Coefficient Characterization for Some Subclasses of Generalized Rational Univalent Functions

S. Lalitha¹, V. Srinivas²

¹Department of Mathematics, Geethanjali College of Engineering and Technology, Hyderabad, email: sagi.lalitha@gmail.com

²Department of Mathematics, Dr. B.R. Ambedkar Open University, Hyderabad, email: prof.vsvas@gmail.com

Article Info	Abstract: This research work consists of two sections. Each section
Page Number: 1995-2005	introduces a subclass of generalized rational functions and study of
Publication Issue:	geometric properties like coefficient characterization, growth and distortion
Vol. 71 No. 4 (2022)	properties. First section introduces a starlike subclass $S^*_+(b_1, \alpha)$ of S_+ .
	Second section introduces a convex subclass $C_+(b_1, \alpha)$ of S_+ .
Article History	Key words: rational univalent, starlike, convex, coefficient
Article Received: 25 March 2022	characterization.
Revised: 30 April 2022	
Accepted: 15 June 2022	
Publication: 19 August 2022	

1. Introduction

A normalized function f(z) analytic in the open unit disk around the origin and non-vanishing outside the origin of the form $f(z) = z + \sum_{n=2}^{\infty} a_n z^n$ can be expressed in the form $\frac{z}{g(z)}$, where g(z) has Taylor coefficients b_n 's in U. Mitrinovic [2] obtained sufficient conditions for functions of the form $\frac{z}{1+b_1z+\dots+b_nz^n}$, $b_n \neq 0$ to be univalent in U.

Theorem[2]

The function $f(z) = \frac{z}{1+\sum_{n=1}^{\infty} b_n z^n}$ is in S if $\sum_{n=2}^{\infty} (n-1)|b_n| \le 1$ and $\sum_{n=1}^{\infty} |b_n| \le 1$.

Reade et al.,[7] introduced different subclasses of univalent rational functions and obtained sufficient conditions for $f(z) \in S$ to be in those subclasses.

Obradovi'c. [5] studied on starlikeness of certain class of rational functions.

Ahuja and Pawan [1] studied properties of spiral-likeness of rational functions.

Obradovi'c and Ponnusamy [3] introduced a subclass of rational univalent functions S_+ as the subclass of functions of S which can be expressed in the form

$$\frac{z}{f(z)} = b_1 z + \sum_{n=1}^{\infty} \lambda_n \frac{z}{f_n(z)} \tag{1}$$

for some sequence $\{\lambda_n\}_{n=1}^{\infty}$ of non-negative real numbers with $\sum_{n=1}^{\infty} \lambda_n = 1$ and derived necessary and sufficient condition for functions of S to be in S_+ .

Theorem [3] Let $f \in A$. Then $f \in S_+$ if and only if f has the form

$$\frac{z}{f(z)} = b_1 z + \sum_{n=1}^{\infty} \lambda_n \frac{z}{f_n(z)}$$

for some sequence $\{\lambda_n\}_{n=1}^{\infty}$ of non-negative real numbers with $\sum_{n=1}^{\infty} \lambda_n = 1$ and

$$\frac{z}{f_n(z)} = \begin{cases} 1, & \text{for } n = 1\\ 1 + \frac{1}{n-1} z^n, & \text{for } n = 2,3, .. \end{cases}$$

Now, this paper introduces different subclasses of S_+ by fixing b_1 and obtain coefficient characterization for these subclasses similar to that of [3] for S_+ .

2. Starlike Subclass of Generalized Rational Univalent Functions

Reade et al.[6] obtained coefficient conditions on $\{b_n\}_{n=1}^{\infty}$ that ensure starlikeness of functions of the form $f(z) = \frac{z}{1 + \sum_{n=1}^{\infty} b_n z^n}$.

