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Abstract 

With the advent of Transformers which are attention-based mechanisms, 

many research directions have emerged. Their prowess in natural language 

processing tasks is well known. Extension of Transformers to computer 

vision is but natural. Recently, Vision Transforms (ViT’s) have achieved 

very good results on popular image recognition datasets. However, training 

Transformers is a difficult process due to the need for large computational 

resources. Parallel processing is a well-known phenomenon present in 

Nature’s most efficient data processors. Inspired by the same,  I use a novel 

technique in which multiple ViT’s with different patch sizes are used in 

parallel. This is followed by averaging the probability vectors of the ViT’s 

for final classification. Using medium-sized ViT’s I show that without 

going for huge scales, state-of-the-art results are achieved on popular 

datasets. 

 

Keywords: Vision Transformer; ViT; Patch size; Computer Vision; Image 

recognition.  

 

Introduction 

The basic technique for using Transformers involves pretraining on a large dataset [1] and 

then finetuning on a smaller dataset [2]. Due to the Transformers’ computational efficiency 

and scalability, it is now possible to train them with an unprecedented size e.g. having more 

than 100B parameters [3, 4]. Even with the ever growing number of models and datasets, no 

saturation in performance has been noted so far. Transformers [5, 6] have been used in 

various computer vision applications in the form of Vision Transformers (ViT’s) [7,8,5] e.g. 

in image segmentation [9,10], object recognition [11], object detection [12,13], image 

generation [14], video understanding [15,16], text-image synthesis [17], super-resolution 

[18], image based question answering [19,20], etc. [21,22,23,24] and promising results have 

been achieved. However various issues are faced like the need for large computation 

resources, lower performance and excessive training. As such in computer vision, 

convolution based architectures have dominance [25,26,27]. Pertinently, many works have 

tried to combine CNN models with self attention [28,12] out of which some have been able to 

replace convolution holistically [29,30]. The ViT’s although being efficient are not yet 

hardware-accelerator friendly for the reason that they use specialized attention functions. 

Although for large-scale computer vision tasks, traditional architectures like ResNet have 

been efficient [31,32,33], the state-of-the-art has improved using ViT’s [8]. 
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A recent success of ViT’s in improving the state-of-the-art is shown in [8], wherein they have 

been used directly for image recognition with minimal modification. The authors of [8] split 

an image into patches after which they provide a sequence of patch embeddings as input to 

their ViT. Here, the image patches are used in a manner similar to tokens in NLP training 

with supervision. After training on datasets like ImageNet modest performance is obtained 

which is a little lesser than that of ResNets with similar size. The issue has been overcome by 

training their ViT’s on larger datasets (14M-300M images) which leads to much better 

performance. In spite of this, works suggesting performance improvement using ViT’s are 

rare. Taking a hint from parallel processing which is found in Nature’s most efficient data-

processors, I seek to augment the performance of ViT’s by using them in parallel. In my 

work, I use multiple ViT’s in parallel each having a different patch size. Prediction 

probabilities of the respective ViT’s are averaged across the ensemble for final classification. 

To the best of my knowledge this is the first work to use such a parallel processing scheme in 

ViT based image recognition. Using an ensemble of ViT’s pre-trained on the ImageNet-21k, 

or the JFT-300M datasets, my approach advances the state-of-the-art on multiple image 

recognition benchmarks. Particularly, my best ensemble reaches the accuracy of 87.92% on 

ImageNet, 90.74% on ImageNet-ReaL, 99.54% on CIFAR-10, 94.58% on CIFAR-100, 

97.61% on Oxford-IIIT Pets, and 99.76% on Oxford Flowers-102 datasets achieving first 

rank on five out of these six datasets, and second rank on the remaining ImageNet dataset. 

The rest of the paper is structured as follows. In Section 2 I give the background of the work. 

This is followed by Section 3 which discusses work related to my paper. Section 4 discusses 

the proposed approach and Section 5 discusses the experiments and their results. I conclude 

in Section 6. 

Background 

In this section I discuss attention which is the background of the architecture of Transformers. 

