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Abstract:   This study compares two linear controllers and a fuzzy logic 

controller (FLC) on a two-wheeled mobile inverted pendulum that is 

represented by system matrices with integrated time delay. By acting on 

the control input following a lookup, it contributes to energy conservation, 

making the system robust even when affected by the impacts of specially 

built system time delays. In this section, we look at three different 

performance indices: (i) the tilt angle's standard deviation; (ii) the root 

mean square of the signal sent to the electrical motors; and (iii) the 

convergence zone of the tilt angle. According to the experimental findings, 

the LQR with Kalman filter controller uses less energy and has a smaller 

standard deviation of error than the PID.This study compares the 

performance of two linear controllers and a fuzzy logic controller (FLC) 

on a two-wheeled mobile PID controller. The fuzzy controller, however, 

has a bigger convergence region. According to the performance measures, 

fuzzy control was shown to be the best way for controlling the time-

delayed mobile inverted pendulum because it has a unique fuzzy granular 

preview control. 

 

Key words:   fuzzy logic, LQR, PID, granual computing, inverted 

pendulum. 

 

1. INTRODUCTION: 

In academia, the principles of system dynamics and feedback control are typically covered 

using mobile inverted pendulum robots, which are unstable mechanical systems with 

nonlinear dynamics similar to those of a traditional inverted pendulum [1]. These robots have 

also been used in a number of industries, such as agriculture, medicine, and transportation 

[3], [4], thanks to their autonomy, flexibility, and small size, which increases their usefulness 

in confined or hazardous working settings [5]. Generally speaking, these vehicles are affected 

by a variety of variables, including measurement noise, unmodeled dynamics, estimated 

parameter errors, and external perturbations [6]. The several control strategies available for 

these systems demand a thorough understanding of the mathematical model, which can be 

obtained using the Lagrange equations [1], [2], [7], [8], Newton-Euler equations [9], Gibbs-

movement Appell's equations[3], [10], or Kane's method [1]. Due to the mechanism that uses 

a rotary servo to govern the pendulum over the upright equilibrium position, the rotary 

inverted pendulum has long been employed as a test bed in the control domain. This intricate 

dynamic plant then serves as a model for control education. The model can be developed into 

http://philstat.org.ph/


Vol. 71 No. 4 (2022) 
http://philstat.org.ph 

Mathematical Statistician and Engineering Applications 

  ISSN: 2094-0343 

2326-9865 

1045 
 

a helpful tool for different defence and military applications, and it has been used in the 

literature to map the logic applied to the control problem in the disciplines of humanoid robot 

walking, gesture control, segway transit, and satellite launch, among other areas. It is rare for 

the literature to examine a system that includes a time delay. For double and rotating inverted 

pendulum models, which is the plant under consideration here, Srikanth and Kumar [2, 5] 

constructed dynamic models. An technique to dealing with unpredictable time delays was put 

up by Daswon [6]. A state-dependent stabilisation criterion was put out by Sun et al. [7] and a 

method for deterministic time delay in control configuration was given by Benitez-Perez and 

Garcia-Nocetti [8]. being novel. The system has been used to map the logic applied to control 

problems in a variety of fields, including humanoid robot walking, gesture control, segway 

transportation, and satellite launch, among others. The idea being explored here is that 

previewing or looking up values is efficient since subsequent control actions are conducted, 

which is something that is not found in the literature and is being presented here. In their 

study [9], Tria et al. focus on the development of a fuzzy regulator for the active and reactive 

powers in order to explore the application of a variable control law to improve the dynamic 

behaviour of a wind turbine system utilising sliding mode control as the control strategy. 

Mohiuddin [10] Few studies assess the effectiveness of various control systems, despite the 

fact that the two-wheeled inverted pendulum has been the subject of extensive investigation. 