Theorem [6]

Let $f(z) = \frac{z}{1 + \sum_{n=1}^{\infty} b_n z^n}$, $z \in U$ and let α be a constant, $0 \le \alpha \le 1$. If the coefficients of f(z)

satisfy
$$\sum_{n=2}^{\infty} (n-1+\alpha)|b_n| \le \begin{cases} (1-\alpha) - (1-\alpha)|b_1|, & 0 \le \alpha \le \frac{1}{2} \\ (1-\alpha) - \alpha|b_1|, & \frac{1}{2} < \alpha \le 1 \end{cases}$$

then f(z) is star-like of order α in the unit disk U.

Applying this condition, this section defines a subclass $S^*_+(b_1, \alpha)$ of class of starlike rational functions by fixing Taylor coefficient b_1 of g(z). And obtains coefficient characterization, growth and distortion bounds for the subclass $S^*_+(b_1, \alpha)$.

Definition 2.1

Let $b_1 \in \mathbb{C}$, $|b_1| \le 1$ be fixed and $0 \le \alpha \le 1$.

Define
$$S_{+}^{*}(b_{1}, \alpha) = \begin{cases} f(z) = z + \sum_{n=2}^{\infty} a_{n} z^{n} \in S : \ \frac{z}{f(z)} = 1 + \sum_{n=1}^{\infty} b_{n} z^{n}, \ z \in U \text{ and } b_{n} \ge 0, \text{ for } n \ge 2 \\ \\ \sum_{n=2}^{\infty} (n-1+\alpha) b_{n} \le \begin{cases} (1-\alpha) - (1-\alpha) |b_{1}|, \ 0 \le \alpha \le \frac{1}{2} \\ (1-\alpha) - \alpha |b_{1}|, \ \frac{1}{2} < \alpha < 1 \end{cases} \end{cases}$$
(2)

The following result shows coefficient characterization for the subclass $S^*_+(b_1, \alpha)$

Theorem 2.2

Let $f(z) \in S$ be of the form $f(z) = \frac{z}{1 + \sum_{n=1}^{\infty} b_n z^n}$ for $z \in U$ and $b_1 \in \mathbb{C}$, $|b_1| \le 1$ be fixed.

...

Then $f(z) \in S^*_+(b_1, \alpha)$ if and only if f(z) has the form

$$\frac{z}{f(z)} = b_1 z + \sum_{n=1}^{\infty} \lambda_n \frac{z}{f_n(z)}$$

for some sequence $\{\lambda_n\}_{n=1}^{\infty}$ of non-negative real numbers with $\sum_{n=1}^{\infty} \lambda_n = 1$ and

(i). for
$$0 \le \alpha \le \frac{1}{2}$$
, $\frac{z}{f_n(z)} = \begin{cases} 1, & \text{for } n = 1\\ 1 + \frac{1-\alpha}{n-1+\alpha} z^n, & \text{for } n = 2,3, \dots \end{cases}$
(ii). for $\frac{1}{2} < \alpha < 1$, $|b_1| \le \frac{1-\alpha}{\alpha}$, $\frac{z}{f_n(z)} = \begin{cases} 1, & \text{for } n = 1\\ 1 + \frac{1-\alpha}{n-1+\alpha} z^n, & \text{for } n = 2,3, \dots \end{cases}$

Proof:

Case (i) for $0 \le \alpha \le \frac{1}{2}$

Suppose that $f(z) \in S$, $z \in U$ has the form (1) for some sequence of non-negative real numbers $\{\lambda_n\}_{n=1}^{\infty}$ with $\sum_{n=1}^{\infty} \lambda_n = 1$.

We need to prove that the function $f(z) \in S^*_+(b_1, \alpha)$.

for
$$z \in U$$
, rewrite $\frac{z}{f(z)}$ as
 $\frac{z}{f(z)} = b_1 z + \sum_{n=1}^{\infty} \lambda_n \frac{z}{f_n(z)}$
 $= b_1 z + \lambda_1 + \sum_{n=2}^{\infty} \left[1 + \frac{1-\alpha}{n-1+\alpha} z^n \right] \lambda_n$ (by the definition of $\frac{z}{f_n(z)}$)
 $= 1 + b_1 z + \sum_{n=2}^{\infty} \lambda_n \frac{1-\alpha}{n-1+\alpha} z^n$
 $= 1 + b_1 z + \sum_{n=2}^{\infty} b_n z^n$ where $b_n = \lambda_n \frac{1-\alpha}{n-1+\alpha} \ge 0$.