A. Self attention 

For a vector, the self attention gives the estimate of the inter-relevance of the components of a 

vector, e.g. word relevance in a sentence. Global information combination is used. Self 

attention is a fundamental unit of transformers which are attention based models. Let X∈Rn×d 

be a vector of n elements (x1, x2, . . . xn) where d is the embedding dimension. Self attention 

captures the inter-dependency of the n elements in a global context using an encoder. For this 

I define three weight matrices viz.  

Query ( WQ ∈ Rn×dq ), Key ( WK ∈ Rn×dk ), and Value ( WV ∈ Rn×dv). 

Next, X is spread out over these matrices for obtaining Q = XWQ, K = XWK and V = XWV. 

The outcome of this process Z ∈ Rn×dv given by the self attention layer is: 

Z = softmax (
𝑸𝑲𝑻

√𝑑𝑞
) 𝑉     (1) 
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For every vector-component, self attention computes the dot product of the query and all the 

keys. This product is then normalized by using a softmax for inferring the attention scores. 

Each vector-component thus transforms into a weighted sum where the weights are the 

attention-map scores. 

B. Masked self attention 

Self attention attends to each vector-component. If the transformer [6] has to predict the next 

vector-component, the decoder self attention units are masked to prevent them from 

processing future components. This is done by multiplying the vector- components with a 

mask M ∈ Rn×n, M being the upper triangular matrix as: 

𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝐐𝐊𝐓

√𝑑𝑞
° 𝐌)     (2) 

Here °  is the Hadamard product. During vector-component prediction, the future  attention-

map scores are nulled by this technique. 

C. Multihead attention 

For the derivation of intricate dependencies between vector-components, a multihead attention 

technique is used which comprises of several self attention units or heads. The number of 

heads is denoted by h. In the original transformer model [11], eight attention heads were used 

i.e. h was 8. Every attention head has its weight matrices {WQi , WKi , WVi}, where i = 0, 1, 

2,…, (h - 1). For an input X, the outputs of h self attention units are combined into one 

multihead weight matrix [Z0, Z1, … , Zh-1] ∈ Rn×h×dv . These weights are then projected to a 

separate weight matrix W ∈ Rh.dv×v. 

The main difference between self attention and convolution is that in the former each weight 

is constantly computed, where as in the later fixed weights are used which are obtained by 

training. Also the self attention technique is both permutation invariant as well as input-size 

invariant, making it suitable for irregularity as compared to convolution. Figure 1 shows a 

multihead attention unit which is made up of several self attention units. 

 

Fig. 1: Illustration of the attention mechanism used in Transformers [5] 
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Related Work 

Transformers were introduced by [6] for machine translation tasks, and have since become 

state-of-the-art status for many NLP applications. Transformers are pre-trained on large 

datasets and finetuned for specific applications. This is done in BERT [2] which uses 

denoising based self-supervised pretraining. The GPT version of BERT uses language 

modelling pretraining [34,35,3]. A basic application of self attention for images requires that 

every pixel covers all other pixels. However due to the quadratic variation of computation 

cost with number of pixels, this scaling is not realistic. Hence an approximation is used. The 

work of [36] applies self attention locally for every pixel query instead of doing it globally. 

Local multihead attention techniques like these can completely replace convolution 

[37,29,30]. Sparse Transformers [38] use scaled approximation for global self attention. 

Attention can also be scaled by using different block sizes [39], or in the extreme only on 

individual axes [40,41]. Although several of these special attention-based models show good 

results for computer vision applications, however they require complicated engineering for 

efficient hardware acceleration. The ViT of [8] is adopted by me for my ensemble approach. I 

extract patches from an image and apply complete self attention to them. I improve the 

performance of the ViT by using it in an ensemble. 

There has been significant interest in combination of CNNs with self-attention. This process 

augments the feature-maps used in image classification [42]. The same can also be achieved 

by subsequently processing the CNN output by self attention, as has been done in 

applications like object detection [43,12], video processing [28,15], image classification [28], 

object discovery using unsupervised learning [44], or combined text & vision applications 

[45,46,47]. 

