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Abstract 

This paper provides a detailed description of active noise control (ANC) 

algorithms using the frequency-domain filtered-x least mean-square 

(FDFxLMS). In the ANC system, the traditional FXLMS algorithm is 

offered inefficient performance where a large number of filter coefficients 

are used by the secondary path estimate and the adaptive controller. In this 

paper, a filtered complex least mean square (FBFXCLMS) dependent 

frequency domain block solution is proposed to reduce the ANC system's 

computational complexity for higher control filter order coefficients and 

enhance the convergence performance.It is implemented using an overlap-

save technique based on convolution and correlation operations, which 

offers substantial computational improvements for higher-order adaptive 

filters as compared to the time domain FxLMS algorithm.The complex 

adaptive filter algorithm is guided inversely proportional to that bin's 

signal power, individual step size for each frequency bin.Systematic 

computer simulations are conducted to demonstrate the precision relative 

to the time domain FXLMS algorithm for the proposed frequency-domain 

block FXCLMS algorithm.The proposed solution findings, in comparison 

to the time domain FxLMS algorithm, have provided fast convergence and 

stability. 

 

 

1. Introduction 

The acoustic noise problems are becoming more apparent in the current scenario as increased 

noise-related sound sources are generated from factories (fans, blowers, exhaust pipes, engines), 

household machinery, cars, and public spaces. Another similar form of noise is mechanical 

vibration, which is typically created issues in the fields of transport and production [4-5]. Most 

people prefer to live internationally with ease and composure, but with the advent of new 

technologies, acoustic pressures (sound) fill the atmosphere. Human life has been affected as a 

result, and it faces several health concerns.In the conventional approach to acoustic noise control, 

passive strategies like enclosures, obstacles, and silencers are used to reduce unwanted 
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noise.These passive silencers are valued for their high attenuation over a broad frequency range, 

but they are disproportionately massive, costly, and inadequate at low frequencies. 

ANC [1-3] is an electro-acoustic or electromechanical system that cancels the background noise 

produced from different noise fields. It is carried out based on destructive 

interaction(superposition) between two acoustic waves. The unwanted noise is based on the 

superposition principle; precisely, an anti-noise of equal amplitude and opposite phase is 

produced and coupled with the unwanted noise, resulting in both the noises being canceled as 

shown in Fig.1.The ANC system effectively attenuates the low-frequency noise where passive 

solutions are either ineffective or tend to be very expensive and bulky. The ANC has been an 

eminent research topic because it allows advances in noise reduction in various field applications 

and often with potential advantages in weight, volume, and expense.In general, the ANC 

implementation is graded into feedforward and feedback structures. The feedforward structure 

can be applied in the digital domain, and feedback can be constructed on both digital and analog 

strategies. 

 

Fig 1: Physical principle of ANC 

 

Lueg first introduced an acoustic ANC idea in 1936 [6], which involved using a microphone and 

an electronically controlled speaker system to produce a canceling noise. Since the time varies 

between the characteristics of the acoustic background noise and the environment, the frequency, 

amplitude, phase, and sound velocity of the unwanted noise are non-stationary.As a result, the 

ANC system must be adaptive to comply with these variations. The adaptive filters are updated 

their coefficients to reduce an error signal and be recognized as transversal, recursive, lattice, and 

transform domain filters [7-15]. 

The FxLMSalgorithm is frequently used in ANC systems to update the adaptive filter 

coefficients. In several ANC implementations, the adaptive filters seem to be several thousand, 

and then the FxLMS algorithm complexity gradually increased with the higher filter length. 

Therefore, the algorithm FxLMS has been implanted in other time-domain approaches, such as 

filtered-x affine projection (FxAP), which are also too complicated and unfeasible for real-time 

systems [16-18].The frequency-domain adaptive filter  (FDAF) [19-24] has been effectively used 

throughout the applications of echo cancellation [25-27], acoustic feedback cancellation [28], 
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and beamforming [29] due to its high convergence behavior and low complexity. 

Implementations of the ANC were extended to block LMS (BLMS), and the corresponding 

implementation of the frequency domain was provided. 

 

In this paper, we study and evaluate the efficacy of the functional feedforward ANC duct using 

FxLMS algorithm. An adaptive FBFxCLMS is proposed to address the FxLMS algorithm 

shortcomings in ANC system. In addition, several experiments were performed and the efficacy 

of ANC duct system is discussed using proposed and traditional algorithms. 