Choosing $\lambda_1 \in \mathbb{R}$ such that $|b_1| \leq \lambda_1 \leq 1$,

$$(1-\alpha)|b_1| + \sum_{n=2}^{\infty} (n-1+\alpha) b_n$$

$$\leq (1-\alpha)\lambda_1 + \sum_{n=2}^{\infty} \left[(n-1+\alpha)\lambda_n \frac{1-\alpha}{n-1+\alpha} \right]$$

$$= (1-\alpha)\lambda_1 + \sum_{n=2}^{\infty} (1-\alpha)\lambda_n$$

$$= (1-\alpha)\sum_{n=1}^{\infty} \lambda_n = (1-\alpha)$$

This shows that f(z) satisfies (2).

Therefore $f(z) \in S^*_+(b_1, \alpha)$ for $0 \le \alpha \le \frac{1}{2}$.

Conversely, suppose $f(z) \in S^*_+(b_1, \alpha)$ for $0 \le \alpha \le \frac{1}{2}$.

Then f(z) satisfies condition (2).

Thus

$$\sum_{n=2}^{\infty} (n-1+\alpha) b_n \le (1-\alpha) - (1-\alpha) |b_1|.$$

Now, set $b_n = \frac{(1-\alpha)}{(n-1+\alpha)} \lambda_n$ for $n = 2, 3,$

so that $\lambda_n = \frac{(n-1+\alpha)}{(1-\alpha)} b_n$ for n = 2, 3, ... and $\lambda_1 = 1 - \sum_{n=2}^{\infty} \lambda_n$.

Then

$$\frac{z}{f(z)} = 1 + b_1 z + \sum_{n=2}^{\infty} b_n z^n$$

$$= b_1 z + \lambda_1 + \sum_{n=2}^{\infty} \left[1 + \frac{1-\alpha}{n-1+\alpha} z^n \right] \lambda_n$$

$$= b_1 z + \lambda_1 + \sum_{n=2}^{\infty} \lambda_n \left[1 + \frac{(1-\alpha)}{(n-1+\alpha)} z^n \right]$$

$$= b_1 z + \sum_{n=1}^{\infty} \lambda_n \frac{z}{f_n(z)}$$

Case (ii). for $\frac{1}{2} < \alpha < 1$

Suppose that $f(z) \in S$ has the form (1) for some sequence of non-negative real numbers $\{\lambda_n\}_{n=1}^{\infty}$ with $\sum_{n=1}^{\infty} \lambda_n = 1$.

We need to prove that the function $f(z) \in S^*_+(b_1, \alpha)$.

Now, rewrite
$$\frac{z}{f(z)}$$
 as

$$\frac{z}{f(z)} = b_1 z + \sum_{n=1}^{\infty} \lambda_n \frac{z}{f_n(z)}$$

$$= b_1 z + \lambda_1 + \sum_{n=2}^{\infty} \lambda_n \left[1 + \frac{1-\alpha}{n-1+\alpha} z^n \right] \quad (\text{ by the definition of } \frac{z}{f_n(z)})$$

$$= 1 + b_1 z + \sum_{n=2}^{\infty} \lambda_n \frac{1-\alpha}{n-1+\alpha} z^n$$

$$= 1 + b_1 z + \sum_{n=2}^{\infty} b_n z^n \quad \text{where } b_n = \lambda_n \frac{1-\alpha}{n-1+\alpha} \ge 0.$$

Choosing $\lambda_1 \in \mathbb{R}$ such that $|b_1| \leq \frac{(1-\alpha)}{\alpha} \lambda_1 \leq 1$,

$$\begin{aligned} \alpha |b_1| + \sum_{n=2}^{\infty} (n-1+\alpha) b_n \\ &\leq \alpha \left[\frac{1-\alpha}{\alpha} \right] \lambda_1 + \sum_{n=2}^{\infty} \lambda_n \left[(n-1+\alpha) \frac{1-\alpha}{n-1+\alpha} \right] \\ &= (1-\alpha) \lambda_1 + \sum_{n=2}^{\infty} (1-\alpha) \lambda_n \\ &= (1-\alpha) \sum_{n=1}^{\infty} \lambda_n \\ &= (1-\alpha) \end{aligned}$$

This shows that (2) is satisfied.