Image GPT (iGPT) [48] uses pixel-based Transformers having resolution as well as color-

space reduction. The architecture is trained in unsupervised mode followed by finetuning. It 

achieves a classification accuracy of 72% on ImageNet. The work of [8] takes this 

performance further to 88.55%. The authors of [8] achieve this feat by augmenting the ViT 

training data and achieve state-of-the-art results on various benchmarks. They focus on 

ImageNet-21k and JFT-300M datasets while using Transformers instead of ResNets. I also 

use the ViT’s of [8] and enhance the state-of-the-art on these datasets and others by using a 

unique parallel approach. To the best of my knowledge this is the first work in this regard. 

In the next section, I discuss the proposed approach. 

Proposed Approach 

The proposed approach is based on the concept of parallel processing. The parallel technique 

is efficient in processing volumes of data by distributing the decision making among an 

ensemble [49,50,51] of data-processors. Here I use this concept for Transformers. Multiple 

Transformers with different image patch sizes give their classification probabilities. The 

Transformers are trained on a large dataset and fine-tuned on smaller datasets as per [8]. 

Three patch sizes are used, viz. 16×16 (as in [8]), 14×14 and 18×18. Let E denote the number 
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of ViT’s used in parallel. A minimum of 2 and maximum of 3 ViT’s are used. Each has a 

different patch size. Next the same ViT’s are finetuned on the smaller datasets. The 

classification probability vectors for the E ViT’s, are given by {S1, S2, …, SE}, where Si ={Si1, 

Si2,…, SiK} with K being the number of classes. The classification probabilities are averaged 

over E to give final classification probability vector Sf , as given in Eqn. (3): 

𝑆𝑓 =
S1⊕S2⊕…⊕SE 

E
                  (3) 

where E = Number of Transformers used in parallel, and ⊕  denotes the element-wise 

addition operation. 

Finally the class c of the image is decided as per the maximum in S f  as given in Eqn. (4) as: 

c = argmax(S f )                                                                         (4) 

Figure 2 shows the overview of the proposed technique. 

ViT-L/P1

arg max

Predicted

Class

P1  P1 P2  P2 P3  P3

average

Image

ViT-L/P2 ViT-L/P3

 

Fig. 2: Illustration of the proposed approach using an ensemble of 3 ViT’s with patch sizes of 

(P1, P1), (P2 , P2) and (P3, P3) respectively. S denotes the classification probability vector. 
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The basic input to a Transformer is a token sequence. For handling 2D images, the image x ∈ 

RH×W×C is flattened into a sequence of 2D patches 𝑥𝑝  ∈  𝐑N∙(p2C) wherein (H, W) is the image 

resolution, C being the number of channels, (P, P) being the image patch resolution, and N = 

HW/P2 being the number of resulting patches. The Transformer uses a constant vector of size 

D in its layers to flatten the patches and map them to D dimensions for linear projection 

training (Eqn. (5)). 

𝐳𝟎 = [𝑥𝑐𝑙𝑎𝑠𝑠; 𝑥𝑝
1𝐄; 𝑥𝑝

2𝐄; … ; 𝑥𝑝
𝑁𝐄] + 𝐄𝐩𝐨𝐬             𝐄 ∈ 𝐑N∙(p2C), 𝐄𝐩𝐨𝐬 ∈ 𝐑(N+1)×D            (5) 

Table 1: Details of the ViT used as on lines of [8] 

Model Layers Hidden size D 
MLP 

size 
Heads Params 

ViT-Large 24 1024 4096 16 307M 

 

Like BERT’s [class] token, a learnable embedding is prepended to the embedded patches 

(𝐳0
0 = 𝑥𝑐𝑙𝑎𝑠𝑠) wherein the output state of the ViT encoder z0 is the representation of the image 

y (Eqn. (8)). 

The encoder of the Transformer [6] has alternate layers of multihead self atten tion (MSA), and 

multi layer perceptron (MLP) layers. The layernorm (LN) function is used before each block, 

and residual connections are used after each block (Eqns. (6),(7)). The MLP has 2 layers of the 

GELU non-linear function. 

