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Abstract—Matrix decomposition is an important method used in many 

applications such as circuit simulations, for example Modified Nodal 

Analysis (MNA matrices), and in communication systems, for example to 

find minimum mean square error (MMSE) in MIMO systems for detecting 

the transmitted symbol vector from the received symbol vector. In this 

paper, an FPGA based hardware implementation of an alternative solution 

to LU factorization technique called UaL decomposition method is 

proposed. The RTL code of the UaL algorithm is developed and simulated 

using Xilinx Vivado software. The RTL code of the proposed FPGA based 

UaL decomposition hardware architecture is synthesized by targeting 

Virtex-5 FPGA which supports the data input in single-precision Floating-

point representation format. The FPGA implementation of the UaL 

decomposition method is compared with the existing FPGA 

implementations of LU, LDL, Cholesky and QR decomposition methods 

in terms of area, frequency and computational time. The proposed 

sequential FPGA implementation of UaL decomposition utilizes 47% less 

resources than the existing best parallel LU factorization FPGA 

implementation but requires 50% more computational time, and operates 

at 210 MHz which is approximately three times than the operating 

frequency of best existing decomposition implementation (LU 

decomposition). The parallel implementation of UaL decomposition is 

expected to reduce the computational time by 32% compared to sequential 

UaL and 68.9% compared to LU decomposition. 

Keywords— LU factorization, UaL decomposition, FPGA, QR, LDL, 

Cholesky, LKU. 

I. INTRODUCTION 

Matrix calculations are a primary segment of most logical processing problems. As 

computers are having a restricted precision, solving complicated operations related to 

matrices is not that efficient. One such calculation is matrix decomposition method. This 

decomposition method breakdown a single complex matrix into two simpler matrices which 

results is performing more complex operations in a simple way. The other name for this 

matrix decomposition is matrix factorization, which is a basis for linear algebra in personal 

computers and also for some common operations like system of linear equations solving’s, 

finding inverse and determinant of a matrix.   

http://philstat.org.ph/
mailto:ruchithasvs2014@gmail.com


Vol. 71 No. 4 (2022) 

http://philstat.org.ph 

Mathematical Statistician and Engineering Applications 

  ISSN: 2094-0343 

2326-9865 

1082 

One specific such matrix decomposition method is LU factorization technique, which 

disintegrates a matrix into a result of two simpler matrices called a lower triangular matrix 

and an upper triangular matrix. This LU computation is a significant advance in tackling 

enormous systems of linear equations [1]. Numerous implementations are having this LU 

factorization as a centre portion which should be used frequently. From the literature it can be 

found that the LU decomposition is good in terms of computational speed compared to other 

existing matrix decompositions methods such as QR, LDL and Cholesky [20].  

 The precision of the resultant L and U matrices can be improved by reducing the round off 

errors. UaL decomposition algorithm is the modified version of LU decomposition algorithm 

which achieves computational accuracy compared to the existing LU decomposition 

algorithms by reducing the round-off errors [3].  

In this paper, the FPGA implementation of UaL factorization algorithm is put-forwarded and 

implemented on Virtex-5 FPGA. As the regular processors, for example, CPU confronted an 

incredible difficulty due to its high delay correspondence in its cores, low effectiveness in 

parallel computations and less memory data transmission. Subsequently, FPGA turns into a 

hopeful stage to accelerate the factorization of a matrix because of its bountiful logic resources 

and incredible parallel computing capacity [2]. The proposed UaL implementation on FPGA 

shows the reduction in LUT resources compared to FPGA implementation of LU 

decomposition as it requires 1) no extra circuitry to eliminate round-off errors which are 

caused by divisions in LU 2) due to the simple calculations as UaL does not use complex-

valued multiplications. Computation time more as UaL is sequential, but the parallel 

implementation of UaL improves the computational time, when same parallelism as UL is 

used UaL architecture.   

 This paper is structured in following way: Section II explains about background and related 

work of LU based FPGA. Section III gives the details of the UaL decomposition algorithm. 

Section IV is about the implementation of FPGA based UaL decomposition algorithm. Section 

V shows the results and comparison with other related algorithms. Conclusions are in Section 

VI. 