Therefore $f(z) \in S^*_+(b_1, \alpha)$ for $\frac{1}{2} < \alpha < 1$. Conversely, suppose $f(z) \in S^*_+(b_1, \alpha)$ for $\frac{1}{2} < \alpha < 1$.

Then
$$f(z)$$
 satisfies condition (2).

Thus

$$\alpha |b_1| + \sum_{n=2}^\infty (n-1+\alpha) b_n \leq (1-\alpha)$$

Now, set $b_n = \lambda_n \frac{(1-\alpha)}{(n-1+\alpha)}$ for n = 2, 3, ... and $\lambda_1 = 1 - \sum_{n=2}^{\infty} \lambda_n$ so that $\lambda_n = \frac{(n-1+\alpha)}{(1-\alpha)} b_n$ for = 2, 3, Then $\frac{z}{f(z)}$ has the form $\frac{z}{f(z)} = 1 + b_1 z + \sum_{n=2}^{\infty} b_n z^n$ $= b_1 z + \lambda_1 + \sum_{n=2}^{\infty} \left[1 + \frac{1-\alpha}{n-1+\alpha} z^n \right] \lambda_n$ $= b_1 z + \lambda_1 + \sum_{n=2}^{\infty} \lambda_n \left[1 + \frac{(1-\alpha)}{(n-1+\alpha)} z^n \right]$

$$= b_1 z + \sum_{n=1}^{\infty} \lambda_n \frac{z}{f_n(z)}$$

This completes the proof.

Next results discuss growth and distortion bounds for $S^*_+(b_1, \alpha)$

Theorem 2.3

If $f \in S^*_+(b_1, \alpha)$, $z \in U$, for $0 \le \alpha < 1$, then |z| = r < 1, then

$$\max\left\{0, \ 1 - |b_1|r - \frac{1-\alpha}{1+\alpha}r^2\right\} \le \left|\frac{z}{f(z)}\right| \le 1 + |b_1|r + \frac{1-\alpha}{1+\alpha}r^2 \tag{3}$$

Proof: Since $f(z) \in S^*_+(b_1, \alpha)$,

by Theorem 1.2, $\frac{z}{f(z)}$ has the form

$$\frac{z}{f(z)} = b_1 z + \sum_{n=1}^{\infty} \lambda_n \frac{z}{f_n(z)}$$
$$= b_1 z + \lambda_1 \frac{z}{f_1(z)} + \sum_{n=2}^{\infty} \lambda_n \frac{z}{f_n(z)}$$
$$= b_1 z + \lambda_1 + \sum_{n=2}^{\infty} \lambda_n \left[1 + \frac{(1-\alpha)}{(n-1+\alpha)} z^n \right]$$

Mathematical Statistician and Engineering Applications ISSN: 2094-0343 2326-9865

(4)

$$= 1 + b_1 z + \sum_{n=2}^{\infty} \lambda_n \frac{(1-\alpha)}{(n-1+\alpha)} z^n$$

Then

$$\begin{split} \left| \frac{z}{f(z)} \right| &\leq 1 + |b_1 z| + \left| \sum_{n=2}^{\infty} \lambda_n \frac{(1-\alpha)}{(n-1+\alpha)} z^n \right| \\ &\leq 1 + |b_1| |z| + |z|^2 \left| \sum_{n=2}^{\infty} \lambda_n \frac{(1-\alpha)}{(n-1+\alpha)} \right| \\ &\leq 1 + |b_1| r + \frac{1-\alpha}{1+\alpha} r^2 \quad \text{for } |z| \leq r < 1 \end{split}$$

