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Abstract 

This paper deals the analysis of semilocal and order of convergence on Riemannian 

Manifolds for Secant Method. Furthermore, it has divided difference geodesic points on 

euclidean spaces. Also, we have used the fact that ω is monotonic in its two arguments 

under invertible.This paper deals the analysis of semilocal and order of convergence on 

Riemannian Manifolds for Secant Method. Furthermore, it has divided difference 

geodesic points on euclidean spaces. Also, we have used the fact that ω is monotonic in 

its two arguments under invertible. 
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Introduction 

Let RM be a Riemannian manifold and λ a graphical line in RM and [s, s + h]    dom(λ),X     (RM) is belongs to the 
field RM. A vector space has defined as follows in the following linear combination: 

V : Lλ(s+h)RM → Lλ(s+h)RM 

is the Newton difference of operator of initial variable X on λ(s), λ(s + h) in λ′(s) it contains 

V(Fλs,s h(λ
′(s))) = 

1 
(X(λ(s + h)) − Fλ,s,s h(X(λ(s)))). (1) 

+ 
h 

+ 

Let f , g ∈ M, [ f , g; X] be a divided difference (1) with λ a neighboring values λ(s) = f and λ(s+h) = g, [s, s+h] ⊂ 

dom(λ). let RM be and Eulerian with neighboring values x, y ∈ RM is defined by 

λ(s) − x − s(y − x) = 0, s ∈ R. 

Then (1), let s = V and h = 1, we have 

[x, y; X](y − x) = V(y − x) = X(y) − X(x), 

Therefore, the solutions is (1) for F = X. Hence, (1). 

Let λ : R → RM be a graphical fit, the line parallel in λ, given by Fλ, .,. and calculated by 

Fλ,a,b : Lλ(a)RM → Lλ(b)RM 

v ›→ V(λ(b)), 

which belongs to a, binR; here V is a variable under both magnitude and direction in λ with λ′(t)V = 0 and V(λ(a)) = 
v. 

Let Fλ,a,b is 1-1, with Fλ,a,b be straight lines at slope Lλ(a)RM and Lλ(b)RM. Its reciprocal has λ in V(λ(b)) to 

V(λ(a)). Let Fλ,a,b be identical lies Lλ(a)RM and Lλ(b)RM for any a, b, d ∈ R the following conditions: 

Fλ,b,d ◦ Fλ,a,b = Fλ,a,d , F
−1

 = Fλ,a,b, and Fλ,a,b(λ
′(a)) = λ′(b). 
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◦ 

0, 1 ∥λ0 ∥ 

 
 

Let us consider the equation 

Preliminaries 

 
vn = −[ fn−1, fn, X]−1(X( fn)) 

 

 

 

(2) 

 
for each n = 1, 2 . . . , with f0 and f1 given. 

 fn+1 = exp fn 
(vn), 

Let us assume that ω : R+ × R+ → R+ be angles. Here RM is vector identity and Ω ⊂ RM is interval at open. The 
variable X ∈ X(RM) true ω-properties in Ω, 

∥[ f1, f2, X] ◦ ( fλ,0,1) − ( fλ,0,1) ◦ [g1, g2, X]∥ ≤ ω(d( f1, f1), d( f2, f2)) (3) 

for all f1, f2, g1, g2 ∈ Ω, here λ is a neighboring values λ(0) = g2 and λ(1) = f2. 

Let Ω be Riemannian manifold on an open connected of RM and f0, f−1 ∈ Ω, we have 

a(u) = 
   βω(α, u) 

, b(u) =
 βω(u, 2u) 

, c(u) =  
    βω(2u, 2u) 

,
 

 
where 

1 − βω(α, u) 1 − βω(α + u, u) 1 − βω(α + u, u) 

 
Lemma 1. Prove that 

 
where a = a(R) and b = b(R). 

α = d( f0, f−1)  and  β = ∥[ f−1, f0, X]−1∥. (4) 

d( f3, f0) ≤ (ba + a + 1)η < R, 

Proof. We first prove that f1 ∈ B( f0, R). In fact, by (2) one has 

v0 = −[ f−1, f0, X]−1(X( f0)) 

f1 = exp f0 
(v0), 

hence, λ0(t) = exp f0 
(tv0), 

 

 

d( f  f ) 

∫ 1 
′ (t) dt 

 

 

 

From hypothesis (ii), thus, we have 

Conversely, the ω-properties (3) satisfies 

= ∥v0∥ 

= ∥[ f −1, f0, X]−1(X( f0))∥. 

d( f0, f1) ≤ η < R. (5) 

