
Vol. 71 No. 4 (2022)

http://philstat.org.ph

Mathematical Statistician and Engineering Applications

 ISSN: 2094-0343

2326-9865

1081

FPGA Implementation of UaL Decomposition, an alternative to the

LU factorization

Sai Ruchitha, Ramesh Chinthala

Department of Electronics and Communication Engineering,

Amrita School of Engineering, Bengaluru

Amrita Vishwa Vidyapeetham, India

ruchithasvs2014@gmail.com, c_ramesh@blr.amrita.edu

Article Info

Page Number: 1081-1094

 Publication Issue:

Vol. 71 No. 4 (2022)

Article History

Article Received: 25 March 2022

Revised: 30 April 2022

Accepted: 15 June 2022

Publication: 19 August 2022

Abstract—Matrix decomposition is an important method used in many

applications such as circuit simulations, for example Modified Nodal

Analysis (MNA matrices), and in communication systems, for example to

find minimum mean square error (MMSE) in MIMO systems for detecting

the transmitted symbol vector from the received symbol vector. In this

paper, an FPGA based hardware implementation of an alternative solution

to LU factorization technique called UaL decomposition method is

proposed. The RTL code of the UaL algorithm is developed and simulated

using Xilinx Vivado software. The RTL code of the proposed FPGA based

UaL decomposition hardware architecture is synthesized by targeting

Virtex-5 FPGA which supports the data input in single-precision Floating-

point representation format. The FPGA implementation of the UaL

decomposition method is compared with the existing FPGA

implementations of LU, LDL, Cholesky and QR decomposition methods

in terms of area, frequency and computational time. The proposed

sequential FPGA implementation of UaL decomposition utilizes 47% less

resources than the existing best parallel LU factorization FPGA

implementation but requires 50% more computational time, and operates

at 210 MHz which is approximately three times than the operating

frequency of best existing decomposition implementation (LU

decomposition). The parallel implementation of UaL decomposition is

expected to reduce the computational time by 32% compared to sequential

UaL and 68.9% compared to LU decomposition.

Keywords— LU factorization, UaL decomposition, FPGA, QR, LDL,

Cholesky, LKU.

I. INTRODUCTION

Matrix calculations are a primary segment of most logical processing problems. As

computers are having a restricted precision, solving complicated operations related to

matrices is not that efficient. One such calculation is matrix decomposition method. This

decomposition method breakdown a single complex matrix into two simpler matrices which

results is performing more complex operations in a simple way. The other name for this

matrix decomposition is matrix factorization, which is a basis for linear algebra in personal

computers and also for some common operations like system of linear equations solving’s,

finding inverse and determinant of a matrix.

http://philstat.org.ph/
mailto:ruchithasvs2014@gmail.com

Vol. 71 No. 4 (2022)

http://philstat.org.ph

Mathematical Statistician and Engineering Applications

 ISSN: 2094-0343

2326-9865

1082

One specific such matrix decomposition method is LU factorization technique, which

disintegrates a matrix into a result of two simpler matrices called a lower triangular matrix

and an upper triangular matrix. This LU computation is a significant advance in tackling

enormous systems of linear equations [1]. Numerous implementations are having this LU

factorization as a centre portion which should be used frequently. From the literature it can be

found that the LU decomposition is good in terms of computational speed compared to other

existing matrix decompositions methods such as QR, LDL and Cholesky [20].

 The precision of the resultant L and U matrices can be improved by reducing the round off

errors. UaL decomposition algorithm is the modified version of LU decomposition algorithm

which achieves computational accuracy compared to the existing LU decomposition

algorithms by reducing the round-off errors [3].

In this paper, the FPGA implementation of UaL factorization algorithm is put-forwarded and

implemented on Virtex-5 FPGA. As the regular processors, for example, CPU confronted an

incredible difficulty due to its high delay correspondence in its cores, low effectiveness in

parallel computations and less memory data transmission. Subsequently, FPGA turns into a

hopeful stage to accelerate the factorization of a matrix because of its bountiful logic resources

and incredible parallel computing capacity [2]. The proposed UaL implementation on FPGA

shows the reduction in LUT resources compared to FPGA implementation of LU

decomposition as it requires 1) no extra circuitry to eliminate round-off errors which are

caused by divisions in LU 2) due to the simple calculations as UaL does not use complex-

valued multiplications. Computation time more as UaL is sequential, but the parallel

implementation of UaL improves the computational time, when same parallelism as UL is

used UaL architecture.

