Coefficient Characterization for Some Subclasses of Generalized Rational Univalent Functions

S. Lalitha ${ }^{1}$, V. Srinivas ${ }^{2}$
${ }^{1}$ Department of Mathematics, Geethanjali College of Engineering and Technology, Hyderabad, email: sagi.lalitha@gmail.com
${ }^{2}$ Department of Mathematics, Dr. B.R. Ambedkar Open University, Hyderabad, email: prof.vsvas@gmail.com

Article Info

Page Number: 1995-2005
Publication Issue:
Vol. 71 No. 4 (2022)

Article History

Article Received: $\mathbf{2 5}$ March 2022
Revised: 30 April 2022
Accepted: 15 June 2022
Publication: 19 August 2022

Abstract

This research work consists of two sections. Each section introduces a subclass of generalized rational functions and study of geometric properties like coefficient characterization, growth and distortion properties. First section introduces a starlike subclass $S_{+}^{*}\left(b_{1}, \alpha\right)$ of S_{+}. Second section introduces a convex subclass $C_{+}\left(b_{1}, \alpha\right)$ of S_{+}. Key words: rational univalent, starlike, convex, coefficient characterization.

1. Introduction

A normalized function $f(z)$ analytic in the open unit disk around the origin and non-vanishing outside the origin of the form $f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}$ can be expressed in the form $\frac{z}{g(z)}$, where $g(z)$ has Taylor coefficients b_{n} 's in U. Mitrinovic [2] obtained sufficient conditions for functions of the form $\frac{z}{1+b_{1} z+\cdots+b_{n} z^{n}}, \quad b_{n} \neq 0$ to be univalent in U.

Theorem[2]

The function $f(z)=\frac{z}{1+\sum_{n=1}^{\infty} b_{n} z^{n}}$ is in S if $\sum_{n=2}^{\infty}(n-1)\left|b_{n}\right| \leq 1$ and $\sum_{n=1}^{\infty}\left|b_{n}\right| \leq 1$.
Reade et al.,[7] introduced different subclasses of univalent rational functions and obtained sufficient conditions for $f(z) \in S$ to be in those subclasses.

Obradovi'c. [5] studied on starlikeness of certain class of rational functions.
Ahuja and Pawan [1] studied properties of spiral-likeness of rational functions.
Obradovi'c and Ponnusamy [3] introduced a subclass of rational univalent functions S_{+}as the subclass of functions of S which can be expressed in the form

$$
\begin{equation*}
\frac{z}{f(z)}=b_{1} z+\sum_{n=1}^{\infty} \lambda_{n} \frac{z}{f_{n}(z)} \tag{1}
\end{equation*}
$$

for some sequence $\left\{\lambda_{n}\right\}_{n=1}^{\infty}$ of non-negative real numbers with $\sum_{n=1}^{\infty} \lambda_{n}=1$ and derived necessary and sufficient condition for functions of S to be in S_{+}.

Theorem [3] Let $f \in A$. Then $f \in S_{+}$if and only if f has the form
$\frac{z}{f(z)}=b_{1} z+\sum_{n=1}^{\infty} \lambda_{n} \frac{z}{f_{n}(z)}$
for some sequence $\left\{\lambda_{n}\right\}_{n=1}^{\infty}$ of non-negative real numbers with $\sum_{n=1}^{\infty} \lambda_{n}=1$ and
$\frac{z}{f_{n}(z)}=\left\{\begin{array}{cl}1, & \text { for } n=1 \\ 1+\frac{1}{n-1} z^{n}, & \text { for } n=2,3, \ldots\end{array}\right.$
Now, this paper introduces different subclasses of S_{+}by fixing b_{1} and obtain coefficient characterization for these subclasses similar to that of [3] for S_{+}.

2. Starlike Subclass of Generalized Rational Univalent Functions

Reade et al.[6] obtained coefficient conditions on $\left\{b_{n}\right\}_{n=1}^{\infty}$ that ensure starlikeness of functions of the form $f(z)=\frac{z}{1+\sum_{n=1}^{\infty} b_{n} z^{n}}$.