∥Fλ0 ,0,1 ◦ [ f−1, f0, X] − [ f0, f1, X] ◦ Fλ0 ,0,1∥ ≤ ω(d(p0, f−1), d( f1, f0)) ≤ ω(α, R), (6) 

from (4), d( f0, f1) < R, and the fact that ω is non-decreasing in its two arguments. Since the parallel transport is an 
isometry, it follows by hypothesis (ii) that 

1 
∥Fλ0 ,0,1 ◦ [ f−1, f0, X] − [ f0, f1, X] ◦ Fλ0 ,0,1∥ < 

β 
= 
∥(F

 

 

 
λ0,0,1 

1 

◦ [ f−1 

 
. 

, f0, X])−1∥ 

Thus, a classical result of linear operator theory, see Theorem 2.3.5 in [38], shows that [ f0, f1, X] Fλ0 ,0,1 is 
invertible and moreover, 

∥[ f f X]−1∥ ≤ 
∥[ f−1, f0, X]−1∥ 

  
 
    

0, 1, 
1 − ∥[ f , f , X]−1∥∥F ◦ [ f 

. , f , X] − [ f , f , X] ◦ F ∥ 

1 0 0 0 

0 
= 

−1 λ0,0,1 −1 λ0,0,1 
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∥ ∥0 

1 

≤ 

∥ ∥1 

2 

We conclude from (4) and (6) that 

 

 

and (6) we get, 

 
[ f , f , X]−1 = 

β
 

1 − βω(α, R) 

 
 
. (7) 

∥X( f1)∥ = ∥([ f0, f1, X] ◦ Fλ0 ,0,1 − Fλ0 ,0,1 ◦ [ f−1, f0, X])(v0)∥ 

≤ ∥([ f0, f1, X] ◦ Fλ0 ,0,1 − Fλ0 ,0,1 ◦ [ f−1, f0, X])∥∥v0∥ 

≤ ω(α, R)∥v0∥ 

s 

The following procedure shows at d( f1, f2) ad( f0, f1) and d( f0, f2) < R. To prove the first inequality, we use (2) 
to obtain 

 

 

 
which gives, by (7) and (8), 

 

 

 

 

 

 

 
By definition of a it follows that 

which gives us that 

v1 = −[ f0, f1, X]−1(X( f1)) 

f2 = exp f1 
(v1), 

 
d( f2, f1) = ∥v1∥ 

≤ ∥[ f0, f1, X]−1∥∥X( f1)∥ 

≤ ∥[ f0, f1, X]−1∥∥X( f1)∥ 

βω(α, R) 
≤ 

1 − βω(α, R) 
d( f1, f0).

 

d( f2, f1) ≤ ad( f1, f0), (9) 

 
d( f2, f0) = d( f2, f1) + d( f1, f0) 

≤ (a + 1)d( f1, f0) 

< (a + 1)η. (10) 

By definition of R, we obtain the second inequality. Thus 

F2 ∈ B( f0, R). (11) 

Now, we consider a sequence of geodesics (ϕn) satisfying ϕn(0) = f0, ϕn(1) = fn, and ϕ1 = λ0. We conclude from (3), 
(4), (11), and d( f0, f1) < R that 

∥[ f1, f2, X] ◦ Fϕ2 ,0,1 − Fϕ2 ,0,1 ◦ [ f−1, f0, X]∥ ≤ ω(d( f1, f−1), d( f2, f0)) 

≤ (d( f0, f1) + d( f0, f−1), d( f2, f0)) 

≤ ω(R + α, R), 

hence that  
1 

∥[ f1, f2, X] ◦ Fϕ2 ,0,1 − Fϕ2 ,0,1 ◦ [ f−1, f0, X]∥ ≤ 
β 

, 

by hypothesis (ii). Proceeding as in the proof of (7) one obtains that the operator [ f1, f2, X] is invertible and 

[ f , f , X]−1 = 
β
 

1 − βω(R + α, R) 

 
. (12) 
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  ! 

We claim that d( f3, f2) ≤ bd( f2, f1). 

X( f2) = ([ f1, f2, X] ◦ Fλ1 ,0,1 − Fλ1 ,0,1 ◦ [ f0, f1, X])(v1), 

from which we infer, by using (3) and d( f2, f1) = ∥v1∥, that 

∥X( f2)∥ ≤ ∥([ f1,  f2, X] ◦ Fλ1 ,0,1 − Fλ1 ,0,1 ◦ [ f0, f1, X])∥∥(v1)∥ 

≤ ω(d( f1, p0), d( f2, p1))d( f2, f1) 

≤ ω(d( f1, f0), d( f2, f0) + d( f1, f0))d( f2, f1). 