 This paper is structured in following way: Section II explains about background and related

work of LU based FPGA. Section III gives the details of the UaL decomposition algorithm.

Section IV is about the implementation of FPGA based UaL decomposition algorithm. Section

V shows the results and comparison with other related algorithms. Conclusions are in Section

VI.

II. BACKGROUND AND RELATED WOTK

 As discussed in previous section, LU decomposition of a matrix will result in two matrices

is shown in below Figure. 1, where we can see an input matrix A is factorized and results two

output matrices called L and U in product form and this can be symbolized as A=L×U,

Where L represents a lower triangular matrix and U represents an upper triangular matrix.

Fig. 1. LU decomposition of a 3x3 matrix

Here, a11, l11, u11 denotes the matrix elements for each A, L and U matrices [4].

http://philstat.org.ph/

Vol. 71 No. 4 (2022)

http://philstat.org.ph

Mathematical Statistician and Engineering Applications

 ISSN: 2094-0343

2326-9865

1083

A plenty of analysis is made on LU decomposition using FPGA’s. In [5] a new Architecture

which is efficient in area and Throughput is proposed by making changes in an existing

algorithm called KLU for LU decompositions. An algorithm for an architecture with multiple

processors for a parallel block LU decomposition with a column of two stage was developed

in [6] by partitioning the given matrix into different larger blocks which are then again breaks

down into smaller blocks equal to the count of processors. In [7] the computation accuracy of

the fixed-point based architecture of LU decomposition and the factors affecting the accuracy

are studied. In [8] a parallel recursive algorithm for LU factorization was developed based on

the Divide and Conquer paradigm.

In [9] stochastic multiplier and divider designs are proposed for designing a Lower-Upper

decomposition (LUD) scheme. In [10] an efficient cache architecture for an FPGA based

parallel sparse LU factorization method based on Gilbert-Peierls (GP) algorithm was

proposed. In [11] for decomposing dense matrices using LU decomposition an approach

called OpenMP task was developed in parallel method which is based on each tasks that are

occurred during LU decomposition in block wise.

In [12] for the computations and simulations of circuits a GPU based solver using sparse LU

was proposed. This proposed method is known as GLU method which means, GPU

accelerated LU decomposition method, that depends on LU decomposition algorithm of

hybrid type right looking. In [4] an architecture to improve LU decomposition computations

was proposed in which they have used a same PE (processing element) multiple times by

utilizing pipelining techniques, that makes this architectural design to be more efficient in

terms of resource utilization and also makes this available for resources that have limitation

in hardware and for some requirements in real time.

In [13] an architecture to accelerate sparse LU factorization was designed by modifying the

architecture that is in dataflow model to hold up with heterogeneous PE’s and also design

networks with dual channels which reflects its properties in LU decomposition graphs. In

[14] Breaking Sequential Dependencies in FPGA-based Sparse LU Factorization was shown

by using depth-limited substitution, and reassociation of the resulting computation. In [15]

FPGA implementation using a dataflow model is done for LU factorization method along

with a task separation and algorithm assignment based on a modified Kernighan-Lin is also

presented.

Two architectures are proposed in [16], one is for FPGA based LU factorization for limited

sized matrices with single precisions and the other is for block level multiplication of block

LU factorization having larger matrix sizes. In [17] author shows an algorithm based on left

looking is far better than an algorithm of right looking type and then implemented an

architecture in parallel way using the algorithm of left looking type for sparse LU

factorization algorithm on FPGA. And a dependence study was used in performance of

column operations.

In [18] an LU factorization architecture using FPGA having higher performance along with

efficient memory was implemented by applying a few transformations in series, that includes

blocking loops and mapping of space and time, on non-blocking sequential LU factorization

http://philstat.org.ph/

Vol. 71 No. 4 (2022)

http://philstat.org.ph

Mathematical Statistician and Engineering Applications

 ISSN: 2094-0343

2326-9865

1084

and also consists of PE’s in linear fashion, for implementing block LU factorization

algorithm. In [1] FPGA architecture having higher performance for block LU factorization

was implemented by combining the arithmetic units of floating points along with the access

patterns of memory which makes easier to cover the access latency of memory behind

computations.

Using Gaussian Elimination theory analysis, a parallel FPGA based LU factorization design

with higher performance is implemented [19].