𝐳𝑙
′ = 𝑀𝑆𝐴(𝐿𝑁(𝑧𝑙−1)) + 𝐳𝑙−1,                  l = 1…L  (6) 

𝐳𝑙 = 𝑀𝐿𝑃(𝐿𝑁(𝐳𝑙)) + 𝐳𝑙
′ ,                         l = 1…L     (7) 

𝑦 = 𝐿𝑁(𝐳𝐿
0)       (8) 

The ViT’s are pretrained on a large dataset and finetuned on smaller task-specific         datasets. 

Experimentation 

A. Datasets 

The proposed approach uses the ILSVRC-2021 ImageNet dataset having 1k classes and 1.3M 

images, the superset of the same viz. ImageNet-21k with 21k classes and 14M images [52], 

and JFT [53] with 18k classes and 303M images. This is done on lines of [8]. The models are 

trained, finetuned as well as evaluated on ReaL labels [54], CIFAR-10/100 [55], Oxford-IIIT 

Pets [56], and Oxford Flowers-102 [57] on the lines of [8]. 

B. Model details 
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The ViT configuration of [8] is used as per BERT [2]. The “Large” model is used as per [8]. 

Their notation is used for the models e.g. ViT-L/16 means that the “Large” ViT variant is 

used with 16×16 patch size. On similar lines ViT-L/(14,16,18) means an ensemble of 3 

“Large” variant ViT’s is used having 14 14, 16 16, and 18×18   patch sizes respectively. 

The details of the Transformers used are as per [8]. They follow the original Transformer [11] 

and are given in Table 1. I compare the performance of my approach with that given in [8]. 

Table 2: Training hyperparameters used as per [8].The models are trained with  batch-size 

= 4096 and a learning-rate warmup of 10k steps. 

Models Dataset Epochs Base LR LR decay 
Weight 

decay 
Dropout 

ViT-L/* JFT-300M 7 4·10-4 Linear 0.1 0.0 

ViT-L/* 
ImageNet-

21k 
30 10-3 Linear 0.03 0.1 

ViT-L/* ImageNet 300 3·10-3 Cosine 0.3 0.1 

Table 3: Hyperparameters used for fine-tuning the ViT’s as per [8]. All models have been 

finetuned using cosine learning rate (LR) decay, batch size = 512, no weight decay, and grad 

clipping with global norm = 1. 

Datasets Steps Base LR 

ImageNet 20000 {0.003, 0.01, 0.03, 0.06} 

CIFAR-10 10000 {0.001, 0.003, 0.01, 0.03} 

CIFAR-100 10000 {0.001, 0.003, 0.01, 0.03} 

Oxford-IIIT Pets 500 {0.001, 0.003, 0.01, 0.03} 

Oxford Flowers-102 500 {0.001, 0.003, 0.01, 0.03} 

C. Training and finetuning 

My ViT’s are trained as per [8]. I use Adam [58] with β1 = 0.9, β2 = 0.999, batch size = 4096, 

weight decay = 0.1. Finetuning is done using SGD with momentum, and batch-size = 512. 

Figure 3 shows the accuracy plots for finetuning of the models having different patch sizes on 
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CIFAR-100.The hyperparameters used for the training of the ViT’s are as per [8] and are 

given in Table 2. The hyperparameters used for finetuning the ViT’s are as per [8] and are 

given in Table 3. 

D. Results 

My ViT’s are trained on TPUv3 accelerators. One TPUv3-core-day (tTcd) corresponds to the 

number of TPUv3 cores (2 per chip) used during training multiplied by training duration 

expressed in days. It should be noted that for the same patch size, tTcd for the same models is 

almost similar, whereas it differs if the patch size is varied. For smaller patch size (14 × 14) 

i.e. more tokens, the tTcd is slightly larger whereas for larger patch size (18 × 18), tTcd is slightly 

lesser. 

 

Fig. 3: Classification accuracy for finetuning on CIFAR-100 dataset for ViT-L/14, ViT-L/16 

and ViT-L/18. The models are pre-trained on JFT 

The performance of different ensembles on CIFAR-10, CIFAR-100, and Oxford Flowers-102, 

using my finetuned ViT ensembles is shown in Table 4. The performance of the ViT-L/16 of 

[8] is also shown. It should be noted that the best performance is obtained for my ensemble 

approach using 3 ViT’s with respective patch  sizes of 14, 16 and 18. 
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Table 4: Comparison of performance of variants of my ensembles against ViT-L/16 of [8], 

for CIFAR-10, CIFAR-100 and Oxford Flowers-102 datasets. I use models pre-trained on 

JFT and finetuned on the datasets given in the table. Mean and std. deviation of accuracies 

are reported, after taking the average over 3 finetuning runs. 

