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Abstract 

let G be a group and ZG be its integral group ring. Thus an additive group 

ZG is the free abelian group with the element of G, a ZG Module M is the 

same thing as specifying an abelian group M on which G acts,  An abelian 

group Hn (G, M) where n= 0,1,2,3…… called nthCohomology of G with 

the coefficients in the  ZG - module M. In this paper we explore the notion 

of Cohomology of finite groups and infinite groups.  

Keywords :   Algebraic groups,  Noetherian rings,  modules,  projective 

modules. 

 

 

1. Introduction 
To understand this we need to  know what the  group ring  ZG, Thus an additive group ZG is 

free abelian group with basic elements of G, the ring is generated by multiplication of the 

basis elements in G. An element of ZG is a sum ∑ λxxϵg  x with λx ϵ Z where not all λx are 

zero. A   ZG- module M is similar thing as an abelian group M on which G acts i.e there is 

homomorphism G          Aut(M) and denote by additive Z the ZG-module if  gn=n for all nϵZ 

and gϵG i.e action of G is trivial. The nth  cohomology group of G with coefficients in ZG –

module M defined as Hn(G,M) := ExtZG
n (Z,M) .The cohomology groups may be defined 

topologically and also algebraically. 

2. Topological approach of cohomology 

Now we will say something about  Topological approach of cohomology  by Hurewicz 

theorem if X be path –connected space with πnX= 0 for all n ≥2 such X is called aspherical 

then X determined upto. If cohomology an aspherical space X is  locally  path connected  the 

universal cover X ̃ is contractible and X= X ̃/G . Also Hn(X)  depend only on π1 (X)  if 

G=  π1 (X)  We mustt thus  define Hn(G, Z) = Hn(X) and because X is determined upto 

cohomology equivalence the definition does not depend on X The Hurewics theorem gives 

what the group cohomology is if there exist an aspherical space with the fundamental group , 

but if does not clearly defined that always such space exist. 

3. Algebraical approach of cohomology 

Various of the low – dimensional cohomology group  had been  studied earlier than the 

topologically defined groups or the general definition of group cohomology . in 1932 Baer 
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studied H2(G, A) as a group of equivalence classes of extensions . it was in 1945 that 

Eilenberg and Maclane introduced an algebraic approach which included these groups as 

special cases. let G be a group and ZG be its integral group ring .Thus an additive group ZG 

is the free abelian group with the element of G, now for each group G and 

representation M of G there are abelian group Hn (G,M) Where n = 

0.1,2,3……….. called the nth cohomology of G with coefficient in M. 

(3.1) COROLLARY. 

 

        If G is a finite group and M is a  ZG module then for all n ≥ 1, H
n (G, M) is finite abelian  

        group of exponent dividing |G|.       
 

 proof. An abelian group A is uniquely divisible by an integer   

 n if for all a ∈A there exists a unique bϵ A with a = nb.  This happens if the homomorp- 

-hism  n :A→ A is an isomoprhism. we say that A is uniquely divisible if it is uniquely  

       divisible by each positive integer n.  For example, Q and  R are uniquely divisible , Q/Z  
divisible but not uniquely. At  last we have If A  is finite  and g.c.d (|A|, n)=1 then A is 

       uniquely divisible by n. 

 

(3.2)  COROLLARY  

 

If G  is a  finite  group and  M  is a finitely   generated ZG   module  which is   uniquely  

       divisible   by    |G|    as an abelian group then Hn(G , M)=0 for all n ≥1. 

        

       Proof. Since multiplication  |G|:M →M is an isomorphism,so |G| :Hn(G,M)→Hn(G,H) 

       By functoriality  of  cohomology. This map is zero for each n ≥1, by Proposition,  we 

       have Hn(G,M)=0 for each n ≥1. 
 

(3.3) COROLLARY. 

 

   (1)  H
n(G,Z)≅ Hn-1 (G, Q Z⁄ )≅Hn-1(G,C

×)for each n ≥2, with similar isomorphism’s in  

             cohomology. 

 

     (2)  If M is finitely generated  RG module in which |G| is invertible then Hn(G,M)=0 for  

           all n ≥1. 
 

             Proof. let C× be  multiplicative group of nonzero complex numbers, which 

is isomorphic to R>0
×  × S1

 by the map z↔(|z|, arg(z)). We find a short exact  

sequence1→Z →R>0
× ×R+ →C

×
→1.  BecauseR>0

×  ≅R+ by the natural logarithm, the 

middle term of this sequence is divisible uniquely and now the long exact  
sequence associated to the exact sequence gives the result. 
 