II. BACKGROUND AND RELATED WOTK 

     As discussed in previous section, LU decomposition of a matrix will result in two matrices 

is shown in below Figure. 1, where we can see an input matrix A is factorized and results two 

output matrices called L and U in product form and this can be symbolized as A=L×U, 

Where L represents a lower triangular matrix and U represents an upper triangular matrix.  

 

Fig. 1. LU decomposition of a 3x3 matrix 

Here, a11, l11, u11 denotes the matrix elements for each A, L and U matrices [4]. 
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A plenty of analysis is made on LU decomposition using FPGA’s. In [5] a new Architecture 

which is efficient in area and Throughput is proposed by making changes in an existing 

algorithm called KLU for LU decompositions. An algorithm for an architecture with multiple 

processors for a parallel block LU decomposition with a column of two stage was developed 

in [6] by partitioning the given matrix into different larger blocks which are then again breaks 

down into smaller blocks equal to the count of processors. In [7] the computation accuracy of 

the fixed-point based architecture of LU decomposition and the factors affecting the accuracy 

are studied. In [8] a parallel recursive algorithm for LU factorization was developed based on 

the Divide and Conquer paradigm.  

In [9] stochastic multiplier and divider designs are proposed for designing a Lower-Upper 

decomposition (LUD) scheme. In [10] an efficient cache architecture for an FPGA based 

parallel sparse LU factorization method based on Gilbert-Peierls (GP) algorithm was 

proposed. In [11] for decomposing dense matrices using LU decomposition an approach 

called OpenMP task was developed in parallel method which is based on each tasks that are 

occurred during LU decomposition in block wise. 

In [12] for the computations and simulations of circuits a GPU based solver using sparse LU 

was proposed. This proposed method is known as GLU method which means, GPU 

accelerated LU decomposition method, that depends on LU decomposition algorithm of 

hybrid type right looking. In [4] an architecture to improve LU decomposition computations 

was proposed in which they have used a same PE (processing element) multiple times by 

utilizing pipelining techniques, that makes this architectural design to be more efficient in 

terms of resource utilization and also makes this available for resources that have limitation 

in hardware and for some requirements in real time.  

In [13] an architecture to accelerate sparse LU factorization was designed by modifying the 

architecture that is in dataflow model to hold up with heterogeneous PE’s and also design 

networks with dual channels which reflects its properties in LU decomposition graphs. In 

[14] Breaking Sequential Dependencies in FPGA-based Sparse LU Factorization was shown 

by using depth-limited substitution, and reassociation of the resulting computation. In [15] 

FPGA implementation using a dataflow model is done for LU factorization method along 

with a task separation and algorithm assignment based on a modified Kernighan-Lin is also 

presented. 

Two architectures are proposed in [16], one is for FPGA based LU factorization for limited 

sized matrices with single precisions and the other is for block level multiplication of block 

LU factorization having larger matrix sizes. In [17] author shows an algorithm based on left 

looking is far better than an algorithm of right looking type and then implemented an 

architecture in parallel way using the algorithm of left looking type for sparse LU 

factorization algorithm on FPGA. And a dependence study was used in performance of 

column operations.  

In [18] an LU factorization architecture using FPGA having higher performance along with 

efficient memory was implemented by applying a few transformations in series, that includes 

blocking loops and mapping of space and time, on non-blocking sequential LU factorization 
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and also consists of PE’s in linear fashion, for implementing block LU factorization 

algorithm. In [1] FPGA architecture having higher performance for block LU factorization 

was implemented by combining the arithmetic units of floating points along with the access 

patterns of memory which makes easier to cover the access latency of memory behind 

computations.  

Using Gaussian Elimination theory analysis, a parallel FPGA based LU factorization design 

with higher performance is implemented [19].  

III. UAL DECOMPOSITION  

 In [3] Hashemian proposed a novel algorithm called UaL decomposition algorithm for 

nodal analysis of a circuit, whose matrix representation of the circuit [21, 22] is shown below 

in equation (1) 

 

In above equation, Y represents an admittance matrix in nodal analysis, the voltages of nodes 

are represented in V matrix and the stimuli of the total nodal in vector form is represented in J 

(both voltage and current sources). In this decomposition the admittance matrix Y is 

partitioned into two higher and lower triangular matrices U and L and can be given by (2).  