III. UAL DECOMPOSITION

 In [3] Hashemian proposed a novel algorithm called UaL decomposition algorithm for

nodal analysis of a circuit, whose matrix representation of the circuit [21, 22] is shown below

in equation (1)

In above equation, Y represents an admittance matrix in nodal analysis, the voltages of nodes

are represented in V matrix and the stimuli of the total nodal in vector form is represented in J

(both voltage and current sources). In this decomposition the admittance matrix Y is

partitioned into two higher and lower triangular matrices U and L and can be given by (2).

 Y = LU (2)

 LUV = J (3)

Now, from above equation L has to be moved to other side of the equation to make it balance

and this is shown in below equation (4).

When the equations (2) and (4) are compared, these will have the same U matrix but the

matrix L in both the equations are in inverse with one another. For the sources of current and

for the voltages of nodes the arrays are represented as J = [j1, j2, …, jn]t and V = [v1, v2, …,

vn]t respectively and when the (4) is solved using these two arrays it results in following

equation (5).

 = (5)

Where i ranges as n, n-1, … , 1 and the variables uii, uil, and lik represents the elements of the

matrices L and U. To get the voltages of the nodes the necessary divisions required are done

by using uii in (5). Hence it can be seen that the operations in UaL factorization does not

require any divisions, which helps in eliminating pivots of the matrix. Features which

differentiates (4) from equation (2) are pointed, explained and are proved in [3]. The main

equations involved in determining the elements of the matrices L and U are mentioned in the

equations (6), (7).

 (6)

http://philstat.org.ph/

Vol. 71 No. 4 (2022)

http://philstat.org.ph

Mathematical Statistician and Engineering Applications

 ISSN: 2094-0343

2326-9865

1085

 (7)

Where k takes all values, the superscript variable i specifies the levels of columns processing

and y is assigned to i+1.

However, it must be noted that the UaL computational accuracy is more compare to the LU

decomposition as division operations are removed or made with zero remainders and the

round off errors are eliminated totally. The pseudo code of UaL factorization algorithm is

given in Algorithm I [3]:

Algorithm I UaL factorization

By utilizing the UaL decomposition algorithm as shown above in C++ language for MNA

matrices which is proposed in [3], we have proposed hardware architecture and implemented

UaL Decomposition on FPGA as UaL decomposition is expected to be better than the LU

decomposition in terms of accuracy.

http://philstat.org.ph/

Vol. 71 No. 4 (2022)

http://philstat.org.ph

Mathematical Statistician and Engineering Applications

 ISSN: 2094-0343

2326-9865

1086

IV. FPGA BASED UAL DECOMPOSITION

This section provides the details of the proposed hardware architecture design of UaL

decomposition and its functionality in performing UaL Decomposition on FPGA.

Fig. 2 shows the top-level architecture mainly that consists of three units namely; memory

subsystem unit, control unit and compute unit.

The memory subsystem consists a U memory and L-memory. The U memory is initially used

to store the input matrix ‘A’ data and then matrix A data is overwritten with computed values

of U matrix as the computation progresses. The L memory initially stores Identity matrix

values and later gets updated with the L matrix values as it gets computed.

The UaL compute unit consists of four multipliers M1, M2, M3, M4, two subtractors, S1, S2,

and two dividers D1, and D2. These arithmetic units and the memory units are connected

through Address and Data buses as shown in Fig. 2. The detailed internal connections are

shown in Fig. 3 which shows the data flow during the computation as well.

Fig. 2: Top level architecture of UaL

Control unit controls the matrix data flow between the memory sub system unit and the UaL

compute unit also controls the sequence of single precision floating point arithmetic

calculations as per the UaL algorithm and then the output values are stored back into the

memory subsystem.

Fig. 3: Data flow during the calculations of U and L matrix values.

http://philstat.org.ph/

Vol. 71 No. 4 (2022)

http://philstat.org.ph

Mathematical Statistician and Engineering Applications

 ISSN: 2094-0343

2326-9865

1087

Fig. 3 shows the data during the calculations of U and L matrix values as per the UaL

algorithm. According to the algorithm, a set of operations are done on Input matrix and

Identity matrix to obtain the elements for final U and L matrices. Two sets of operations are

done based on whether Uji element is zero or non-zero.