Therefore, according to what we have proved above, 

∥X( f2)∥ ≤ ω(R, R + R)d( f2, f1) ≤ ω(R, 2R)d( f2, f1). (13) 

Here we have used the fact that ω is non-decreasing in its two arguments. 

On the other hand, by (2), 

 

 

 
We conclude from (12) and (13) that 

 

 

 

 

 

hence that, 

v2 = −[ f1, f2, X]−1(X( f2)) 

f3 = exp f2 
(v2). 

 
d( f3, f2) = ∥v2∥ 

≤ ∥[ f1, f2, X]−1∥∥X( f2)∥ 

βω(R, 2R) 
≤ 

1 − βω(R + α, R) 
d( f2, f1),

 

d( f3, f2) = bd( f2, f1). (14) 

Finally, by (5), (9), (10), and (14), we deduce that 

d( f3, f0) ≤ d( f3, p2) + d( f2, f0) 

≤ b d( f2, f1) + (a + 1)d( f1, f0) 

≤ ab d( f1, f0) + (a + 1)d( f1, f0) 

≤ (ba + a + 1)η, 

whence, in virtue of the equality 

 

we see that 

since 0 < c < 1. 

Lemma 2. Prove that 

(1) d( fn, f0) < N1; 

(2)    The function [ fn−1, fn, X] is inverses 

 
R =   

  ba 
+ a + 1 η, 

1 − c 

d( f3, f0) = (ba + a + 1)η < R, 
 

∥[ fn 1, fn, X]−1∥ ≤ 
β
 

 

– 
1 − ω(d( fn−1, f−1), d( fn, f0)) 

β 
≤ 

1 − βω(R + α, R)
; (15)
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− 

(3)  ∥X( fn)∥ ≤ ω(2N1, 2N1)d( fn, fn−1); 

(4)   d( fn+1, fn) ≤ cd( fn, fn−1), 

for all n ≥ 3. 

Proof. The verification of the conditions 1–4 of Lemma 2 follows by induction on n. For the case n = 3, the 
condition d( fn, f0) < R is obvious from Lemma 1. To prove 2 when n = 3, we consider a geodesic ϕ3 satisfying 
ϕ3(0) = f0 and ϕ3(1) = f3. Then, from (3) we have 

∥[ f2, f3, X] ◦ Fϕ3 ,0,1 − Fϕ3 ,0,1 ◦ [ f−1, f0, X]∥ ≤ ω(d( f2, f−1), d( f3, f0)) 

≤ ω(d( f2, f0) + d( f0, f −1), d( f3, f0)) 

and so, by (4), (11), and Lemma 1, it may be concluded that 

∥[ f2, f3, X] ◦ Fϕ3 ,0,1  − Fϕ3 ,0,1  ◦ [ f−1, f0, X]∥ ≤ ω(α + R, R). 

Proceeding as in the proof of (7) one obtains that [ f2, f3, X] is invertible and 

β 
∥[ f2, f3, X] − 1∥ ≤ 

1 − ω(d( f2, f 1), d( f3, f0)) 
(16)

 

 

 
which is (15) for n = 3, and (3), it follows that 

β 
≤ 

1 − βω(R + α, R)
, (17)

 

 

 

 

 
 

and consequently 

∥X( f3)∥ ≤ ∥[ f2, f3, X] ◦ Fλ3 ,0,1 − Fλ3 ,0,1 ◦ [ f1, f2, X]∥∥v2∥ 

≤ ω(d( f2, f1), d( f3, f2))d( f3, f2) 

≤ ω(d( f2, f0) + d( f1, f0), d( f3, f0) + d( f2, f0))d( f3, f2), 

 
∥X( f3)∥ ≤ ω(2R, 2R)d( f3, f2). 

Hence, (2), and (16), we obtain 

 

 

 

 

 
 

which, by definition of c, yields 

 
d( f4, f3) = ∥v3∥ 

≤ ∥[ f2, f3, X]−1∥∥X( f3)∥ 

βω(2R, 2R) 
≤ 

1 − βω(R + α, R) 
d( f3, f2),

 

d( f4, f3) = c d( f3, f2). 