   Now we show an application of this and a result know as the integral duality theorem 

        which tell us a finite group that (G,Z)≅ Hn(G,Z) when n ≥1, Putting this together  

        we have H2(G,Z)≅H3(G,Z)≅ H2(G,C
×)≅H2(G, Q Z)    ⁄  

        These groups are all isomorphic to  the Schur multiplier. 

 

(3.4) COROLLARY  
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n 
R.

G. 

 

        Let   1→ M → E →  G →  1   be  a  short  exact  sequence  of  finite  groups  where  
        g.c.d(|M|,|G|)=1.   Then the extension is split, E≅M⋉G,and all subgroups of E of order  

       |G| are conjugate. 
        

        Proof. we  proof when M is abelian.  Here H2(G,M)=(G,M)=0 by Corollary, so the result  

        follows from our interpretation of second and first cohomology. 
        Let C be an abelian group. We  will call any module of the from   ZG⨂z C  an  induced 
       module, and any module of the form  HOMZ(ZG,C ) a coinduced module. The latter  is 
        made into a ZG-module using the right action on ZG. 
 
(3.5) LEMMA.     

        

        If M is coinduced then Hn (G.M)=0 for each n≥1.    
        There is no restriction on G for this result. 
         

      Proof. if M=Home (ZG,C) is a coinduced module  for any abelian group C we evaluate 

        Cohomology with coefficients in M by applying the functor HomZG (-,Homz(ZG,C)to  

        a projective resolution . Now for some module P we have  a natural isomorphism 
        functor  Homz(-,C) to a projective resolution of Z we obtainacyclic complex because 

        HomZG  (P,Homz (ZG,C)≅Homz(ZG⨂ZG   P,C) ≅ Homz(P ,C) and if we apply the 
        as  abelian groups the projective resolution splits. Thus Hn(G,M)=0 for all n ≥1. 
        
 

 

(3.6) PROPOSITION.      

        

       If G is finite then induced and coinduced modules coincide. 
        Hence cohomology vanishes on induced modules in degrees ≥  1, If P is a projective 

        RG-module for some commutative ring R then Hn(G,P)=0 for all n ≥1. 
 

 Proof.  We define a mapping ZG ⨂z C → HomZ(ZG, C) by g ⨂c ↦ ϕ(g,c)where 

        ϕ(g,c):ZG→C is the homomorphism determined by by 

ϕ
(g,c)

(h)= {
c   if g = h 

0 otherwise
 

        We  exanime  that this is a  homomorphism  of   ZG-modules  which  is  injective  and   

        surjective  if G is  finite . Since free  modules  are  induced  we  find  that   chomology  

        vanishes  on them as well as  on projective modules as  they are direct summands of 

        free modules 
 

4. cohomologically finite generation property of groups 

Let G is a group and R is a ring of unit 1, The graded R-algebra of a group G is 

cohomologically finite if there are noetherian R-algebras and finitely produced 

Hn(G, M) modules in R-algebras. For any RG-module M which is generated 

finitely over R. 
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Several representational features of G's group theory are compromised with 

limited generation. Finitely generated cohomology rings can be found in [2,7]. Is 

the ring of invariants AG  a Noetherian one? This is an important question of 

invariance theory. All Noetherian associative rings A must have the finite 

generation property if a group meets this requirement. When a group is 

cohomological type, the finite generation feature can be discovered in its 

cohomological form. Finite generation properties are the same for all extensions 

of finite generation groups. Groups of the cohomological type that extend finite 

groups are cohomological of finite type when the second basic statement is true. 

[12]'s invariant subring finiteness criteria apply to numerous groups, and some 

are closed under group extensions. 

For the major results to be shown, the cohomological generalization to limited 

generations of invariant subrings is necessary. Cohomological adaptation for 

group schemes over a field k was investigated by Van der Kallen in [17], 

Hn(G, A) represents the finitely generated k-algebra G over k when A is a 

finitely generated (commutative) k-algebra with a (rational) G-action as k-

algebra automorphisms? CFG is the acronym used in [22] to describe this 

type of G group (cohomologically finitely generated). As long as finite 

numbers generate AG, whether A is countably generated by k-algebra, G can 

be called a group scheme. According to [19], all finite group schemes have 

the same attribute, CFG. Algebraic group schemes over a field and invariants 

and cohomology rings are discussed further in [25]. As recently proven in 

[31], an algebraic group G can only possess the characteristic CFG if it also 

possesses the property F.G. Many reductive groups, including all reductive 

groups, are CFG subgroups. 