Theorem [6]

Let $f(z)=\frac{z}{1+\sum_{n=1}^{\infty} b_{n} z^{n}}, z \in U$ and let α be a constant, $0 \leq \alpha \leq 1$. If the coefficients of $f(z)$ satisfy $\quad \sum_{n=2}^{\infty}(n-1+\alpha)\left|b_{n}\right| \leq \begin{cases}(1-\alpha)-(1-\alpha)\left|b_{1}\right|, & 0 \leq \alpha \leq \frac{1}{2} \\ (1-\alpha)-\alpha\left|b_{1}\right|, & \frac{1}{2}<\alpha \leq 1\end{cases}$
then $f(z)$ is star-like of order α in the unit disk U.
Applying this condition, this section defines a subclass $S_{+}^{*}\left(b_{1}, \alpha\right)$ of class of starlike rational functions by fixing Taylor coefficient b_{1} of $g(z)$. And obtains coefficient characterization, growth and distortion bounds for the subclass $S_{+}^{*}\left(b_{1}, \alpha\right)$.

Definition 2.1

Let $b_{1} \in \mathbb{C}, \quad\left|b_{1}\right| \leq 1$ be fixed and $0 \leq \alpha \leq 1$.
Define

$$
S_{+}^{*}\left(b_{1}, \alpha\right)=
$$

$\left\{\begin{array}{c}f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \in S: \frac{z}{f(z)}=1+\sum_{n=1}^{\infty} b_{n} z^{n}, \quad z \in U \text { and } b_{n} \geq 0, \text { for } n \geq 2 \\ \sum_{n=2}^{\infty}(n-1+\alpha) b_{n} \leq \begin{cases}(1-\alpha)-(1-\alpha)\left|b_{1}\right|, & 0 \leq \alpha \leq \frac{1}{2} \\ (1-\alpha)-\alpha\left|b_{1}\right|, & \frac{1}{2}<\alpha<1\end{cases} \end{array}\right\}$
The following result shows coefficient characterization for the subclass $S_{+}^{*}\left(b_{1}, \alpha\right)$

Theorem 2.2

Let $f(z) \in S$ be of the form $f(z)=\frac{z}{1+\sum_{n=1}^{\infty} b_{n} z^{n}}$ for $z \in U$ and $b_{1} \in \mathbb{C},\left|b_{1}\right| \leq 1$ be fixed.

Then $f(z) \in S_{+}^{*}\left(b_{1}, \alpha\right)$ if and only if $f(z)$ has the form
$\frac{z}{f(z)}=b_{1} z+\sum_{n=1}^{\infty} \lambda_{n} \frac{z}{f_{n}(z)}$
for some sequence $\left\{\lambda_{n}\right\}_{n=1}^{\infty}$ of non-negative real numbers with $\sum_{n=1}^{\infty} \lambda_{n}=1$ and
(i). for $0 \leq \alpha \leq \frac{1}{2}, \quad \frac{z}{f_{n}(z)}=\left\{\begin{array}{cc}1, & \text { for } n=1 \\ 1+\frac{1-\alpha}{n-1+\alpha} z^{n}, & \text { for } n=2,3, \ldots\end{array}\right.$
(ii). for $\frac{1}{2}<\alpha<1,\left|b_{1}\right| \leq \frac{1-\alpha}{\alpha}, \quad \frac{z}{f_{n}(z)}=\left\{\begin{array}{cc}1, & \text { for } n=1 \\ 1+\frac{1-\alpha}{n-1+\alpha} z^{n}, & \text { for } \quad n=2,3, \ldots\end{array}\right.$

Proof:

Case (i) for $0 \leq \alpha \leq \frac{1}{2}$
Suppose that $f(z) \in S, z \in U$ has the form (1) for some sequence of non-negative real numbers $\left\{\lambda_{n}\right\}_{n=1}^{\infty}$ with $\sum_{n=1}^{\infty} \lambda_{n}=1$.

We need to prove that the function $f(z) \in S_{+}^{*}\left(b_{1}, \alpha\right)$.
for $z \in U$, rewrite $\frac{z}{f(z)}$ as

$$
\begin{aligned}
\frac{z}{f(z)} & =b_{1} z+\sum_{n=1}^{\infty} \lambda_{n} \frac{z}{f_{n}(z)} \\
& =b_{1} z+\lambda_{1}+\sum_{n=2}^{\infty}\left[1+\frac{1-\alpha}{n-1+\alpha} z^{n}\right] \lambda_{n} \quad\left(\text { by the definition of } \frac{z}{f_{n}(z)}\right) \\
& =1+b_{1} z+\sum_{n=2}^{\infty} \lambda_{n} \frac{1-\alpha}{n-1+\alpha} z^{n} \\
& =1+b_{1} z+\sum_{n=2}^{\infty} b_{n} z^{n} \quad \text { where } \quad b_{n}=\lambda_{n} \frac{1-\alpha}{n-1+\alpha} \geq 0 .
\end{aligned}
$$