[1] analyses the three implemented controllers (FLC, LQR, and PID) on five different 

dimensions: (I) rising time (ii), (iii), settling time (iii), (iv) peak current supplied to the 

motors, and (v) linear displacement of the robot's platform collected before steady state (tilt 

angle near to zero). The robot was started with throughout the experiments with having a tilt 

angle of 24 degrees. [20] uses simulation to compare the rising time, settling time, overshoot, 

and steady state error of an FLC and a PID controller with respect to the linear position. The 

standard deviation of the tilt angle and the root mean square value of the control law, along 

with the zone of convergence of the initial tilt angle, are the two statistical metrics that the 

current article suggests employing to compare performance. This paper presents a novel, 

energy-efficient method for regulating the rotating inverted pendulum that makes use of a 

novel fuzzy preview controller. When compared to the real-time performance of a Quanser 

rotary inverted pendulum controlled with pole placement and fixed poles, the proposed model 

performs better in controlling peak overshoots and settling time specifications because it 

incorporates the time delay component into the system definition using row and column 

generation. 

Required Mathematical Model to evaluate the performance: 

Here we are going to introduce mathematical modeling  for time delay of inverted pendulum 

a great work done by srikanth and kumar in 2017[1] on rotary inverted pendulum under time 

delays.The state model defined in Eqs. (3) and (4) is obtained from  [2] K. Srikanth and G. V. 

N. Kumar, “Rotary inverted pendulum control and the impact of time delay on switching 

between stable and unstable states with enhanced particle swarm optimization,” International 

Journal of Computer and Communication System Engineering, vol. 2, no. 4, pp. 569-574, 

2018. 
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Using the basic dynamic equations defined in Eqs. (1) and (2). 

(1)                                                       M0θ
¨

0 + M1θ1 cos θ0θ
¨

1 − M2 sin θ0 cos θ0θ
˙

1
2

−M3 gsin θ0

= 0,      

(2)                                           M1 cos θ0θ
¨

1 + M4 + (M4 sin2 θ0)θ
¨

1 − M1 sin θ0θ
¨

0
2

+2M2 sin θ0 cos θ0θ
˙

0θ
˙

1

= τ

 

where τ in Eq. (2) refers to the control input which is applied to the shaft of the arm 

and Mi (i = 0, 1, 2, 3, 4) in Eqs. (1) and (2) are positive system parameters defined as 

 (3)                     M0 = I1 + l1
2m1  

(4)                      M1 = m1l1L2 

(5)                             M2 = l1
2m1 

 (6)                                  M3 = l1m1 

             (7)                       M4 = I2 + l2
2m2 + L2

2m1 

The mathematical model for the rotary inverted pendulum is taken directly as in [2] which is 

an integrated model of the system with time delay given by the generic form of 

 (8)                                       X
˙

= AX + BU 

where X representing 5 states for the translation and rotation of the arm and the pendulum 

with 4 states that represent the system model by Eqs. (8) and (9). One additional state that 

represents the time delay is integrated into the system. The model is reconfigured with the 

delay embedded in order to make the system a minimum state variable model which makes 

the unified representation easier and decoupling the system into various canonical forms 

easier. The output equation is 

 (9)                                              Y = CX + DU 

The fuzzy control block diagram model that is proposed is represented in figure1. 

As shown in Figure1, the important parameters that are playing a key role are the error and 

the error rate which represent two inputs to the fuzzy preview controller which lookups the 

values based on which a decision is made and the output is passed on to the controller for 

amplification of the signal which is then passed as input to the plant. The feedback path has a 

LQR controller which does the state feedback control. The fuzzy granular based preview 

controller has a faster rule explosion which results in efficient control. 

A weighted average method is adopted to calculate the hierarchical fuzzy controller with 

type-1 fuzzy controller and type-2 fuzzy controller. 
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 (10)                          u = wtype 1 ∗ utype1fuzzy + wtype 2 ∗ utype2fuzzy  

As given in Eq. (10), where granulation is causing refinement in the way the control effort is 

used for the smoother control of the plant model. The incremental control action is not only a 

function of error and rate of error but also the time delay component which makes it a 

nonlinear controller which is more efficient than a liberalized LQR controller in terms of the 

control effort for reduced oscillations. 