Dataset 
ViT-L/16                         

[8] 

ViT-

L/(16,18)                             

Proposed 

ViT-

L(14,16)                            

Proposed 

ViT-

L(14,18)        

Proposed 

ViT-

L(14,16,18)                 

Proposed 

CIFAR-10 99.42±0.03 99.51±0.01 99.49±0.04 99.43±0.02 99.54±0.05 

CIFAR-100 93.90±0.05 94.41±0.05 94.32±0.06 94.23±0.04 94.58±0.03 

Oxford-IIIT 

Pets 
97.32±0.11 97.52±0.02 97.47±0.01 97.39±0.03 97.61±0.09 

 

The performance of my ViT’s is compared with that of all models mentioned in [8] in Table 

5. My JFT-300M pre-trained ViT-L/(14,16,18) ensemble which uses 3 variants of ViT-L 

having patch sizes of 14, 16, and 18 respectively, outperforms all other state-of-the-art 

models on ImageNet ReaL, CIFAR-10/100, Oxford-IIIT Pets and Oxford Flowers-102. For 

the remaining ImageNet dataset although my proposed approach achieves 2nd rank, I am sure 

I would have has a better score than ViT-H/14 of [8] had I experimented with a larger ViT 

ensemble or with a ViT-H/(14,16,18) ensemble. 

Table 5: Comparison with the state-of-the-art on notable image classification datasets. Mean 

and std. deviation of accuracies are reported, after taking the average over 3 finetuning runs. 

Dataset 

JFT                           

ViT-L/ 

(14,16,18)                    

Proposed 

JFT                                 

ViT-

H/14                             

[8] 

JFT                                 

ViT-L/16                             

[8] 

121k                                 

ViT-L/16                             

[8] 

BiT-L                     

ResNet15

2x4                   

[33] 

Noisy 

Student                      

EfficientN

et-L2                          

[32] 

ImageNet 87.92±0.02 
88.55±0.

04 

87.76±0.

03 

85.30±0.

02 

87.54±0.0

2 
88.5 

ImageNet ReaL 90.74±0.01 
90.72±0.

05 

90.54±0.

03 

88.62±0.

05 
90.54 90.55 
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CIFAR-10 99.54±0.05 
99.50±0.

06 

99.42±0.

03 

99.15±0.

03 

99.37±0.0

6 
- 

CIFAR-100 94.58±0.03 
94.55±0.

04 

93.90±0.

05 

93.25±0.

05 

93.51±0.0

8 
- 

Oxford-IIIT 

Pets 
97.61±0.09 

97.56±0.

03 

97.32±0.

11 

94.67±0.

15 

96.62±0.2

3 
- 

Oxford 

Flowers-102 
99.76±0.01 

99.68±0.

02 

99.74±0.

00 

99.61±0.

02 

99.63±0.0

3 
- 

 

Conclusion 

In this paper, the efficacy of using Vision Transformers (ViT’s) for image recognition tasks 

was demonstrated by using a novel parallel processing scheme. An overview of the attention 

mechanism used in Transformers was given. This was followed by a discussion of related 

works. Next, I introduced my approach wherein I proposed the use of multiple ViT’s in 

parallel with different patch sizes. In particular patch sizes of (14×14), (16×16), and (18×18) 

were used successfully. The next step in the proposed approach involved averaging the 

classification probability vectors of the ViT’s. I showed experimentally that using such a 

scheme led to state-of-the-art results on popular datasets. However, larger ViT architectures 

were not investigated which could reveal more information. Also, using more ViT’s (above 

3) with different patch sizes is a task I intend to take up in future work. One interesting 

research direction in this regard would be using a single ViT having internal parallel 

processing for multiple patch sizes. 
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