(since $\frac{(1-\alpha)}{(n-1+\alpha)}$ is decreasing)

And also from (4),

$$\begin{split} \left| \frac{z}{f(z)} \right| &\geq 1 - |b_1 z| - \left| \sum_{n=2}^{\infty} \lambda_n \frac{(1-\alpha)}{(n-1+\alpha)} z^n \right| \\ &\geq 1 - |b_1| |z| - |z|^2 \left| \sum_{n=2}^{\infty} \lambda_n \frac{(1-\alpha)}{(n-1+\alpha)} \right| \\ &\geq 1 - |b_1| r - \frac{1-\alpha}{1+\alpha} r^2 \quad \text{for } |z| \leq r < 1 \end{split}$$

Therefore

$$\max\left\{0, \ 1 - |b_1|r - \frac{1-\alpha}{1+\alpha}r^2\right\} \le \left|\frac{z}{f(z)}\right| \le 1 + |b_1|r + \frac{1-\alpha}{1+\alpha}r^2$$

Theorem 2.4

If $f \in S^*_+(b_1, \alpha)$, $z \in U$ and $0 \le \alpha < 1$, then $\max\left\{0, |b_1| - \frac{2(1-\alpha)}{1+\alpha} r\right\} \le \left|\left\{\frac{z}{f(z)}\right\}'\right| \le |b_1| + \frac{2(1-\alpha)}{1+\alpha}r, \text{ for } |z| = r < 1$ Proof: Since $f(z) \in S^*_+(b_1, \alpha)$, using $(4) \frac{z}{f(z)}$ can be written as $\frac{z}{f(z)} = 1 + b_1 z + \sum_{n=2}^{\infty} \lambda_n \frac{(1-\alpha)}{(n-1+\alpha)} z^n$ So $\left\{\frac{z}{f(z)}\right\}' = b_1 + \sum_{n=2}^{\infty} n\lambda_n \frac{(1-\alpha)}{(n-1+\alpha)} z^{n-1}$ $\left|\left\{\frac{z}{f(z)}\right\}'\right| \le |b_1| + \left|\sum_{n=2}^{\infty} n\lambda_n \frac{(1-\alpha)}{(n-1+\alpha)} z^{n-1}\right|$ $\le |b_1| + |z| \left|\sum_{n=2}^{\infty} n\lambda_n \frac{(1-\alpha)}{(n-1+\alpha)}\right|$ $\le |b_1| + \frac{2(1-\alpha)}{1+\alpha}r \quad \text{for } |z| = r \qquad (\text{since } \frac{(1-\alpha)}{(n-1+\alpha)} \text{ is decreasing})$

Mathematical Statistician and Engineering Applications ISSN: 2094-0343 2326-9865

and also

$$\begin{split} \left| \left\{ \frac{z}{f(z)} \right\}' \right| &\geq |b_1| - \left| \sum_{n=2}^{\infty} n\lambda_n \frac{(1-\alpha)}{(n-1+\alpha)} z^{n-1} \right| \\ &\geq |b_1| - |z| \left| \sum_{n=2}^{\infty} n\lambda_n \frac{(1-\alpha)}{(n-1+\alpha)} \right| \\ &\geq |b_1| - \frac{2(1-\alpha)}{1+\alpha} r \quad \text{for } |z| = r < 1 \end{split}$$

Therefore

$$\max\left\{0, |b_1| - \frac{2(1-\alpha)}{1+\alpha} r\right\} \le \left|\left\{\frac{z}{f(z)}\right\}'\right| \le |b_1| + \frac{2(1-\alpha)}{1+\alpha} r$$

3. Convex subclass of Generalized Rational Univalent Functions

Ahuja and Pawan [1]_obtained sufficient condition for convexity of generalized rational functions. Also proved the following condition:

The function
$$f(z) = \frac{z}{1 + \sum_{n=1}^{\infty} b_n z^n}$$
 is convex of order α in U if

$$\frac{4-\alpha}{1-\alpha} |b_1| + \sum_{n=1}^{\infty} \frac{(n-1)(3n+1-\alpha)}{1-\alpha} |b_n| \le 1$$
(5)

Imposing this condition, now this section defines a subclass $C_+(b_1, \alpha)$ of S_+ .