 If Uji is zero, first and second for loops in the algorithm are used to update U and L

matrix elements respectively. Considering the first for loop, the U matrix elements are

computed by passing Uii and Ujk as inputs to the Multiplier M1 and output is used to updated

the Ujk element. Based on the value of i, if i is greater than 1 then this updated Ujk is passed

to the divider D1 as one of the input along with the other input element Ui-1,i-1, then the

divider D1 output is used to update the Ujk element. Considering the second for loop, the L

matrix elements are computed by passing Uii and Ljk as inputs to the Multiplier M2 and

output is used to update the Ljk element. Based on the value of i, if i is greater than 1 then

this updated Ljk is passed to the divider D2 as one of the input along with the other input

element Ui-1i-1, the output of the divider D2 is used to update the Ljk element. Therefore, if

Uji is zero only two multipliers and two dividers are required to compute/update the U and L

matrix elements.

 If Uji is not equal to zero, third and fourth for loops in the algorithm updates the U

and L matrix elements respectively. Considering the third for loop, the U matrix elements are

computed by passing Uii and Ujk as inputs to the Multiplier M1 and Uji and Uik as inputs to

Multiplier M3 and these M1, M3 outputs are passed as inputs to Subtractor S1 whose output

is used to update the Ujk element. Based on the value of i, if i is greater than 1 then this

updated Ujk is passed to Divider D1 as one of the input along with the other input element

Ui-1i-1, then the output of divider D1 is used to update the Ujk element. As per the fourth for

loop in the algorithm, the L matrix elements are computed by passing Uii and Ljk as inputs to

the Multiplier M2 and Uji and Lik as inputs to Multiplier M4 and these M2, M4 outputs are

passed as inputs to Subtractor S2 whose output is used to update the Ljk element. Based on

the value of i, if i is greater than 1 then the updated Ljk is passed to Divider D2 as one of the

input along with the other input element Ui-1i-1, the output of the divider D2 is used to

update the Ljk element. Therefore, if Uji is not zero then all the arithmetic units in the

compute unit are in active state.

The input and output data are in the format of IEEE - 754 floating point Single Precision

representation, therefore, 32-bit floating point multiplier, subtractor and divider are used to

perform the arithmetic calculations on the input matrix data.

V. RESULTS AND DISCUSSIONS

The RTL code of UaL Algorithm is described using Verilog to model its hardware

architecture and is implemented targeting FPGA Virtex 5 board to find the resource

utilization, and operating frequency, and power consumption using the Xilinx Vivado.

http://philstat.org.ph/

Vol. 71 No. 4 (2022)

http://philstat.org.ph

Mathematical Statistician and Engineering Applications

 ISSN: 2094-0343

2326-9865

1088

Initially the input matrix A, and identity matrix I are stored in U and L memories

respectively. The content of these memories is verified by displaying using simulations as

shown in Fig. 4 and 5. UaL decomposition is performed on those two matrices as per the UaL

decomposition algorithm. During the algorithmic flow the computed values of U and L

matrices are stored in U and L memories respectively. All the arithmetic calculations are

performed by using subtractor, divider and multiplier floating point sub-modules. Each sub

module is simulated and synthesized separately by applying floating point data. The

functionality verification of these floating-point arithmetic units is done with the help of

simulation waveforms as shown in Fig. 6, 7, and 8. Later all these sub modules are

instantiated according to the UaL decomposition algorithm-based architecture as shown in

Figure 3 and then a testbench is written that uses floating point data to drive the UaL

decomposer and simulated to verify its functionality. Figure 9 shows simulation results of the

UaL decomposition of 4x4 matrix.

Fig. 4: Storing input matrix initially in U memory

Fig. 5: Storing Identity matrix initially in L memory

Figures 4, 5 shows that U and L memories that are filled initially with input and identity matrix values

respectively.

Fig. 6: Floating Point Subtraction of two numbers

Fig. 7: Floating point Division of two numbers

Fig. 8: Floating Point Multiplication of two numbers.

http://philstat.org.ph/

Vol. 71 No. 4 (2022)

http://philstat.org.ph

Mathematical Statistician and Engineering Applications

 ISSN: 2094-0343

2326-9865

1089

Figures 6, 7, 8 shows the floating-point subtraction, division and multiplication of two

numbers for 32 – bit single precision floating point data.

Fig. 9 represents the simulation output of UaL decomposi-tion for 4x4 matrix. The input

matrix taken for simulation is from [3].

