𝑇𝐵𝑘𝑠𝑘 
 

𝑠𝑇𝑦̂𝑘 

 
≤ 

−𝛼𝑘 ℊ𝑘
𝑇𝑠𝑘 

−𝜆[1−𝐵−𝑛 𝑁] ℊ𝑘
𝑇𝑠𝑘 

 
 

(90) 

 
𝑠𝑇𝐵𝑘𝑠𝑘 
  𝑘 ≤ Å 𝛼 

 

Where Å2 

 
= 

1 

𝜆[1−𝐵−𝑛 𝑁] 

𝑠𝑇𝑦̂𝑘 
2    𝑘 

 

Third :   ∥𝐵𝑘𝑠𝑘∥
2

 
𝑠 𝐵  𝑠 

     𝛼𝑘  3 cos2 𝜃 

 
Proof 

𝑘   𝑘  𝑘 𝑘 

‖𝐵𝑘𝑠𝑘‖ = 𝛼𝑘‖ℊ𝑘‖ (91) 

From 𝑐𝑜𝑠𝜃 = 
‖𝑠𝑘‖𝑠𝑇𝐵𝑘𝑠𝑘 

 

‖𝐵𝑘𝑠𝑘‖‖𝑠𝑘‖2 
= 

𝑠𝑇𝐵𝑘𝑠𝑘 

‖𝐵𝑘𝑠𝑘‖‖𝑠𝑘‖ 

𝑠𝑇𝐵𝑘𝑠𝑘 = ‖𝐵𝑘𝑠𝑘‖‖𝑠𝑘‖𝑐𝑜𝑠𝜃 (92) 
∥𝐵 𝑠  ∥2

 𝛼2‖ℊ  ‖
2

 𝛼2‖ℊ  ‖
2

 
      𝑘  𝑘      = 𝑘     𝑘 = 𝑘     𝑘  (93) 
𝑠𝑇𝐵𝑘𝑠𝑘 

∥𝐵𝑘𝑠𝑘∥2
 

𝑠𝑇𝐵 𝑠 

‖𝐵𝑘𝑠𝑘‖‖𝑠𝑘‖𝑐𝑜𝑠𝜃 

= 
𝛼𝑘‖ℊ𝑘‖ 
‖𝑠 ‖𝑐𝑜𝑠𝜃 

𝛼𝑘‖ℊ𝑘‖   ‖𝑠𝑘‖𝑐𝑜𝑠𝜃 

𝑘   𝑘  𝑘 𝑘 

From 𝑐1‖ℊ𝑘‖ 𝑐𝑜𝑠𝜃 ≤ ‖𝑠𝑘‖ ≤ 𝑐2‖ℊ𝑘‖ 𝑐𝑜𝑠𝜃 
ℊ 

‖𝑠𝑘‖ ≤ 𝑐2 ‖ ‖  𝑐𝑜𝑠𝜃 (94) 
𝑘 

1 
 

 

‖𝑠𝑘‖ 
≤ 

1 

𝑐2‖ℊ𝑘‖ 𝑐𝑜𝑠𝜃 

 

∥𝐵𝑘𝑠𝑘∥2
 

 

𝑠𝑇𝐵𝑘𝑠𝑘 
∥𝐵𝑘𝑠𝑘∥2

 
 

 

≥ 
𝛼𝑘‖ℊ𝑘‖ 

𝑐2‖ℊ𝑘‖ 𝑐𝑜𝑠𝜃𝑐𝑜𝑠𝜃 
  𝛼𝑘  

(95) 

𝑠𝑇𝐵  𝑠 ≥  
𝑐  𝑐𝑜𝑠2𝜃 

(96) 
𝑘   𝑘  𝑘 2 

 

Forth : 
|𝑦̂𝑇𝐵𝑘𝑠𝑘| 

y𝑇𝑠𝑘 
≤ Å4 

   𝛼𝑘  

cos 𝜃𝑘 

 

Proof 
|𝑦̂𝑇𝐵𝑘𝑠𝑘| 

̂y𝑇𝑠𝑘 
= 

 
 