Choosing $\lambda_{1} \in \mathbb{R}$ such that $\left|b_{1}\right| \leq \lambda_{1} \leq 1$,

$$
\begin{aligned}
(1-\alpha) & \left|b_{1}\right|+\sum_{n=2}^{\infty}(n-1+\alpha) b_{n} \\
& \leq(1-\alpha) \lambda_{1}+\sum_{n=2}^{\infty}\left[(n-1+\alpha) \lambda_{n} \frac{1-\alpha}{n-1+\alpha}\right] \\
& =(1-\alpha) \lambda_{1}+\sum_{n=2}^{\infty}(1-\alpha) \lambda_{n} \\
& =(1-\alpha) \sum_{n=1}^{\infty} \lambda_{n}=(1-\alpha)
\end{aligned}
$$

This shows that $f(z)$ satisfies (2).
Therefore $f(z) \in S_{+}^{*}\left(b_{1}, \alpha\right)$ for $0 \leq \alpha \leq \frac{1}{2}$.
Conversely, suppose $f(z) \in S_{+}^{*}\left(b_{1}, \alpha\right)$ for $0 \leq \alpha \leq \frac{1}{2}$.
Then $f(z)$ satisfies condition (2).

Thus
$\sum_{n=2}^{\infty}(n-1+\alpha) b_{n} \leq(1-\alpha)-(1-\alpha)\left|b_{1}\right|$.
Now, set $b_{n}=\frac{(1-\alpha)}{(n-1+\alpha)} \lambda_{n}$ for $n=2,3, \ldots$.
so that $\lambda_{n}=\frac{(n-1+\alpha)}{(1-\alpha)} b_{n}$ for $n=2,3, \ldots$ and $\lambda_{1}=1-\sum_{n=2}^{\infty} \lambda_{n}$.
Then

$$
\begin{aligned}
\frac{z}{f(z)} & =1+b_{1} z+\sum_{n=2}^{\infty} b_{n} z^{n} \\
& =b_{1} z+\lambda_{1}+\sum_{n=2}^{\infty}\left[1+\frac{1-\alpha}{n-1+\alpha} z^{n}\right] \lambda_{n} \\
& =b_{1} z+\lambda_{1}+\sum_{n=2}^{\infty} \lambda_{n}\left[1+\frac{(1-\alpha)}{(n-1+\alpha)} z^{n}\right] \\
& =b_{1} z+\sum_{n=1}^{\infty} \lambda_{n} \frac{z}{f_{n}(z)}
\end{aligned}
$$

Case (ii). for $\frac{1}{2}<\alpha<1$
Suppose that $f(z) \in S$ has the form (1) for some sequence of non-negative real numbers $\left\{\lambda_{n}\right\}_{n=1}^{\infty}$ with $\sum_{n=1}^{\infty} \lambda_{n}=1$.

We need to prove that the function $f(z) \in S_{+}^{*}\left(b_{1}, \alpha\right)$.
Now, rewrite $\frac{z}{f(z)}$ as

$$
\begin{aligned}
\frac{z}{f(z)} & =b_{1} z+\sum_{n=1}^{\infty} \lambda_{n} \frac{z}{f_{n}(z)} \\
& \left.=b_{1} z+\lambda_{1}+\sum_{n=2}^{\infty} \lambda_{n}\left[1+\frac{1-\alpha}{n-1+\alpha} z^{n}\right] \quad \text { (by the definition of } \frac{z}{f_{n}(z)}\right) \\
& =1+b_{1} z+\sum_{n=2}^{\infty} \lambda_{n} \frac{1-\alpha}{n-1+\alpha} z^{n} \\
& =1+b_{1} z+\sum_{n=2}^{\infty} b_{n} z^{n} \quad \text { where } \quad b_{n}=\lambda_{n} \frac{1-\alpha}{n-1+\alpha} \geq 0 .
\end{aligned}
$$

Choosing $\lambda_{1} \in \mathbb{R}$ such that $\left|b_{1}\right| \leq \frac{(1-\alpha)}{\alpha} \lambda_{1} \leq 1$,

$$
\begin{aligned}
\alpha\left|b_{1}\right|+\sum_{n=2}^{\infty} & (n-1+\alpha) b_{n} \\
& \leq \alpha\left[\frac{1-\alpha}{\alpha}\right] \lambda_{1}+\sum_{n=2}^{\infty} \lambda_{n}\left[(n-1+\alpha) \frac{1-\alpha}{n-1+\alpha}\right] \\
& =(1-\alpha) \lambda_{1}+\sum_{n=2}^{\infty}(1-\alpha) \lambda_{n} \\
& =(1-\alpha) \sum_{n=1}^{\infty} \lambda_{n} \\
& =(1-\alpha)
\end{aligned}
$$