Automorphisms of G on a finitely generated R-algebra are only possible when 

the fixed point subalgebra AG  is likewise an R-algebra. If we're talking about 

Noetherian rings that are commutative and finitely generated R-algebras, we call 

this F.G. An AG algebra in particular, can be generated infinitely. G has the CFG 

property if the graded R-algebra Hn(G, A) is a finitely generated R-algebra and 

the Noetherian RG-module homomorphism Hn (G, M) is a Noetherian RG-

module homomorphism for any Noetherian commutative ring R and 
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commutative R-algebra A on which G acts as R-algebra automorphisms. G is 

Cohomological finiteness is a group property with the CFG property (by taking 

A and R with trivial G-action). Because H0(G, A) is a quotient of H, AG is a 

finitely generated R-algebra (G, A). In other words, the property CFG entails the 

property F.G. 

It is said that group G has cohomological finiteness if the R-module Hn(G, M) is 

finitely constructed for any Noetherian multiplicative ring R and RG-module 

M.which is finitely generated as an R-module. 

We find Groups that are finite in cohomological type are known as 

cohomologically finite groups. Contrary to popular belief, the opposite of this is 

not true by a result of Evens[15] and Venkov[32]  They showed that if G is finite 

then G is cohomologically of finite type but a finite group G is not 

cohomologically finite because cohomology groups Hn (G, R) are infinite 

dimensions when R is a field with fundamental splitting equal to the order of G.. 

A mathematical group G has the attribute CFG if and only if the rational action in 

FG can be applied to it, as per Touzé and van der Kallen [35]  According to the 

Mumford Conjecture, an algebraic group G can only have the attribute F.G. if it 

is reducible. Touzé and van der Kallen might simply assume that G is a reductive 

group. In the case of characteristic zero, all rational representations can be 

reduced to zero. The cohomological dimension of G is zero, which means that 

F.G. and CFG are accurate. There are no more reasons to examine Frobenius 

kernels and twists in spectral sequences. Thus we can now focus on the positive 

characteristic situation. 

For finite cohomological dimensions, whether G entails CFG can be asked. A 

Noetherian ring A and a finitely generated AG-module M about which Hk(G, M) 

is a finite number generated AG-module are required for G to have the attribute 

CFG. When k is 0, then G has the property FG. 

Hk(G, A) is not finitely formed over AG. when the cohomological dimensionality 

is 1, such as the free group. 
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5. virtual finite projective resolution of  Groups 

Type VFP (virtual finite projective resolution) is applied to a group G when it contains a 

subgroup of finite index that is an F.P. group. When it comes to VFPs, all F.P.s are VFPs. 

There are finitely created abelian groups in all degrees of cohomology groups Hn(G, Z). 

Groups with nontrivial torsion components can have cohomology groups  Hn (G, R) of 

arbitrarily high degrees. Therefore it's important to remember that these groups are not 

invariably cohomologically finite. An argument in [24] uses the stratification of 

cohomological variations in the perspective of elementary abelian p-subgroups. Ian Leary 

supplied the following rationale. If G is a finite subgroup and Z is a cyclic subgroup of prime 

order p, then Hn (Z, Fp) is a finitely generated module of Hn(G, Fp). A non-zero image can 

be found in infinitely many degrees, for example, using Hn(G, Fp), Hn(Z, Fp). If G has a 

finite VCD, it has a torsion-free subgroup of the finite index  The finite cyclic subgroup Z = 

(g) is embedded in G/H via the composition G → G/H as a torsion-free normal subgroup H 

with a finite index (of prime order p). Because the constraint map Hk(G/H, Fp)→Hk( (g), Fp) 

has an unlimited number of degrees,  Hk(g, Fp) is never 0 for any degree in Hk (G, Fp). 

Because Hk(G, Fp) factors into the restriction map, the group of Z-rational points is affected. 

For every reductive algebraic group, G, GL(n, C) built over the field of rational numbers Q, 

G(Z), G(Q), GL(n, Z) is of type VFP and usually contains nontrivial torsion members. Other 

natural groups include the translating class group and the outer predictiveness group. 

Nontrivial torsion elements can be found in Coxeter groups and Out(Fn) of free groups Fn, 

but they are still type VFP. It was shown in the preceding section that they are not 

cohomologically finite.              
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