‖𝑦̂𝑘‖∥𝐵𝑘𝑠𝑘∥ 

̂y𝑇𝑠𝑘 

 

(97) 

‖𝑦̂𝑘‖ ≤ 𝑁‖𝑠𝑘‖ (98) 

‖𝐵𝑘𝑠𝑘‖ = 𝛼𝑘‖ℊ𝑘‖ (99) 

𝑠𝑇𝑦̂ ≥ −𝜆[1 − 𝐵 − 𝑛 𝑁] ℊ 

From 

𝑇𝑠𝑘 (100) 

 

 
− ℊ 𝑇𝑠𝑘 = ‖ℊ ‖‖𝑠𝑘‖𝑐𝑜𝑠𝜃 

 

𝑠𝑇𝑦̂ ≥ 𝜆[1 − 𝐵 − 𝑛 𝑁]‖ℊ  ‖‖𝑠𝑘‖𝑐𝑜𝑠𝜃 (101) 
|𝑦̂𝑇𝐵𝑘𝑠𝑘| 

̂y𝑇𝑠𝑘 
= 

‖𝑦̂𝑘‖∥𝐵𝑘𝑠𝑘∥ 

̂y𝑇𝑠𝑘 
(102) 

≥ Å 

𝑘 
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𝑘 

𝑘 

𝑘 

𝑘 

𝑘 

𝑘  

𝑘 

1 
 

 

̂y𝑇𝑠𝑘 
≤ 

1 

𝜆[1−𝐵−𝑛 𝑁]‖ℊ𝑘‖‖𝑠𝑘‖𝑐𝑜𝑠𝜃 
(103) 

|𝑦̂𝑇𝐵𝑘𝑠𝑘| 

̂y𝑇𝑠𝑘 
≤ 

  𝛼𝑘𝑁‖ℊ𝑘‖‖𝑠𝑘‖  

𝜆[1−𝐵−𝑛 𝑁]‖ℊ𝑘‖‖𝑠𝑘‖𝑐𝑜𝑠𝜃 
(104) 

 

 

 
|𝑦̂𝑇𝐵𝑘𝑠𝑘| 

 

̂y𝑇𝑠𝑘 

≤
 𝛼𝑘𝑁  

𝜆[1−𝐵−𝑛 𝑁]𝑐𝑜𝑠𝜃 

≤
 𝛼𝑘𝑁  

𝜆[1−𝐵−𝑛 𝑁]𝑐𝑜𝑠𝜃 

(105) 
 

(106) 

 

 

|  𝑦̂𝑇𝐵𝑘𝑠𝑘| 
≤ Å 𝛼𝑘 

 
 

 

Where Å4 

 
= 

𝑁 

𝜆[1−𝐵−𝑛 𝑁] 

ŷ𝑇𝑠𝑘 4 𝑐𝑜𝑠𝜃 

 

6. Calculated results: 

We present some numerical results from our suggest model. The first we see how well our 

modified secant equation (35,37) performs in the updated SCALCG method, we ran the code 

against the 8 techniques listed below. 

(1) M1: the quadratic Algorithm when n=2 consistent to eq. (30 ) 

(2) M2: the conic Algorithm when n=3 consistent to eq (31 ) 

(3) M3: Consider Algorithm 1 when n=4 consistent to eq (32) 

(4) M4: Consider Algorithm 2 when n=5 consistent to eq (32) 

(5) M5: Consider Algorithm 3 when n=6 consistent to eq (32) 

(6) M5: Consider Algorithm 4 when n=7 consistent to eq (32) 

(7) M5: Consider Algorithm 5 when n=8 consistent to eq (32) 

(8) M5: Consider Algorithm 6 when n=10 consistent to eq (32) 

It subsection details some calculations from the PC computer's implementation of test cases 

from collection [2]. The codes are written in Fortran 77 in double-byte format, with BFGS 

included. A software that comprises the general formula of the conic model and is implemented 

in cases n=2 quatratic n=3 conic n=4,5,6,7,8,10 was developed. 