This shows that (2) is satisfied.
Therefore $f(z) \in S_{+}^{*}\left(b_{1}, \alpha\right)$ for $\frac{1}{2}<\alpha<1$.
Conversely, suppose $f(z) \in S_{+}^{*}\left(b_{1}, \alpha\right)$ for $\frac{1}{2}<\alpha<1$.
Then $f(z)$ satisfies condition (2).
Thus

$$
\alpha\left|b_{1}\right|+\sum_{n=2}^{\infty}(n-1+\alpha) b_{n} \leq(1-\alpha)
$$

Now, set $b_{n}=\lambda_{n} \frac{(1-\alpha)}{(n-1+\alpha)}$ for $n=2,3, \ldots . \quad$ and $\quad \lambda_{1}=1-\sum_{n=2}^{\infty} \lambda_{n}$
so that $\lambda_{n}=\frac{(n-1+\alpha)}{(1-\alpha)} b_{n}$ for $=2,3, \ldots$.
Then $\frac{z}{f(z)}$ has the form

$$
\begin{aligned}
\frac{z}{f(z)} & =1+b_{1} z+\sum_{n=2}^{\infty} b_{n} z^{n} \\
& =b_{1} z+\lambda_{1}+\sum_{n=2}^{\infty}\left[1+\frac{1-\alpha}{n-1+\alpha} z^{n}\right] \lambda_{n} \\
& =b_{1} z+\lambda_{1}+\sum_{n=2}^{\infty} \lambda_{n}\left[1+\frac{(1-\alpha)}{(n-1+\alpha)} z^{n}\right] \\
& =b_{1} z+\sum_{n=1}^{\infty} \lambda_{n} \frac{z}{f_{n}(z)}
\end{aligned}
$$

This completes the proof.
Next results discuss growth and distortion bounds for $S_{+}^{*}\left(b_{1}, \alpha\right)$

Theorem 2.3

If $f \in S_{+}^{*}\left(b_{1}, \alpha\right), z \in U$, for $0 \leq \alpha<1$, then $|z|=r<1$, then

$$
\begin{equation*}
\max \left\{0, \quad 1-\left|b_{1}\right| r-\frac{1-\alpha}{1+\alpha} r^{2}\right\} \leq\left|\frac{z}{f(z)}\right| \leq 1+\left|b_{1}\right| r+\frac{1-\alpha}{1+\alpha} r^{2} \tag{3}
\end{equation*}
$$

Proof: Since $f(z) \in S_{+}^{*}\left(b_{1}, \alpha\right)$,
by Theorem 1.2, $\frac{z}{f(z)}$ has the form

$$
\begin{aligned}
\frac{z}{f(z)} & =b_{1} z+\sum_{n=1}^{\infty} \lambda_{n} \frac{z}{f_{n}(z)} \\
& =b_{1} z+\lambda_{1} \frac{z}{f_{1}(z)}+\sum_{n=2}^{\infty} \lambda_{n} \frac{z}{f_{n}(z)} \\
& =b_{1} z+\lambda_{1}+\sum_{n=2}^{\infty} \lambda_{n}\left[1+\frac{(1-\alpha)}{(n-1+\alpha)} z^{n}\right]
\end{aligned}
$$

$$
\begin{equation*}
=1+b_{1} z+\sum_{n=2}^{\infty} \lambda_{n} \frac{(1-\alpha)}{(n-1+\alpha)} z^{n} \tag{4}
\end{equation*}
$$

Then

$$
\begin{aligned}
\left|\frac{z}{f(z)}\right| & \leq 1+\left|b_{1} z\right|+\left|\sum_{n=2}^{\infty} \lambda_{n} \frac{(1-\alpha)}{(n-1+\alpha)} z^{n}\right| \\
& \leq 1+\left|b_{1}\right||z|+|z|^{2}\left|\sum_{n=2}^{\infty} \lambda_{n} \frac{(1-\alpha)}{(n-1+\alpha)}\right| \\
& \leq 1+\left|b_{1}\right| r+\frac{1-\alpha}{1+\alpha} r^{2} \text { for }|z| \leq r<1 \quad \text { (since } \frac{(1-\alpha)}{(n-1+\alpha)} \text { is decreasing) }
\end{aligned}
$$