2. Description of ANC System 

The ANC is an electro-acoustic device that generates a control signal (anti-noise) to interact in a 

destructive way with the unwanted noise. The ANC system implementation is generally divided 

into feedback and feedforward systems to achieve efficient noise attenuation. In analog as well 

as digital domains, the feedback system can be modeled. Inside the ANC feedback, the residual 

error signal can synthesize the initial noise to boost periodic noise signals. However, the ANC 

feedforward systems placed the primary microphone upstream to detect the reference signal, and 

the error microphone is placed downstream to sense the residual signal. It can only be applied in 

the digital domain and is useful in reducing broadband noise. 

2.1 Realization of Feedforward ANC using FxLMS algorithm 

The ANC implantation is mostly preferred to a famous traditional control algorithm, FxLMS, for 

noise reduction due to its simplicity. The adaptive filters dependent on the Least Mean Square 

(LMS) are typically used for system identification and acoustic echo cancellation applications. 

The feedforward ANC system with adaptive algorithms of LMS and FxLMS are shown in Fig 2 

and Fig 3. In that, the reference, control, and error signals are denoted as (n)x , y(n)  and e(n)  

respectively. The primary path (z)p is determined between the reference and error sensor signal; 

the adaptive filter (z)w is evaluated in the form of online operation in the tuning (z)p . The 

adaptive filter (z)w  response correlated with the unknown system output, i.e., desired response 

to produce a residual error signal e(n) . The error e(n)  is used while the adaptive filter is revised 

using the standard LMS algorithm. Whereas the ANC in noise reduction, the adaptive filter 

response y(n) is passed through an electro-acoustic path., termed a secondary path (z)s  (between 

the adaptive filter output to the error sensor). This electro-acoustic path propagation introduces a 

non-negligible phase delay and frequency distortions. Since the ANC becomes unstable and 

offers a prolonged convergence performance. The secondary path model was, therefore, initially 

assessed before the ANC operation was carried out. Compared with the primary path response 

referred to as the desired nose, the secondary path output generates an error e(n) . Using an 
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offline or online modeling technique to estimate the secondary path ˆ(z)s . The obtained error 

e(n)  and the filtered reference signal (reference signal passed through them ˆ(z)s  ) are used to 

tune the online adaptive filter coefficients. In order to update the filter coefficients of the 

adaptive algorithm, the (n)x signal is filtered through an estimated ŝ(z) , hence called the Filtered 

x LMS algorithm. It is an effective method compared to other solutions, and designs the filters 

(z)w  and (z)s  uses an FIR filter to make the system more stable. In the ANC system, the 

efficiency of the FxLMS depends on an accurate estimation of the secondary path, which can be 

obtained by an online or offline modeling process.  

ANC
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Fig 2.  Feedforward ANC system 
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Fig 3Feedforward ANC single-channel system with FxLMS 
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From Fig 3, we define the mathematical computations of the FxLMS-based ANC system. 

The residual signal (n)e is defined as 

(n) d(n) y(n)e   ,       (1) 

d(n) p (n) x(n)T ,       (2) 

y (n) (n) y(n)Ts  ,       (3) 

y(n) (n) x(n)Tw ,       (4)  

where p(n) and s(n) are the impulse response of p(z) and s(z)  respectively at time n 

, and h(n) is the impulse response of H(z)  at time n. 

The aim of the control filter is to minimize the instantaneous square error in the ANC system. 

2(n) e (n)  .        (5)  

The filter weights are updated usingstochastic gradient Eq (6) 

ˆw(n 1) (n) (n)
2

w


   
,
      (6) 

where ˆ(n) is the estimated MSE gradient instantaneous square at time n, expressed as      

ˆ(n) 2 (n)e(n)x    ,       (7) 

ˆx (n) (n) x(n)s          (8) 

From Eqs (6) & (7), the weight updating FxLMS algorithm expressed as 

w(n 1) (n) (n) x (n)w e    .      (9) 

From the error signal, the optimal weights of the control filter are expressed in z domain as 

0e  

(z) (z) (z)E D Y   ,       (10) 
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(z) (z) X(z) (z) X(Z)S(z)
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(z)

(z)
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E P H

P
H

S

 



,

     (11) 

The secondary path estimation filter order is very high in a realistic situation and increases with 

an increase in sampling frequency. The increased sampling frequency is necessary to control 

components of higher frequency noise. 

The traditional FXLMS algorithm has become high computational complexity when a large 

number of filter coefficients are utilized in the secondary path estimation and the adaptive 

controller. In the past, numerous studies have been conducted to minimize such large 

measurements. The fast implementation of active noise control in the time domain is documented 

to achieve around 25percent in terms of computing savings compared to traditional algorithms. 