We consider the conditions below the discontinuation criterion [5] 

For unconstrained part 

x k − x k −1   ,  = 10−5 
 

For constrained part 

rk    ∑i=1 𝑒 i + rk   ∑i=m+1 𝑐i 

 
 
< 𝜉 

 

 = 10−5 
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The two Tables shows the numerical computations of these algorithms proposed to check their 

performance and we have used the following well-known measures or tools used normally for 

this type of comparison of algorithms: 

NOI : the total number of iterations 

NOF : the total number of function evaluation 

NOC :  the total number of constrained 

Table 1 : Comparisons of the quadratic algorithm with conic algorithm , new1 and nwe2 

algorithm 
 

NO M1 

N=2 QE 

NOF(NOI)NOC 

M2 

N=3 conic 

NOF(NOI)NOC 

M3 

N=4 NEW1 

NOF(NOI)NOC 

M4 

N=5 NEW2 

NOF(NOI)NOC 

1 167(32)696 135(26)550 146(29)659 164(32)659 

2 81(22)472 104(23)570 89(23)489 89(23)489 

3 182(46)872 175(44)877 157(41)794 171(45)826 

4 58(9)169 39(7)143 43(9)232 39(9)188 

5 369(90)608 369(90)608 369(90)608 369(90)608 

6 401(114)269 258(57)256 184(56)200 165(49)185 

7 104(26)289 103(26)290 101(26)272 102(26)279 

8 121(36)246 109(32)263 102(29)295 98(28)295 

9 119(31)414 116(31)384 119(31)409 99(27)330 

10 162(54)55 156(52)53 120(40)41 75(24)28 

11 337(99)370 205(59)290 256(73)351 156(46)264 

 

Table 2 Comparisons of the new3 algorithm with new4, new5 and nwe6 algorithm 
 

NO M5 

N=6 New3 

NOF(NOI)NOC 

M6 

N=7 NEW4 

NOF(NOI)NOC 

M7 

N=8 NEW5 

NOF(NOI)NOC 

M8 

N=10 NEW6 

NOF(NOI)NOC 

1 672(147)1690 326(72)901 357(77)920 810(240)1516 

2 89(23)489 89(23)489 89(23)489 89(23)489 

3 167(43)830 171(45)807 167(43)767 172(46)814 

4 No. 57(15)133 84(18)272 No. 

5 369(90)608 369(90)608 369(90)608 356(89)581 

6 169(51)182 157(46)180 151(45)191 165(49)191 
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7 106(26)283 105(26)269 105(26)268 101(26)281 

8 124(37)280 107(31)298 115(33)298 122(35)274 

9 117(31)372 116(31)375 123(32)402 116(31)383 

10 72(24)25 99(33)34 18608(6196)6217 115(37)41 

11 147(42)320 175(46)275 322(94)374 198(55)311 

 

 

The second we demonstrate the computational performance of our strategy on a set of test 

issues restricted optimization. we selected (11) large-scale restricted optimization problems 

Each problem must be tested using a general conic model and. To demonstrate the usefulness 

of the suggested approach, we employed the Dolan and more'[10] technique. 

The following figures (1-3) is illustrate the results using the Dolan and more'. Displays the 

Dolan-More performance profile for these methods, which are susceptible to the frequency of 

suitable performance when compared to the basic methods. 
 

Performance profile: 1.332000e-01 

1 
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FIGURE 1 . data relating to how` well the aforementioned methods perform in terms of 

function evaluations 
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Performance profile: 1.332000e-01 
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FIGURE 2 . data relating to how well the aforementioned methods perform in terms of 

iteration evaluations 
 

Performance profile: 1.332000e-01 
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FIGURE 3 . data relating to how well the aforementioned methods perform in terms of 

gradients evaluations 

By examining the Dolan-More performance profile, which is measured in CPU time, we may 

conclude from the three forms shown that the new method is particularly suitable for tackling 

problems with numerous dimensions 

7. Conclusions 

We present a new secant equation has been proposed by using the n-order Taylor expansion of 

the objective conic function. The suggest secant equation BFGS the Global convergence of it 

have be established. and the account of numerical results display the effectiveness of it 
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8. Recommendations 

We recommend use the new extended area the application in metaheuristic algorithms. 
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