 

Figure 1 

DYNAMIC MODELING:  

This dynamical model is inspired by [3] chate and rengifo 2017( comparative analysis 

between fuzzy logic  control, LQR control with kalman filter and PID control for a two wheel 

inverted pendulum.) 

In Figure 2, a two-dimensional diagram of the mobile inverted pendulum robot is shown. 

 

 

Figure:2 Diagram of the mobile inverted pendulum robot 
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The following table summarises the robot's parameters: 

Parameter Symbol Value Unit 

Pendulum body length L 0.08530 M 

Wheel radius R 0.03310 M 

Wheel mass M 0.05304 Kg 

Pendulum mass M 0.39277 Kg 

Wheel inertia momentum J1 5.8111 × 10−5 Kg m2 

Pendulum inertia momentum J2 3.1754 × 10−4 Kg m2 

Gravity G 9.8 m/s2 

 

An image of the two wheeled inverted pendulum InstaBot SRAT-2 is shown in Figure 3. 

 

Figure 3: Front view of Mobile inverted pendulum InstaBot SRAT-2. 

The following mathematical model is obtained using the Lagrange formalism: 

[
M + m +

j1

r2
−ml sinθ

−ml sinθ ml2 + j2
]   [

ẍ
θ̈
] + [ −mlθ2̇ cosθ

0
] + [

0
−mgl cosθ

] = [
1

r

0
] Γ              

(11) 

Where 

                 [
M + m +

j1

r2
−ml sinθ

−ml sinθ ml2 + j2
]       =        I(q) 
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                                                       [
ẍ
θ̈
]      =         q̈ 

                            [ −mlθ2̇ cosθ

0
]     =       H(q, q̇) 

                            [
0

−mgl cosθ
]     =       G(q) 

                                                        [
1

r

0
]     =        E 

I(q) is the inertia matrix, H(q, q̇) is the centrifugal and Coriolis forces vector, and 

G(q) is the gravitational forces vector. Model (1) may be recast as a four-differential equation 

state-space model: 

ẋ =  [

x1̇

x2̇

x 3
x4̇

̇
]   ,  F =  [

x3

x4

I−1(x2) (E Γ −  H(x2, x4) −  G(x2))
]              (12) 

                                       

Where the state vector is defined as: 

x1 = x    x2 = θ −
π

2

x3 = x
˙
    x4 = θ

˙
 

 

To design a linear controller, the model described by 2 must be first linearized at the 

equilibrium point defined by: 

 

x
¯

1 = 0    x
¯

2 = 0

x
¯

3 = 0    x
¯

4 = 0
                             (13) 

From the linearization process the following model is obtained: 

x
˙
= Ax + Bu                                   (14) 

A =

[
 
 
 
 
 
 
0 0 1 0
0 0 0 1

0 −
gl2m2r2

dn
0 0

0 −
glmcn

dn
0 0

]
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B =

[
 
 
 
 
 
 

0
0

r(ml2 + J2)

dn

lmr

dn ]
 
 
 
 
 
 

 

cn = J1 + Mr2 + mr2

dn = J1J2 + J2Mr2 + J1l
2m + J2mr2 + Ml2mr2 

PID Controller: 

The tilt angle error is defined as the difference between the set point (0 degrees) and the 

observed tilt angle in this linear controller. The equation defines the control law (5) 

u(t) = Kp (e(t) +
1

Ti
∫  

t

0
e(τ)dτ + Td

de(t)

dt
)                (15) 

The following three terms comprise Equation (5): proportional, integral, and derivative. The 

proportional action is obtained by multiplying the gain value (K ) by the error function. With 

a large value of K p, the steady state error decreases and the system responds more quickly to 

the defined set point, but it might also increase the output signal's oscillations [21]. By 

contrast, the integral action reduces steady state error by iteratively accumulating previous 

errors. Finally, the derivative action dampens the output oscillations caused by the 

proportional and integral actions. The derivative gain value improves the closed response's 

stability [21]. According to this, the optimal controller values were K p = 47:5, Ki = 0:05, and 

K d= 0:2. 