And also from (4),

$$
\begin{aligned}
\left|\frac{z}{f(z)}\right| & \geq 1-\left|b_{1} z\right|-\left|\sum_{n=2}^{\infty} \lambda_{n} \frac{(1-\alpha)}{(n-1+\alpha)} z^{n}\right| \\
& \geq 1-\left|b_{1}\right||z|-|z|^{2}\left|\sum_{n=2}^{\infty} \lambda_{n} \frac{(1-\alpha)}{(n-1+\alpha)}\right| \\
& \geq 1-\left|b_{1}\right| r-\frac{1-\alpha}{1+\alpha} r^{2} \text { for }|z| \leq r<1
\end{aligned}
$$

Therefore

$$
\max \left\{0, \quad 1-\left|b_{1}\right| r-\frac{1-\alpha}{1+\alpha} r^{2}\right\} \leq\left|\frac{z}{f(z)}\right| \leq 1+\left|b_{1}\right| r+\frac{1-\alpha}{1+\alpha} r^{2}
$$

Theorem 2.4

If $f \in S_{+}^{*}\left(b_{1}, \alpha\right), z \in U$ and $0 \leq \alpha<1$, then
$\max \left\{0,\left|b_{1}\right|-\frac{2(1-\alpha)}{1+\alpha} r\right\} \leq\left|\left\{\frac{z}{f(z)}\right\}^{\prime}\right| \leq\left|b_{1}\right|+\frac{2(1-\alpha)}{1+\alpha} r$, for $|z|=r<1$
Proof: Since $f(z) \in S_{+}^{*}\left(b_{1}, \alpha\right)$,
using (4) $\frac{z}{f(z)}$ can be written as
$\frac{z}{f(z)}=1+b_{1} z+\sum_{n=2}^{\infty} \lambda_{n} \frac{(1-\alpha)}{(n-1+\alpha)} z^{n}$
So

$$
\begin{aligned}
\left\{\frac{z}{f(z)}\right\}^{\prime}= & b_{1}+\sum_{n=2}^{\infty} n \lambda_{n} \frac{(1-\alpha)}{(n-1+\alpha)} z^{n-1} \\
\left|\left\{\frac{z}{f(z)}\right\}^{\prime}\right| & \leq\left|b_{1}\right|+\left|\sum_{n=2}^{\infty} n \lambda_{n} \frac{(1-\alpha)}{(n-1+\alpha)} z^{n-1}\right| \\
& \leq\left|b_{1}\right|+|z|\left|\sum_{n=2}^{\infty} n \lambda_{n} \frac{(1-\alpha)}{(n-1+\alpha)}\right| \\
& \leq\left|b_{1}\right|+\frac{2(1-\alpha)}{1+\alpha} r \quad \text { for }|z|=r \quad \quad \text { (since } \frac{(1-\alpha)}{(n-1+\alpha)} \text { is decreasing) }
\end{aligned}
$$

and also

$$
\begin{aligned}
\left|\left\{\frac{z}{f(z)}\right\}^{\prime}\right| & \geq\left|b_{1}\right|-\left|\sum_{n=2}^{\infty} n \lambda_{n} \frac{(1-\alpha)}{(n-1+\alpha)} z^{n-1}\right| \\
& \geq\left|b_{1}\right|-|z|\left|\sum_{n=2}^{\infty} n \lambda_{n} \frac{(1-\alpha)}{(n-1+\alpha)}\right| \\
& \geq\left|b_{1}\right|-\frac{2(1-\alpha)}{1+\alpha} r \quad \text { for }|z|=r<1
\end{aligned}
$$

Therefore

$$
\max \left\{0,\left|b_{1}\right|-\frac{2(1-\alpha)}{1+\alpha} r\right\} \leq\left|\left\{\frac{z}{f(z)}\right\}^{\prime}\right| \leq\left|b_{1}\right|+\frac{2(1-\alpha)}{1+\alpha} r
$$

3. Convex subclass of Generalized Rational Univalent Functions

Ahuja and Pawan [1]__obtained sufficient condition for convexity of generalized rational functions. Also proved the following condition:

The function $f(z)=\frac{z}{1+\sum_{n=1}^{\infty} b_{n} z^{n}}$ is convex of order α in U if

$$
\begin{equation*}
\frac{4-\alpha}{1-\alpha}\left|b_{1}\right|+\sum_{n=1}^{\infty} \frac{(n-1)(3 n+1-\alpha)}{1-\alpha}\left|b_{n}\right| \leq 1 \tag{5}
\end{equation*}
$$

Imposing this condition, now this section defines a subclass $C_{+}\left(b_{1}, \alpha\right)$ of S_{+}.