The Table 1 shows the count of different types of arithmetic operations required by each type

of decomposition algorithms for decomposing a given matrix into L and U matrices. From

Table 1 it can be noticed that compared to

Fig. 9: UaL Decomposition of 4x4 matrix

TABLE I: NUMBER OF OPERATIONS REQUIRED FOR DIFFERENT DECOMPOSITION ALGORITHMS

FOR A 4X4 MATRIX.

TABLE II: CHARACTERISTICS OF 32-BIT FLOATING POINT UNITS USED IN UAL FPGA

IMPLEMENTATION

Resource Utilizations Subtractor Multiplier Divider

Pipelining stages 6 5 3

Slice Registers 332 138 305

Slice LUT 680 109 391

http://philstat.org.ph/

Vol. 71 No. 4 (2022)

http://philstat.org.ph

Mathematical Statistician and Engineering Applications

 ISSN: 2094-0343

2326-9865

1090

Fully used LUT- FF pairs 284 87 226

BUFG 1 1 1

DSP48 - 2 4

Frequency (MHz) 246.591 211.551 211.551

other decomposition methods, UaL decomposition does not require any complex operations

like complex-valued multiplications and square roots to complete its decompositions

calculations. Also, as pipelining techniques are not used in UaL decomposition architecture,

it has required more number of operations to complete its decomposition process whereas the

comparison methods are pipelined [20].

Table II shows the resource utilizations of different floating-point units used in the proposed

UaL processor. It also shown that subtractor unit is having more pipelined stages hence

having high frequency when compared with

TABLE III: FPGA RESOURCE UTILIZATION FOR 4X4 MATRIX

FPGA Resource QR LU LDL Cholesky UaL

Total Slices 8287 4606 2469 2027 -

Slice Registers 18256 10711 5325 5247 2554

Slice LUTs 21268 10022 5006 4891 5235

Block RAMs 4 4 2 2 -

DSP48s 224 57 28 23 8

multiplier and divider. The overall operating frequency is dominated by the module with low

operating frequency, hence the proposed UaL operating at 210 M Hz.

Table III shows the comparison of the resource utilizations of different decomposition

algorithms based FPGA implementations. As the existing methods like QR, LU, LDL,

Cholesky [20] hardware implementations use parallel execution of matrix operations, and

hence required more number of resources. Also shown that the proposed UaL design requires

less number of LUT’s as matrix elements are processed one element at a time, and pipelined

arithmetic units are used hence the operating frequency is more. Also operations like

complex-valued multiplications and square roots are avoided, resource utilization of UaL

algorithm is decreased.

The Table IV shows the comparison of computation time of UaL factorization method of 4x4

matrix with the existing factorization techniques like LU, QR, LDL, Cholesky that are

referred from [20]. Calculation of UaL computation time was done by dividing the number of

clock cycles required with the maximum operating frequency. From the Tables III and IV we

can observe that, as LU based architecture has low computational time but utilizes more

resources and the UaL based architecture requires 47% less number of resources and 50%

more computation time compared to LU. Therefore, it can be concluded that there is a trade-

http://philstat.org.ph/

Vol. 71 No. 4 (2022)

http://philstat.org.ph

Mathematical Statistician and Engineering Applications

 ISSN: 2094-0343

2326-9865

1091

off between resource utilization and computation time and the UaL algorithm can be used in

applications which require more accuracy.

TABLE IV: COMPUTATION TIME OF 4X4 MATRIX ON DIFFERENT MATRIX DECOMPOSITION

HARDWARE ARCHITECTURES.

TABLE V: COMPUTATION TIME OF 4X4 MATRIX ON DIFFERENT MATRIX DECOMPOSITION

HARDWARE ARCHITECTURES (PARALLEL ESTIMATION).

 The Table V shows the comparison of computation time of parallel UaL factorization

method of 4x4 matrix with the existing factorization techniques like LU, QR, LDL, Cholesky

which are referred from [20]. If a parallelism of four is considered for the implementation of

UaL decomposition then the resource utilization of UaL architecture will increase four times

compared to sequential UaL but comparable to the other decomposition hardware

implementations, and the computation time will decrease about 32% of sequential UaL

computational time (see Table IV).

VI. CONCLUSION

The UaL decomposition method is computationally having higher efficiency and also less

effected with round-off errors when compared with the regular LU decomposition method.