Controller LQR: 

The LQR controller is designed in accordance with (4)'s linear state space model, and the 

control law is defined as follows: 

u = −Kx        (16) 

Where K is the gain of the state feedback and x denotes the state vector. The closed loop 

state-space model of the system is presented below using equation (6): 

x
˙
= (A − BK)x       (17) 

The LQR controller's objective is to locate each eigenvalue of the matrix A -BK in the left 

half plane s in such a way that the system's dynamic is stable and the quadratic cost function 

is minimised: 

J =
1

2
∫  

∞

0
xT(t)Wx(t) + uT(t)Ru(t)dt          (18) 

W is a 4 * 4 positive semidefinite matrix, while R is a positive scalar. 

http://philstat.org.ph/


Vol. 71 No. 4 (2022) 
http://philstat.org.ph 

Mathematical Statistician and Engineering Applications 

  ISSN: 2094-0343 

2326-9865 

1051 
 

W = [

1 0 0 0
0 190 0 0
0 0 1 0
0 0 0 0.7

] , R = 0.1 

 

A position controller for the mobile inverted pendulum robot was implemented using the 

linear dynamic model (4) by altering the matrices W and R, which correspond to the system's 

states and inputs, respectively. The controller gain K obtained from such matrices is as 

follows: 

K = [3.1623    44.1759    6.2140    0.3223] 

Estimating the tilt angle using a Kalman Filter: 

 The mathematical technique by which the Kalman filter obtains the new state is based on a 

prediction and correction mechanism, in which gain compensation between the previous 

estimate and the current observation enables convergence to the system's real states. The 

suggested Kalman filter implementation combines the data from an accelerometer and a 

gyroscope. The accelerometer data is tied to angular orientation, whereas the gyroscope data 

is related to angular velocities. The following mathematical model is defined in light of this: 

x
˙
= u

z = x
                     (19) 

Where u is the gyroscope reading, z is the accelerometer-calculated orientation, and x is the 

estimated tilt angle. The following Kalman equations derive from discretizing the continuous 

time fusion sensor model (9):        

           Prediction 

x
^

k
− = x

^

k−1 + huk

σk
− = σk−1 + Q

                 (20) 

Update 

Gk = σk
−(σk

− + ρ)−1

x
^

k = x
^

k
− + Gk (zk − x

^

k
−)

σk = (1 − Gk)σk
−

             (21) 

this particular system, uk is the angular velocity measured with the gyroscope, zk is the 

orientation estimated from the measurements  delivered  by  the  accelerometer  and  x̂k  is  

the estimated orientation. The Kalman filter implementation was performed using the 

KalmanFilter 1 from TKJElectronics. 

Fuzzy Control: 

By introducing degrees of truth in a proposition and degrees of membership in a set as actual 
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values in the range [0, 1], fuzzy logic provides an alternative to classical reasoning and set 

theory. This is done in order to obtain a more realistic approximation of human reasoning. 

The fuzzy PD controller developed for the robot InstaBot SRAT-2 takes the current value of 

the error signal (Error) and its temporal derivative as inputs (ErrorChange). We define three 

fuzzy sets for the variable (Error): Negative (N) error, Zero (Z) error, and Positive (P) error, 

as well as three fuzzy sets for the variable (ErrorChange): Negative Change (NC), Zero 

Change (ZC), and Positive Change (P) (PC). 

We define four fuzzy sets for the control law: Large Negative (LN), Small Negative (SN), No 

Control  

Law (NCL), Small Positive (SP), and Large Positive (LP), with No Control Law being a 

triangular set and the remaining sets being singletons. The developed fuzzy PD controller is 

built on a foundation of nine rules, as shown in Table 2. 

 PC ZC NC 

P LP SP NCL 

Z SP NCL SN 

N NCL SN LN 

Table 2: Rules matrix for the fuzzy PD controller 

Figure 4 depicts a surface diagram of the control law derived by combining the 

aforementioned fuzzy sets and the rules listed in Table 2. 