This completes the proof for n = 3; if new case n > 3, Lemma 2 satisfies in k = 3, . . . , n, we have 

(1)   d( fk, f0) < R; 

(2)   The given function [ fk−1, fk, X] is reciprocal to each other 

∥[ fk 1, fk, X]−1 ≤ 
β
 

− 

 

 
(3)  ∥X( fk)∥ ≤ ω(2R, 2R)d( fk, fk−1); 

(4)   d( fk+1, fk) = c d( fk, fk−1), 

1 − ω(d( fk−1, f−1), d( fk, f0))  
β 

≤ 
1 − βω(R + α, R)

;
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  ! 

in k ∈ {3ton}, the procedure for Mathematical Induction k = n + 1, thus obtain, 

d( fk+1, fk) ≤ ck−2d( f3, f2), 

with,  
d( fn+1, f0) ≤ d( fn+1, fn) + · · · + d( f3, f2) + d( f2, f0) 

≤ 
1 − cn−1 

d( f   f ) 
 

 

 d( f f ) 

1 − c 
3,  2  + 2,  0 . 

 
 d( f 1 cn−1 , f ) ≤ ab 

 
 

 (a 1) 
n+1  0 

1 − c 
η + + η 

<   
  ab 

+ a + 1 η 

1 − c 

= R. (18) 

The point lies between ϕn+1 with ϕn+1(0) = f0 to ϕn+1(1) = fn+1. Thus, the ω-property, (18), from Mathematical 
Induction, if prove that 

∥[ fn, fn+1, X] ◦ Fϕn+1 ,0,1 − Fϕn+1 ,0,1 ◦ [ f−1, f0, X]∥ ≤ ω(d( fn, f−1), d( fn+1, f0)) 

≤ (d( fn, f0) + d( f0, f−1), d( fn+1, f0)) 

≤ ω(α + R, R). 

The reference as (7), it defined [ fn, fn+1, X] is each other to inverses 

∥[ fn, fn 1, X]−1∥ ≤ 
β
 

 

1 − ω(d( fn, f−1), d( fn+1, f0)) 

β 
≤ 

1 − βω(R + α, R)
.
 

 

∥X( fn+1)∥ ≤ ∥[ fn, fn+1, X] ◦ Fλn ,0,1 − Fλn ,0,1 ◦ [ fn−1, fn, X]∥∥vn∥, 

∥X( fn+1)∥ ≤ ω(2R, 2R)d( fn+1, fn). 

vk = −[ fk−1, fk, X]−1(X( fk))    and    d( fk+1, fk) = ∥v∥, k = 0, 1, . . . , 

 

 

 

 

 

 
 

Hence the proof is complete. 

d( fn+2, fn+1) = ∥[ fn, fn+1, X]−1∥∥X( fn+1)∥ 

βω(2R, 2R) 
≤ 

1 − βω(R + α, R) 
d( fn+1, pn)

 

≤ c d( fn+1, fn), 
 

Applications. Prove that the convergence at (pn) is a Cauchy sequence, 

d( fk+1, fk) ≤ ckd( f1, f0), k = 0, 1 . . . , 

+ 
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∗ 

hence, if m < n,  
d( fn, fm) ≤ d( fn, fn−1) + d( fn−1, fn−2) + · · · + d( fm+1, fm) 

≤ (cn−1 + cn−2 + · · · + cm)d( f1, f0). 

Since c < 1, we deduce that ( fn) be a series solution of B[ f0, R], hence it is in f∗ ∈ B[ f0, R] such that ( fn) converges to 
f∗. 

Now we show that f is a root of X. This follows directly by taking limits of both sides of the inequality 

∥X( fn)∥ ≤ ω(2R, 2R)d( fn, fn−1), 

which is part of the conclusion of Lemma 2. To finish the proof, we prove that f∗ is the unique root of X in B[ f0, R]. 
If there existed a g∗ ∈ B[ f0, R] such that X(g∗) = 0, we would have 

∥[g∗, f∗, X] ◦ Fϕ,0,1 − Fϕ,0,1 ◦ [ f−1, f0, X]∥ ≤ ω(d(g∗, g−1), d( f∗, f0)) 

≤ ω(d(g∗, f0) + d( f0, f−1), d( f∗, f0)) 

≤ ω(α + R, R), 

here ϕ is neighboring values ϕ(0) = f0 to ϕ(1) = f∗. It obtains that [g∗, f∗, X] is inverse. The α is a α(0) = g∗ with 

α(1) = f∗. Then by (1), 

[α(0), α(1), X] ◦ Fα,0,1(α
′(0)) = X(α(1)) − Fα,0,1(X(α(0))) = 0 

[g∗, f∗, X] ◦ Fα,0,1(α
′(0)) = 0. 

Since [ f∗, g∗, X] and Fα,0,1 is inverse to each other, we obtain α′(0) = 0. Hence f∗ = g∗, and the proof is over. 
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