Definition 3.1

Let $b_{1} \in \mathbb{C}, 0 \leq\left|b_{1}\right| \leq 1 / 4$ be fixed and $0 \leq \alpha<1$.
$C_{+}\left(b_{1}, \alpha\right)=\left\{f(z) \in S: \frac{z}{f(z)}=1+\sum_{n=1}^{\infty} b_{n} z^{n}, z \in U, b_{n} \geq 0\right.$ for $n \geq 2$,
$\left.(4-\alpha)\left|b_{1}\right|+\sum_{n=1}^{\infty}(n-1)(3 n+1-\alpha) b_{n} \leq 1-\alpha\right\}$.
(6)

Now, the next result shows coefficient characterization for the subclass $C_{+}\left(b_{1}, \alpha\right)$

Theorem 3.2

Let $f(z) \in S$ for $z \in U$ be of the form $f(z)=\frac{z}{1+\sum_{n=1}^{\infty} b_{n} z^{n}}$ and $b_{1} \in \mathbb{C},\left|b_{1}\right| \leq 1 / 4$ be fixed. Then $f \in C_{+}\left(b_{1}, \alpha\right)$ for $0 \leq \alpha<1$ if and only if $f(z)$ has the form

$$
\frac{z}{f(z)}=b_{1} z+\sum_{n=1}^{\infty} \lambda_{n} \frac{z}{f_{n}(z)}
$$

For some sequence $\left\{\lambda_{n}\right\}_{n=1}^{\infty}$ of non-negative real numbers with $\sum_{n=1}^{\infty} \lambda_{n}=1$ and
$\frac{z}{f_{n}(z)}=\left\{\begin{array}{cc}1, & \text { for } n=1 \\ 1+\frac{1-\alpha}{(n-1)(3 n+1-\alpha)} z^{n}, & \text { for } n=2,3, \ldots\end{array}\right.$

Proof:

Suppose that $f(z) \in S$ has the form (1) for some sequence $\left\{\lambda_{n}\right\}_{n=1}^{\infty}$ of non-negative real numbers with $\sum_{n=1}^{\infty} \lambda_{n}=1$. To prove that the function $f(z) \in C_{+}\left(b_{1}, \alpha\right)$.

Now, write $\frac{z}{f(z)}$ as

$$
\begin{aligned}
\frac{z}{f(z)} & =b_{1} z+\sum_{n=1}^{\infty} \lambda_{n} \frac{z}{f_{n}(z)} \\
& =b_{1} z+\lambda_{1}+\sum_{n=2}^{\infty} \lambda_{n}\left[1+\frac{1-\alpha}{(n-1)(3 n+1-\alpha)} z^{n}\right] \quad\left(\text { by the definition of } \frac{z}{f_{n}(z)}\right) \\
& =b_{1} z+\lambda_{1}+\sum_{n=2}^{\infty} \lambda_{n}+\sum_{n=2}^{\infty} \lambda_{n} \frac{1-\alpha}{(n-1)(3 n+1-\alpha)} z^{n} \\
& =1+b_{1} z+\sum_{n=2}^{\infty} \lambda_{n} \frac{1-\alpha}{(n-1)(3 n+1-\alpha)} z^{n} \\
& =1+b_{1} z+\sum_{n=2}^{\infty} b_{n} z^{n} \quad \text { where } b_{n}=\lambda_{n} \frac{1-\alpha}{(n-1)(3 n+1-\alpha)} \geq 0, n \geq 2 .
\end{aligned}
$$

Taking $\lambda_{1} \in \mathbb{R}$ such that $\left|b_{1}\right| \leq \frac{1-\alpha}{4-\alpha} \lambda_{1}$,

$$
\begin{aligned}
& (4-\alpha)\left|b_{1}\right|+\sum_{n=2}^{\infty}(n-1)(3 n+1-\alpha) b_{n} \\
& \leq(1-\alpha) \lambda_{1}+\sum_{n=2}^{\infty}(n-1)(3 n+1-\alpha) \lambda_{n} \frac{1-\alpha}{(n-1)(3 n+1-\alpha)} \\
& \quad=(1-\alpha) \lambda_{1}+\sum_{n=2}^{\infty}(1-\alpha) \lambda_{n} \\
& \quad=(1-\alpha) \sum_{n=1}^{\infty} \lambda_{n}=(1-\alpha)
\end{aligned}
$$