 

Figure 4: Fuzzy PD controller surface diagram applied to the robot InstaBot SRAT-2. Input 

variables: Error (axis x ), Error Change (axis y), output variable: Control Law (axis Z) 
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IV. INDEXES OF PERFORMANCE: 

The three controllers described in the previous section were compared using the following 

indices: 

(1) The error's standard deviation: 

εe = √
1

N
∑  N

k=1 [θd(k) − θ(k)]2                        (22) 

Being εe the standard deviation of the error signal, N the number of samples, θd(k)≜0 the 

desired tilt angle and θ(k) the measured tilt angle. 

(2) The control law's root mean square: 

εu = √
1

N
∑  N

k=1 u2(k)                            (23) 

Where εu is the root mean square value of the control effort u(k) 

(3) The convergence region of the tilt angle was determined by initialising the robot at 

various angles of inclination and observing whether it falls or converges to the equilibrium 

position. Gradually increasing the initial tilt angle until the controllers were unable to restore 

to equilibrium/position = 0, 

The first two indices were calculated many times (N=11) for each controller, each time using 

a different data set. The three controllers were compared using the average value of each 

index. 

V RESULTS OF EXPERIMENTS 

The figures 5 and 6 exhibit the outcomes gained from the implementation of each controller. 

The tilt angle as a function of time is depicted in Figure 4, and the control law is depicted in 

Figure 5. 
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Figure 5 

 

Figure 6 

IV INDEXES OF PERFORMANCE: 

The three controllers described in the previous section were compared using the following 

indices: 

1. Standard deviation of the error 

εe = √
1

N
∑  

N

k=1

[θd(k) − θ(k)]2 

Being εe the standard deviation of the error signal, N the number of samples, θd(k)≜0 the 

desired tilt angle and θ(k) the measured tilt angle. 

2. Root mean square of the control law 

εu = √
1

N
∑  

N

k=1

u2(k) 

3. The region of convergence of the tilt angle was obtained by initializing the robot with 

different degrees of inclination and determining whether it falls or it converges to the 
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equilibrium position. The initial tilt angle was gradually increased until the controllers were 

not able to return to the equilibrium position θ=0. 

For each controller the first two indexes were calculated multiple times (N=11), each time 

using a different data set. The comparison between the three controllers was made by using 

the average value of each index. 

RESULTS OF EXPERIMENTS: 

The figures 5 and 6 exhibit the outcomes gained from the implementation of each 

controller under time delay. The tilt angle as a function of time is depicted in Figure 5, and 

the control law is depicted in Figure 6. 

 

Figure 7: Time response of the implemented controllers (tilt angle) (i) PID , (ii) LQR with 

Kalman filter, (iii) fuzzy PD. 
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Figure 8: Control effort obtained from the implemented controllers (i) PID , (ii) LQR with 

Kalman filter, (iii) fuzzy PD. 

Table 3 presents the average value of the performance indexes (εe and εu) obtained from the 

eleven test developed for each controller. 

Controller εe() εu(%) 

PID 1.95 37.7719 

LQR 1.1559 26.4835 

FuzZy 0.7689 12.4778 

 

Table 3: Comparison of the average of standard deviations obtained from the eleven 

experiments realized with each controller. 

Tables 4 and 5 show the ratios of the performance indexes of the linear controllers and the 

fuzzy control. 

εePID/εeFuzzy εeLQR/εeFuzzy Least error 

2.5361 1.5033 LQR 
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Table 4: Comparison of the ratios of standard deviations of error in the implemented 

controllers. 

εuPID/εuFuzzy εuLQR/εu Fuzzy  
Least control 

effort 

3.0271 2.1224 LQR 

Table 5: Comparison of the ratios of standard deviations of control effort of the implemented 

controllers. 