The UaL decomposition algorithm itself shows high division operations are removed or made

with zero hardware architecture corresponding to the UaL decomposition is proposed, and

modeled using Verilog and simulated and synthesized by targeting FPGA Virtex-5 board

using Xilinx Vivado.

As UaL decomposition exhibits natural parallelism similar to the LU decomposition in terms

of processing steps its corresponding hardware implementation on FPGA not only as fast as

http://philstat.org.ph/

Vol. 71 No. 4 (2022)

http://philstat.org.ph

Mathematical Statistician and Engineering Applications

 ISSN: 2094-0343

2326-9865

1092

LU but also shows high computational efficiency and accuracy than LU. Therefore, the

proposed UaL decomposition technique-based hardware architecture can be used in place of

LU decomposition which can further improves the accuracy and computational efficiency of

matrix decomposition. As the future work there is a chance to improve resource utilization

and frequency even more by utilizing existing pipelined and parallelism techniques.

REFERENCES

1. M. K. Jaiswal and N. Chandrachoodan, "FPGA-Based High-Performance and Scalable

Block LU Decomposition Architecture," in IEEE Transactions on Computers, vol. 61, no.

1, pp. 60-72, Jan. 2012, doi: 10.1109/TC.2011.24.

2. X. Ge, H. Zhu, F. Yang, L. Wang and X. Zeng, "Parallel sparse LU decomposition using

FPGA with an efficient cache architecture," 2017 IEEE 12th International Conference on

ASIC (ASICON), Guiyang, 2017, pp. 259-262, doi: 10.1109/ASICON.2017.8252462.

3. R. Hashemian, "UaL Decomposition, an Alternative to the LU Factorization of MNA

Matrices," in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 67, no.

4, pp. 630-634, April 2020, doi: 10.1109/TCSII.2019.2924898.

4. Y. Wang, H. Tao, S. Xiao and H. Dai, "An implementation architecture design of LU

decomposition in resource-limited system," 2015 IEEE International Symposium on

Systems Engineering (ISSE), Rome, 2015, pp. 261-265, doi:

10.1109/SysEng.2015.7302767.

5. G. P. Kumar and C. Ramesh, "Implementation of an Area Efficient High Throughput

Architecture for Sparse Matrix LU Factorization," 2019 3rd International Conference on

Electronics, Materials Engineering & Nano-Technology (IEMENTech), Kolkata, India,

2019, pp. 1-6, doi: 10.1109/IEMENTech48150.2019.8981319.

6. R. Wu and X. Xie, "Two-Stage Column Block Parallel LU Factorization Algorithm," in

IEEE Access, vol. 8, pp. 2645-2655, 2020, doi: 10.1109/ACCESS.2019.2962355.

7. M. S. Feali, A. Ahmadi, A. Hamidi and M. Ahmadi, "Fixed-point arithmetic error

analysis of sparse LU decomposition on FPGAs," 2017 International Symposium on

Signals, Circuits and Systems (ISSCS), Iasi, 2017, pp. 1-4, doi:

10.1109/ISSCS.2017.8034900.

8. R. Mahfoudhi, "High Performance Recursive LU Factorization for Multicore Systems,"

2017 IEEE/ACS 14th International Conference on Computer Systems and Applications

(AICCSA), Hammamet, 2017, pp. 668-674, doi: 10.1109/AICCSA.2017.199.

9. K. F. K. Jiavana and N. Gurjar, "Stochastic multiplier and divider for stochastic LU

decomposition," 2017 International Conference on Nextgen Electronic Technologies:

Silicon to Software (ICNETS2), Chennai, 2017, pp. 1-5, doi:

10.1109/ICNETS2.2017.8067884.

10. X. Ge, H. Zhu, F. Yang, L. Wang and X. Zeng, "Parallel sparse LU decomposition using

FPGA with an efficient cache architecture," 2017 IEEE 12th International Conference on

ASIC (ASICON), Guiyang, 2017, pp. 259-262, doi: 10.1109/ASICON.2017.8252462.

11. V. S. Rana, M. Lin and B. Chapman, "A Scalable Task Parallelism Approach for LU

Decomposition with Multicore CPUs," 2016 Second International Workshop on Extreme

http://philstat.org.ph/

Vol. 71 No. 4 (2022)

http://philstat.org.ph

Mathematical Statistician and Engineering Applications

 ISSN: 2094-0343

2326-9865

1093

Scale Programming Models and Middlewar (ESPM2), Salt Lake City, UT, USA, 2016,

pp. 17-23, doi: 10.1109/ESPM2.2016.008.