This shows that condition (6) is satisfied.
Hence $f(z) \in C_{+}\left(b_{1}, \alpha\right)$ for $0 \leq \alpha<1$.
Conversely, suppose $f(z) \in C_{+}\left(b_{1}, \alpha\right)$ for $z \in U$.
Therefore, by (6)

$$
(4-\alpha)\left|b_{1}\right|+\sum_{n=2}^{\infty}(n-1)(3 n+1-\alpha) b_{n} \leq(1-\alpha)
$$

Now, set $\lambda_{n}=\frac{(n-1)(3 n+1-\alpha)}{(1-\alpha)} b_{n}$ for $n \geq 2$ and $\lambda_{1}=1-\sum_{n=2}^{\infty} \lambda_{n}$
Therefore $\frac{z}{f(z)}=1+b_{1} z+\sum_{n=2}^{\infty} b_{n} z^{n}$

$$
\begin{aligned}
& \quad=\lambda_{1}+\sum_{n=2}^{\infty} \lambda_{n}+b_{1} z+\sum_{n=2}^{\infty} \lambda_{n} \frac{1-\alpha}{(n-1)(3 n+1-\alpha)} z^{n} \\
& =b_{1} z+\lambda_{1}+\sum_{n=2}^{\infty} \lambda_{n}\left[1+\frac{1-\alpha}{(n-1)(3 n+1-\alpha)} z^{n}\right] \\
& =b_{1} z+\sum_{n=1}^{\infty} \lambda_{n} \frac{z}{f_{n}(z)}
\end{aligned}
$$

This completes the proof.
The following results discuss growth and distortion bounds for the subclass $C_{+}\left(b_{1}, \alpha\right)$.

Theorem 3.3

If $f \in C_{+}\left(b_{1}, \alpha\right)$ for $z \in U$ and $0 \leq \alpha<1,0 \leq\left|b_{1}\right| \leq 1 / 4$, then for $|z|=r<1$, then $\max \left\{0, \quad 1-\left|b_{1}\right| r-\frac{1-\alpha}{7-\alpha} r^{2}\right\} \leq\left|\frac{z}{f(z)}\right| \leq 1+\left|b_{1}\right| r+\frac{1-\alpha}{7-\alpha} r^{2}$

Proof: Since $f(z) \in C_{+}\left(b_{1}, \alpha\right)$, by Theorem 2.2

$$
\begin{align*}
\frac{z}{f(z)} & =b_{1} z+\sum_{n=1}^{\infty} \lambda_{n} \frac{z}{f_{n}(z)} \\
& =b_{1} z+\lambda_{1}+\sum_{n=2}^{\infty} \lambda_{n}\left[1+\frac{1-\alpha}{(n-1)(3 n+1-\alpha)} z^{n}\right] \\
& =1+b_{1} z+\sum_{n=2}^{\infty} \lambda_{n} \frac{1-\alpha}{(n-1)(3 n+1-\alpha)} z^{n} \tag{8}
\end{align*}
$$

So

$$
\begin{aligned}
\left|\frac{z}{f(z)}\right| & \leq 1+\left|b_{1} z\right|+\left|\sum_{n=2}^{\infty} \lambda_{n} \frac{1-\alpha}{(n-1)(3 n+1-\alpha)} z^{n}\right| \\
& \leq 1+\left|b_{1}\right||z|+|z|^{2}\left|\sum_{n=2}^{\infty} \lambda_{n} \frac{1-\alpha}{(n-1)(3 n+1-\alpha)}\right| \\
& \leq 1+\left|b_{1}\right| r+\frac{1-\alpha}{(7-\alpha)} r^{2} \text { for }|z|=r<1 \\
& \quad \text { (since } \frac{1-\alpha}{(n-1)(3 n+1-\alpha)} \text { is decreasing) }
\end{aligned}
$$

From (8), write

$$
\begin{aligned}
\left|\frac{z}{f(z)}\right| & \geq 1-\left|b_{1} z\right|-\left|\sum_{n=2}^{\infty} \lambda_{n} \frac{1-\alpha}{(n-1)(3 n+1-\alpha)} z^{n}\right| \\
& \geq 1-\left|b_{1}\right||z|-|z|^{2}\left|\sum_{n=2}^{\infty} \lambda_{n} \frac{1-\alpha}{(n-1)(3 n+1-\alpha)}\right| \\
& \geq 1-\left|b_{1}\right| r-\frac{1-\alpha}{(7-\alpha)} r^{2} \text { for }|z|=r<1
\end{aligned}
$$