Figure 6 presents the critical convergence angles for the three implemented controllers. In the 

case of the PID controller, it has a poor performance due to the integral component which 

caused the control law to overact by the presence of a steady state error for a long period of 

time. LQR and fuzzy PD controllers did not present this inconvenience due to the absence of 

cumulative components in its control law. 

 

 

Figure 9: Critical convergence angle of the implemented controllers (i) PID (ii) LQR with 

Kalman filter, (iii) fuzzy PD. 

Table 6 shows the range of initial tilt angles for which the control convergences to desired 

equilibrium point. 

PID LQR Fuzzy 
Most convergence 

region 
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[−4,4] [−24.4,24.4] [−28,25] Fuzzy 

Table 6: Comparison of the convergence regions found in the implemented controllers. 

Figure 7 presents the trajectory of the robot in the phase plane (θ,θ) for an initial tilt angle 

close the critical angle of Table 6. 

 

Figure 10: Convergence towards the equilibrium point (θ=0,θ˙=0) of the implemented 

controllers (i) PID, (ii) LQR with Kalman filter, (iii) fuzzy PD. 

It is observed that the PID convergence region is the smallest from the three implemented 

controllers, due to the control law overflow produced by the integral component. The LQR 

and fuzzy controllers present a wide range of initial values for which the controller can return 

to the desired set point. 

Table below showing case for time delay 

Test case of error variations. 

Case ID E Edot Standard ref Control action 

1 20 .002 .001 Success 

2 2 .002 .001 Success 

3 2 0.2 .001 Fails 

4 2 .002 .001 Fails 

5 2 .2 .001 Fails 

http://philstat.org.ph/


Vol. 71 No. 4 (2022) 
http://philstat.org.ph 

Mathematical Statistician and Engineering Applications 

  ISSN: 2094-0343 

2326-9865 

1059 
 

Case ID E Edot Standard ref Control action 

6 2 .02 1 Fails 

7 2 .002 1 Success 

8 .002 .002 1 Fails 

9 .002 .00002 1 Fails 

10 .002 .00002 .001 Fails 

11 20 20 .001 Fails 

12 2000 20 .001 Fails 

13 2000 2000 1 Fails 

 

 

Figure 11: Typical real time performance of RIP with offset. 

 

figure 12:Typical stabilization failure case in real time. 
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Figure 13:Swing up and stabilization in real time 

The range of beginning tilt degrees for which the control converges to the desired equilibrium 

point is shown in Table 6. 

Due to the integral component's control law overflow, the PID convergence zone is the 

smallest of the three implemented controllers. LQR and fuzzy controllers accept a broad 

range of beginning values before returning to the desired set point. The surface plot of the 

fuzzy lookup table is depicted in Figure. the rule explodes using the derivative of error as one 

of the two inputs. When contrasted to the situation of taking just the rule, the rule explosion is 

sped up by passing the two values. The outcome unequivocally demonstrates the viability of 

a solution using the created lookup definitions, which serve as the rule base. In Figures, the 

switching between stable and unstable zones for the laboratory model of the Quanser rotating 

inverted pendulum, a genuine experiment done on the test bed, can be shown clearly as the 

status of control for the system from swing up to upright equilibrium. 

CONCLUSION: 

This analysis with Lagrange formalism shows that the dynamical model of a mobile inverted 

pendulum robot preview-based fuzzy controller with granular computing can stabilize with 

three position in this article. Three controllers were implemented for this robot, two linear 

(PID and LQR) and one nonlinear (Fuzzy-PD). Three performance indices were used to 

compare the experimental outcomes achieved for each controller. Two of them, depending on 

the tilt angle's standard deviation and the control effort. The third index represents the range 

of initial tilt degrees that converge on the equilibrium point. The fuzzy controller was found 

to have a reduced error deviation and less energy consumption, as well as a larger zone of 

attraction to the equilibrium point, using these three metrics. The Kalman filter design was 

used to improve the LQR controller's estimation of the robot orientation angle, resulting in a 

lower deviation error result, preview control is better than other methods is that it cuts down 

on the amount of time it takes to do the calculations when compared to the PID controller.  
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