12. K. He, S. X. -. Tan, H. Wang and G. Shi, "GPU-Accelerated Parallel Sparse LU

Factorization Method for Fast Circuit Analysis," in IEEE Transactions on Very Large

Scale Integration (VLSI) Systems, vol. 24, no. 3, pp. 1140-1150, March 2016, doi:

10.1109/TVLSI.2015.2421287.

13. Siddhartha and N. Kapre, "Heterogeneous dataflow architectures for FPGA-based sparse

LU factorization," 2014 24th International Conference on Field Programmable Logic and

Applications (FPL), Munich, Germany, 2014, pp. 1-4, doi: 10.1109/FPL.2014.6927401.

14. Siddhartha and N. Kapre, "Breaking Sequential Dependencies in FPGA-Based Sparse LU

Factorization," 2014 IEEE 22nd Annual International Symposium on Field-

Programmable Custom Computing Machines, Boston, MA, USA, 2014, pp. 60-63, doi:

10.1109/FCCM.2014.26.

15. M. Eljammaly, Y. Hanafy, A. Wahdan and A. Bayoumi, "Hardware implementation of

LU decomposition using dataflow architecture on FPGA," 2013 5th International

Conference on Computer Science and Information Technology, Amman, Jordan, 2013,

pp. 298-302, doi: 10.1109/CSIT.2013.6588795.

16. Baoguang Fang, Shuqiang Chen and Xulong Wei, "Single-precision LU decomposition

based on FPGA compared with CPU," 2012 International Conference on Computational

Problem-Solving (ICCP), Leshan, China, 2012, pp. 302-305, doi:

10.1109/ICCPS.2012.6384247.

17. G. Wu, X. Xie, Y. Dou, J. Sun, D. Wu and Y. Li, "Parallelizing sparse LU decomposition

on FPGAs," 2012 International Conference on Field-Programmable Technology, Seoul,

Korea (South), 2012, pp. 352-359, doi: 10.1109/FPT.2012.6412160.

18. G. Wu, Y. Dou, J. Sun and G. D. Peterson, "A High Performance and Memory Efficient

LU Decomposer on FPGAs," in IEEE Transactions on Computers, vol. 61, no. 3, pp. 366-

378, March 2012, doi: 10.1109/TC.2010.278.

19. Y. Shao, L. Jiang, Q. Zhao and Y. Wang, "High Performance and Parallel Model for LU

Decomposition on FPGAs," 2009 Fourth International Conference on Frontier of

Computer Science and Technology, Shanghai, China, 2009, pp. 75-79, doi:

10.1109/FCST.2009.66.

20. A. A. Hussain, N. Tayem and A. Soliman, "Matrix Decomposition Methods for Efficient

Hardware Implementation of DOA Estimation Algorithms: A Performance Comparison,"

2019 4th International Conference and Workshops on Recent Advances and Innovations

in Engineering (ICRAIE), 2019, pp. 1-7, doi: 10.1109/ICRAIE47735.2019.9037778.

21. T.L. Pillage, R.A. Rohrer, C. Visweswariah, Electronic Circuit & System Simulation

Methods, McGraw-Hill, Inc., New York, 1995.

22. L.W. Nagel, "SPICE2, A computer program to simulate semiconductor circuits," Univ. of

California, Berkeley, CA, Memorandum no. ERL-M520, 1975.

23. Serene Jose and Sonali Agrawal “Single precision Floating point divider design” in

International Journal of Computational Engineering Research, May-June 2012.

24. Suresh,N.V,Satish,Kumar.P,"Design and implementation of fast floating point multiplier

unit” 2015 International Conference on VLSI Systems, Architecture, Technology and

Applications, VLSI SATA 2015, Institute of Electrical and Electronics Engineers Inc.

http://philstat.org.ph/

Vol. 71 No. 4 (2022)

http://philstat.org.ph

Mathematical Statistician and Engineering Applications

 ISSN: 2094-0343

2326-9865

1094

25. Aswini, R. Chinthala and N. S. Murty, "Area Efficient Architecture for high speed wide

data adders in Xilinx FPGAs," 2019 International Conference on Computer

Communication and Informatics (ICCCI), 2019, pp. 1-4, doi:

10.1109/ICCCI.2019.8822204.

http://philstat.org.ph/