Therefore

$$
\max \left\{0,1-\left|b_{1}\right| r-\frac{1-\alpha}{(7-\alpha)} r^{2}\right\} \leq\left|\frac{z}{f(z)}\right| \leq 1+\left|b_{1}\right| r+\frac{1-\alpha}{(7-\alpha)} r^{2}
$$

Theorem 3.4

If $f \in C_{+}\left(b_{1}, \alpha\right), z \in U \quad$ for $0 \leq \alpha<1,0 \leq\left|b_{1}\right| \leq 1 / 4,|z|=r<1$, then

$$
\max \left\{0,\left|b_{1}\right|-\frac{2(1-\alpha)}{7-\alpha} r\right\} \leq\left|\left\{\frac{z}{f(z)}\right\}^{\prime}\right| \leq\left|b_{1}\right|+\frac{2(1-\alpha)}{7-\alpha} r .
$$

Proof: Let $f(z) \in C_{+}\left(b_{1}, \alpha\right), \quad$ then from (8),
$\frac{z}{f(z)}=1+b_{1} z+\sum_{n=2}^{\infty} \lambda_{n} \frac{1-\alpha}{(n-1)(3 n+1-\alpha)} z^{n}$
$\left\{\frac{z}{f(z)}\right\}^{\prime}=b_{1}+\sum_{n=2}^{\infty} n \lambda_{n} \frac{1-\alpha}{(n-1)(3 n+1-\alpha)} z^{n-1}$
And

$$
\begin{aligned}
\left|\left\{\frac{z}{f(z)}\right\}^{\prime}\right| & \leq\left|b_{1}\right|+\left|\sum_{n=2}^{\infty} n \lambda_{n} \frac{1-\alpha}{(n-1)(3 n+1-\alpha)} z^{n-1}\right| \\
& \leq\left|b_{1}\right|+|z|\left|\sum_{n=2}^{\infty} n \lambda_{n} \frac{1-\alpha}{(n-1)(3 n+1-\alpha)}\right| \\
& \leq\left|b_{1}\right|+\frac{2(1-\alpha)}{7-\alpha} r \text { for }|z|=r<1 \\
& \quad \text { (since } \frac{1-\alpha}{(n-1)(3 n+1-\alpha)} \text { is decreasing) }
\end{aligned}
$$

also

$$
\begin{aligned}
\left|\left\{\frac{z}{f(z)}\right\}^{\prime}\right| & \geq\left|b_{1}\right|-\left|\sum_{n=2}^{\infty} n \lambda_{n} \frac{1-\alpha}{(n-1)(3 n+1-\alpha)} z^{n-1}\right| \\
& \geq\left|b_{1}\right|-|z|\left|\sum_{n=2}^{\infty} n \lambda_{n} \frac{1-\alpha}{(n-1)(3 n+1-\alpha)}\right| \\
& \geq\left|b_{1}\right|-\frac{2(1-\alpha)}{7-\alpha} r \text { for }|z|=r<1
\end{aligned}
$$

Therefore
$\max \left\{0, \quad\left|b_{1}\right|-\frac{2(1-\alpha)}{7-\alpha} r\right\} \leq\left|\left\{\frac{z}{f(z)}\right\}^{\prime}\right| \leq\left|b_{1}\right|+\frac{2(1-\alpha)}{7-\alpha} r$

References:

1. Ahuja. O. P, Pawan, K, Jain - On the spiral-likeness of rational functions, Rendiconti del Circolo Matematico di . Palermo Serie II, Tomo XXXV(1986), pp.376-385.
2. Mitrinovic'.D.S.- On the univalence of rational functions, Univ. Beograd.Publ. Elektrotehn. Fak. Ser. Mat. Fiz. 634-677 (1979) 221-227.
3. Obradovi'c. M., Ponnusamy.S., Coefficient characterization for certain classes of univalent functions, Bull. Belg. Math. Soc. Simon Stevin 16 (2009), 251-263.
4. Obradovi'c. M., Ponnusamy. S., Singh. V. and Vasundhra. P. - Univalency, Starlikeness and Convexity Applied to Certain Classes of Rational Functions, Analysis22, 225-242 (2002).
5. Obradovi'c. M. - Starlikeness and Certain Class of Rational Functions - Math.Nachr. 175 (1995) 263-268.
6. Reade M.O, Silverman. H, and Todorov.P.G. - On the starlikeness and convexity of a class of analytic functions, Rendiconti del Circolo Matematico di . Palermo SerieII, Tomo XXXIII(1984), pp.265-272.
7. Reade M.O, Silverman. H, and Todorov.P.G. - Classes of rational functionsContemporary Mathematics, Volume 38 (1985), 99-103.