3. Implementation of ANC using the proposed FDBFxCLMS algorithm 

The ANC implementation using the FxLMS algorithm has suffered from reasonably slow 

convergence performance issues with the extensive range of eigenvalues of the autocorrelation 

matrix from the reference signal. To minimize such restriction, suggested an adaptive frequency-

domain method [2] [16-18]. It was noted from section 2.1 that the ANC with FxLMS algorithm 

comprises three major operations: (a) The linear convolution of the reference signal vector (n)x  

and control filter coefficients (n)w ; (b) The reference signal (n)x  is convolved with linear 

filtering of estimated secondary path impulse response coefficients ˆ(n)s ; (c) The control filter 

weights are updated by palcing a cross correlation between error signal e(n) and filtered 

reference signal (n)sx . In summary, the process of the ANC system has involved two 

convolution and one cross-correlation operations. The suggested FDBFxLMS algorithm includes 

convolution and correlation operations based on the N-point Fast Fourier Transform (FFT) using 

the adaptive filter length. The signals (n)x & e(n) are transformed into a frequency domain using 

an N-point FFT and then processed with an adaptive algorithm. It improves the convergence 

performance based on applying a unique step size for each frequency bin, which is an inverse 

ratio to that bin's signal power. It has offered some advantages compared to time-domain 

adaptive filters in terms of: reducing the computational complexity using FFT; estimating the 

gradient more accurately (based on the mean of whole block data); applying normalized step size 

for each bin for obtaining rapid convergence. 
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Fig 4: Implementation of ANC using Frequency domain approach 

The implementation of the ANC system with frequency domain FxLMS algorithm is depicted in 

Fig 4. In that, using FFT, the reference signal (n)x  is transformed into a frequency domain (n)X  

with an L data buffer length, which is processed in an adaptive filter that produces a signal Y( ) . 

The vector Y(n)  is again switching from FFT to IFFT to generate a time-domain y(n) control 

signal. We measure the (n)e  signal between the time domain signals of the desired and the 

control. Then the measured signal e(n)  and the filtered reference signal (n)x  are transformed 

into the frequency domain using an N-point FFT as in the form of E(n) and X (n) . The control 

filter weights are updated using FxCNLMS with power estimation of the filtered signal. From 

Fig 5, the mathematical computations can be expressed as,  

Initially, the reference and error signal can be stored as M- point data buffer and transformed into 

the frequency domain with an N-point FFT expressed as 

(n) [x(n) x(n 1).....x(n 1)]Tx M    ,     (16) 

0 1 1(n) FFT[x(n)] [X (n) (n)........X (n)]TMX X  
,
   (17)  
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e(n) [e(n) (n 1).....e(n 1)]Te M    ,     (18) 

0 1 1E(n) FFT[e(n)] [E (n) (n)........E (n)]TME  
.
   (19) 

The frequency and time domain of the control signal is expressed as                 

(n) (n) X (n), m 0,1,......M 1m m mY H       (20)

(n) [Y(n)] [y(n ) y(n 1) ...... y(n M 1)]y IFFT     .   (21)  

The error signal (n)e  is 

(n) d(n) y (n)e   ,       (22)  

(n) s(n)* y(n)y  .       (23) 

where the symbol * represents linear convolution. 

The frequency-domain representation of the (n)sx signal is expressed by 

0 1 1

(n) [x (n) x (n 1).....x (n 1)]

(n) [X (n) X (n) ......X (n)] (x (n))

T

s

T

s M

x M

X FFT

      

      .

   (24) 

The weight update of the FDBFxCLMS algorithm is evaluated by 

(n ) (n) (n)E (n)conj(X (n)) m 0,1,......M 1m m m m mw M w         (25) 

where (n)m is normalized step size at frequency bin m, defined as 

(n)
ˆ (n)

m

mp


  ,       (26)

2ˆ ˆ(n M) (1 )abs(X (n)) * (n)m m mp gama gama p   
,
    (27)  

where ˆ (n)mp is the power estimation updated for each block of M samples. 

4. Results and Discussions 

4.1 Computer Simulations: 

The performance of the ANC with can be evaluated with conventional FxLMS algorithm,and the 

suggested FDBFxCLMS algorithm has been analyzed under various noise environments in order 
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to measure the error and to know the noise reduction performance. Here, the transfer function of 

the primary and secondary paths can be modelled as an FIR filter with a length of 128 based on 

the offline system identification procedure. The coefficients of the adaptive filter (n)w  can be 

estimated from (z)p during the system's online operation. Here, we performed some simulation 

experiments using Random noise, Impulse noise and Fan noise to measure the error and Noise 

reduction.    