                   Y = LU                                 (2) 

                            LUV = J                                                 (3) 

Now, from above equation L has to be moved to other side of the equation to make it balance 

and this is shown in below equation (4). 

 

When the equations (2) and (4) are compared, these will have the same U matrix but the 

matrix L in both the equations are in inverse with one another. For the sources of current and 

for the voltages of nodes the arrays are represented as J = [j1, j2, …, jn]t and V = [v1, v2, …, 

vn]t respectively and when the (4) is solved using these two arrays it results in following 

equation (5). 

                   =         (5) 

Where i ranges as n, n-1, … , 1 and the variables uii, uil, and lik represents the elements of the 

matrices L and U. To get the voltages of the nodes the necessary divisions required are done 

by using uii in (5). Hence it can be seen that the operations in UaL factorization does not 

require any divisions, which helps in eliminating pivots of the matrix. Features which 

differentiates (4) from equation (2) are pointed, explained and are proved in [3]. The main 

equations involved in determining the elements of the matrices L and U are mentioned in the 

equations (6), (7). 

                               (6) 
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                            (7) 

Where k takes all values, the superscript variable i specifies the levels of columns processing 

and y is assigned to i+1. 

However, it must be noted that the UaL computational accuracy is more compare to the LU 

decomposition as division operations are removed or made with zero remainders and the 

round off errors are eliminated totally.  The pseudo code of UaL factorization algorithm is 

given in Algorithm I [3]: 

Algorithm I UaL factorization 

 

By utilizing the UaL decomposition algorithm as shown above in C++ language for MNA 

matrices which is proposed in [3], we have proposed hardware architecture and implemented 

UaL Decomposition on FPGA as UaL decomposition is expected to be better than the LU 

decomposition in terms of accuracy.  
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IV. FPGA BASED UAL DECOMPOSITION 

This section provides the details of the proposed hardware architecture design of UaL 

decomposition and its functionality in performing UaL Decomposition on FPGA. 

Fig. 2 shows the top-level architecture mainly that consists of three units namely; memory 

subsystem unit, control unit and compute unit. 

The memory subsystem consists a U memory and L-memory. The U memory is initially used 

to store the input matrix ‘A’ data and then matrix A data is overwritten with computed values 

of U matrix as the computation progresses. The L memory initially stores Identity matrix 

values and later gets updated with the L matrix values as it gets computed. 

The UaL compute unit consists of four multipliers M1, M2, M3, M4, two subtractors, S1, S2, 

and two dividers D1, and D2. These arithmetic units and the memory units are connected 

through Address and Data buses as shown in Fig.  2. The detailed internal connections are 

shown in Fig. 3 which shows the data flow during the computation as well.      

 

Fig. 2: Top level architecture of UaL 

Control unit controls the matrix data flow between the memory sub system unit and the UaL 

compute unit also controls the sequence of single precision floating point arithmetic 

calculations as per the UaL algorithm and then the output values are stored back into the 

memory subsystem.  

 

Fig. 3: Data flow during the calculations of U and L matrix values. 
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Fig. 3 shows the data during the calculations of U and L matrix values as per the UaL 

algorithm. According to the algorithm, a set of operations are done on Input matrix and 

Identity matrix to obtain the elements for final U and L matrices. Two sets of operations are 

done based on whether Uji element is zero or non-zero. 

 If Uji is zero, first and second for loops in the algorithm are used to update U and L 

matrix elements respectively. Considering the first for loop, the U matrix elements are 

computed by passing Uii and Ujk as inputs to the Multiplier M1 and output is used to updated 

the Ujk element. Based on the value of i, if i is greater than 1 then this updated Ujk is passed 

to the divider D1 as one of the input along with the other input element Ui-1,i-1, then the 

divider D1 output is used to update the Ujk element. Considering the second for loop, the L 

matrix elements are computed by passing Uii and Ljk as inputs to the Multiplier M2 and 

output is used to update the Ljk element. Based on the value of i, if i is greater than 1 then 

this updated Ljk is passed to the divider D2 as one of the input along with the other input 

element Ui-1i-1, the output of the divider D2 is used to update the Ljk element. Therefore, if 

Uji is zero only two multipliers and two dividers are required to compute/update the U and L 

matrix elements. 

 If Uji is not equal to zero, third and fourth for loops in the algorithm updates the U 

and L matrix elements respectively. Considering the third for loop, the U matrix elements are 

computed by passing Uii and Ujk as inputs to the Multiplier M1 and Uji and Uik as inputs to 

Multiplier M3 and these M1, M3 outputs are passed as inputs to Subtractor S1 whose output 

is used to update the Ujk element. Based on the value of i, if i is greater than 1 then this 

updated Ujk is passed to Divider D1 as one of the input along with the other input element 

Ui-1i-1, then the output of divider D1 is used to update the Ujk element. As per the fourth for 

loop in the algorithm, the L matrix elements are computed by passing Uii and Ljk as inputs to 

the Multiplier M2 and Uji and Lik as inputs to Multiplier M4 and these M2, M4 outputs are 

passed as inputs to Subtractor S2 whose output is used to update the Ljk element. Based on 

the value of i, if i is greater than 1 then the updated Ljk is passed to Divider D2 as one of the 

input along with the other input element Ui-1i-1, the output of the divider D2 is used to 

update the Ljk element. Therefore, if Uji is not zero then all the arithmetic units in the 

compute unit are in active state. 

The input and output data are in the format of IEEE - 754 floating point Single Precision 

representation, therefore, 32-bit floating point multiplier, subtractor and divider are used to 

perform the arithmetic calculations on the input matrix data. 

V. RESULTS AND DISCUSSIONS 

The RTL code of UaL Algorithm is described using Verilog to model its hardware 

architecture and is implemented targeting FPGA Virtex 5 board to find the resource 

utilization, and operating frequency, and power consumption using the Xilinx Vivado. 
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Initially the input matrix A, and identity matrix I are stored in U and L memories 

respectively. The content of these memories is verified by displaying using simulations as 

shown in Fig. 4 and 5. UaL decomposition is performed on those two matrices as per the UaL 

decomposition algorithm. During the algorithmic flow the computed values of U and L 

matrices are stored in U and L memories respectively. All the arithmetic calculations are 

performed by using subtractor, divider and multiplier floating point sub-modules. Each sub 

module is simulated and synthesized separately by applying floating point data. The 

functionality verification of these floating-point arithmetic units is done with the help of 

simulation waveforms as shown in Fig. 6, 7, and 8. Later all these sub modules are 

instantiated according to the UaL decomposition algorithm-based architecture as shown in 

Figure 3 and then a testbench is written that uses floating point data to drive the UaL 

decomposer and simulated to verify its functionality. Figure 9 shows simulation results of the 

UaL decomposition of 4x4 matrix. 

 

Fig. 4: Storing input matrix initially in U memory 

 

Fig. 5: Storing Identity matrix initially in L memory 

Figures 4, 5 shows that U and L memories that are filled initially with input and identity matrix values 

respectively. 

 

Fig. 6: Floating Point Subtraction of two numbers 

 

Fig. 7: Floating point Division of two numbers 

 

Fig. 8: Floating Point Multiplication of two numbers. 
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Figures 6, 7, 8 shows the floating-point subtraction, division and multiplication of two 

numbers for 32 – bit single precision floating point data. 

Fig. 9 represents the simulation output of UaL decomposi-tion for 4x4 matrix. The input 

matrix taken for simulation is from [3]. 

The Table 1 shows the count of different types of arithmetic operations required by each type 

of decomposition algorithms for decomposing a given matrix into L and U matrices. From 

Table 1 it can be noticed that compared to  

 

Fig. 9: UaL Decomposition of 4x4 matrix

TABLE I: NUMBER OF OPERATIONS REQUIRED FOR DIFFERENT DECOMPOSITION ALGORITHMS 

FOR A 4X4 MATRIX. 