The metric Noise Reduction (NR) performance can be evaluated as 

NR(n) dB

 
 

2

2

(n)
10 log10

(n)

e

d

  
   

  




.

     (28)  

Case 1: The unwanted signal is a 0.2 variance of random noise; the length of the filter is 

128  

A zero-mean and 0.2 variance of the white noise is used as the noise source in this case. The 

suggested FDBFxCLMS and traditional FxLMS algorithms have been used, and the performance 

findings of the control signal are seen in Figs 5 & 6. Compared with the traditional FxLMS 

algorithm, the proposed FDBFxCLMS algorithm has achieved the least error signal magnitude. 

In addition, over an average of more than 200 independent runs, the convergence curve 

performance of the mean square error (MSE) for ANC was determined, and the associated 

learning curve is shown in Fig 7. The suggested FDBFxCLMSalgorithm has achieved faster 

convergence and less MSE (-42.89dB) than the traditional FxLMS. 

 

Fig 5: Error Performance of ANC with FxLMSfor random noise 
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Fig 6: Error Performance of ANC with FDBFxCLMS algorithm for random noise 

 

Fig 7: Learning Curve analysis of ANC using different appraoches 
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Case 2: The unwanted signal is impulse noise, and the control filter length is 128. 

The impulse noise α=1.5 is used as the basis of the noise source used in this case. The control 

signal performance of the proposed FDBFxCLMS and standard FxLMS algorithms are shown in 

Figs 8and 9. The recommended FDBFxCLMS algorithm has attained minimal error signal 

strength compared to the traditional FxLMS algorithm. The convergence curve analysis of the 

mean square error (MSE) for ANC was defined over an average of more than 200 independent 

runs, and the related learning curve is illustrated in Fig 10.  In that, the proposed 

FDBFxCLMSalgorithm indeed achieved faster convergence and lowered MSE (-22.32dB) than 

the standard FxLMS. 

 

Fig 8: Control Performance of ANC using conventional FxLMS algorithm 

 

Fig 9: Control Performance of ANC using the proposed FDBFxCLMS algorithm 
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Fig 10: Comparisons of Leatning Curve performance of the ANC system 

Case 3: The recorded fan noise and order of the control filter is 128. 

In this case,the efficacy of the control ANC performance with the algorithms of conventional and 

the proposed FDBFxCLMSfor the recorded fan noise – the findings are plotted in Figs 11 & 12. 

In that the compared to time-domain FxLMS, the FDBFxCLMS algorithm has secured minimum 

residual signal. In an average of more than 200 independent runs, the MSE of the ANC was 

evaluated, and the corresponding learning curve is shown in Fig 13. In particular, thealgorithm 

FDBFxCLMS has achieved faster convergence and low MSE (-34.86dB) compared to the time 

domain FxLMS. 

 

Fig 11: ANC control performance with FxLMS  for Fan noise 
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Fig 12: ANC control performance with FDBFxCLMS algorithm for Fan noise 

 

Fig 13. Learning Curve performance ANC with different approaches 
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For different step size parameter values, the MSE was evaluated for the proposed FDBFxCLMS 

over a number of iteration changes and also illustrated in Fig 14 for a case 1 noise. It is observed 

that the step sizes 0.005 to 0.009 the peroformance ANC has shown good convergence 

perfroamnce and achieved stable ANC. Fig 14 shows that with the increases in the step size 

below 0.009 and above (more than 0.001), the ANC has attained poor convergence performance 

and high MSE values.   

 

Fig 14 Mean Square Error performance of ANC for different step size values  

Conclusions 

In this paper, A Frequency Domain Block Filtered Complex algorithm (FDBFxCLMS) was 

proposed in the ANC system. The typical time-domain FXLMS takes immense computational 

complexity with a large number of filter coefficients used in adaptive control filters and 

secondary path estimation.The feedforward ANC performance was tested with conventional 

time-domain FxLMS and the proposed FDBFxCLMS algorithms, and the results are 

demonstrated with computer simulation. The simulation findings showed that the FDBFxCLMS 
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had better convergence speed, minimal MSE, good noise reduction effectiveness, and consistent 

performance compared to the conventional time-domain FxLMS algorithm. The frequency-

domain approached algorithm has reduced ANC system computational cost, especially for the 

large filter length coefficients. 
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