 

TABLE II: CHARACTERISTICS OF 32-BIT FLOATING POINT UNITS USED IN UAL FPGA 

IMPLEMENTATION 

Resource Utilizations Subtractor Multiplier Divider 

Pipelining stages 6 5 3 

Slice Registers 332 138 305 

Slice LUT 680 109 391 
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Fully used LUT- FF pairs 284 87 226 

BUFG 1 1 1 

DSP48 - 2 4 

Frequency (MHz) 246.591 211.551 211.551 

 

other decomposition methods, UaL decomposition does not require any complex operations 

like complex-valued multiplications and square roots to complete its decompositions 

calculations. Also, as pipelining techniques are not used in UaL decomposition architecture, 

it has required more number of operations to complete its decomposition process whereas the 

comparison methods are pipelined [20]. 

Table II shows the resource utilizations of different floating-point units used in the proposed 

UaL processor. It also shown that subtractor unit is having more pipelined stages hence 

having high frequency when compared with  

TABLE III: FPGA RESOURCE UTILIZATION FOR 4X4 MATRIX 

FPGA Resource QR LU LDL Cholesky UaL 

Total Slices 8287 4606 2469 2027 - 

Slice Registers 18256 10711 5325 5247 2554 

Slice LUTs 21268 10022 5006 4891 5235 

Block RAMs 4 4 2 2 - 

DSP48s 224 57 28 23 8 

 

multiplier and divider. The overall operating frequency is dominated by the module with low 

operating frequency, hence the proposed UaL operating at 210 M Hz. 

Table III shows the comparison of the resource utilizations of different decomposition 

algorithms based FPGA implementations. As the existing methods like QR, LU, LDL, 

Cholesky [20] hardware implementations use parallel execution of matrix operations, and 

hence required more number of resources. Also shown that the proposed UaL design requires 

less number of LUT’s as matrix elements are processed one element at a time, and pipelined 

arithmetic units are used hence the operating frequency is more. Also operations like 

complex-valued multiplications and square roots are avoided, resource utilization of UaL 

algorithm is decreased. 

The Table IV shows the comparison of computation time of UaL factorization method of 4x4 

matrix with the existing factorization techniques like LU, QR, LDL, Cholesky that are 

referred from [20]. Calculation of UaL computation time was done by dividing the number of 

clock cycles required with the maximum operating frequency. From the Tables III and IV we 

can observe that, as LU based architecture has low computational time but utilizes more 

resources and the UaL based architecture requires 47% less number of resources and 50% 

more computation time compared to LU. Therefore, it can be concluded that there is a trade-
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off between resource utilization and computation time and the UaL algorithm can be used in 

applications which require more accuracy. 

TABLE IV: COMPUTATION TIME OF 4X4 MATRIX ON DIFFERENT MATRIX DECOMPOSITION 

HARDWARE ARCHITECTURES. 

 

TABLE V: COMPUTATION TIME OF 4X4 MATRIX ON DIFFERENT MATRIX DECOMPOSITION 

HARDWARE ARCHITECTURES (PARALLEL ESTIMATION). 

 

 The Table V shows the comparison of computation time of parallel UaL factorization 

method of 4x4 matrix with the existing factorization techniques like LU, QR, LDL, Cholesky 

which are referred from [20]. If a parallelism of four is considered for the implementation of 

UaL decomposition then the resource utilization of UaL architecture will increase four times 

compared to sequential UaL but comparable to the other decomposition hardware 

implementations, and the computation time will decrease about 32% of sequential UaL 

computational time (see Table IV). 

VI. CONCLUSION 

The UaL decomposition method is computationally having higher efficiency and also less 

effected with round-off errors when compared with the regular LU decomposition method. 

The UaL decomposition algorithm itself shows high division operations are removed or made 

with zero hardware architecture corresponding to the UaL decomposition is proposed, and 

modeled using Verilog and simulated and synthesized by targeting FPGA Virtex-5 board 

using Xilinx Vivado. 

As UaL decomposition exhibits natural parallelism similar to the LU decomposition in terms 

of processing steps its corresponding hardware implementation on FPGA not only as fast as 
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LU but also shows high computational efficiency and accuracy than LU. Therefore, the 

proposed UaL decomposition technique-based hardware architecture can be used in place of 

LU decomposition which can further improves the accuracy and computational efficiency of 

matrix decomposition. As the future work there is a chance to improve resource utilization 

and frequency even more by utilizing existing pipelined and parallelism techniques. 
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