Definition 3.1

Let
$$b_1 \in \mathbb{C}, 0 \le |b_1| \le 1/4$$
 be fixed and $0 \le \alpha < 1$.
 $C_+(b_1, \alpha) = \{f(z) \in S : \frac{z}{f(z)} = 1 + \sum_{n=1}^{\infty} b_n z^n, \ z \in U, \ b_n \ge 0 \text{ for } n \ge 2,$
 $(4 - \alpha)|b_1| + \sum_{n=1}^{\infty} (n - 1)(3n + 1 - \alpha) \ b_n \le 1 - \alpha\}.$
(6)

Now, the next result shows coefficient characterization for the subclass $C_+(b_1, \alpha)$

Theorem 3.2

Let $f(z) \in S$ for $z \in U$ be of the form $f(z) = \frac{z}{1 + \sum_{n=1}^{\infty} b_n z^n}$ and $b_1 \in \mathbb{C}, |b_1| \le 1/4$ be fixed. Then $f \in C_+(b_1, \alpha)$ for $0 \le \alpha < 1$ if and only if f(z) has the form

$$\frac{z}{f(z)} = b_1 z + \sum_{n=1}^{\infty} \lambda_n \frac{z}{f_n(z)}$$

For some sequence $\{\lambda_n\}_{n=1}^{\infty}$ of non-negative real numbers with $\sum_{n=1}^{\infty} \lambda_n = 1$ and

$$\frac{z}{f_n(z)} = \begin{cases} 1, & \text{for } n = 1\\ 1 + \frac{1-\alpha}{(n-1)(3n+1-\alpha)} z^n, & \text{for } n = 2,3, \dots \end{cases}$$
(7)

Proof:

Suppose that $f(z) \in S$ has the form (1) for some sequence $\{\lambda_n\}_{n=1}^{\infty}$ of non-negative real numbers with $\sum_{n=1}^{\infty} \lambda_n = 1$. To prove that the function $f(z) \in C_+(b_1, \alpha)$.

Now, write
$$\frac{z}{f(z)}$$
 as

$$\frac{z}{f(z)} = b_1 z + \sum_{n=1}^{\infty} \lambda_n \frac{z}{f_n(z)}$$

$$= b_1 z + \lambda_1 + \sum_{n=2}^{\infty} \lambda_n \left[1 + \frac{1-\alpha}{(n-1)(3n+1-\alpha)} z^n \right] \quad (\text{ by the definition of } \frac{z}{f_n(z)})$$

$$= b_1 z + \lambda_1 + \sum_{n=2}^{\infty} \lambda_n + \sum_{n=2}^{\infty} \lambda_n \frac{1-\alpha}{(n-1)(3n+1-\alpha)} z^n$$

$$= 1 + b_1 z + \sum_{n=2}^{\infty} \lambda_n \frac{1-\alpha}{(n-1)(3n+1-\alpha)} z^n$$

$$= 1 + b_1 z + \sum_{n=2}^{\infty} b_n z^n \quad \text{where} \quad b_n = \lambda_n \frac{1-\alpha}{(n-1)(3n+1-\alpha)} \ge 0, \ n \ge 2.$$
Taking $\lambda_1 \in \mathbb{R}$ such that $|b_1| \le \frac{1-\alpha}{4-\alpha} \lambda_1$,

$$\begin{aligned} (4-\alpha)|b_1| + \sum_{n=2}^{\infty} (n-1)(3n+1-\alpha) \, b_n \\ &\leq (1-\alpha)\lambda_1 + \sum_{n=2}^{\infty} (n-1)(3n+1-\alpha)\lambda_n \frac{1-\alpha}{(n-1)(3n+1-\alpha)} \\ &= (1-\alpha)\lambda_1 + \sum_{n=2}^{\infty} (1-\alpha)\lambda_n \\ &= (1-\alpha)\sum_{n=1}^{\infty} \lambda_n = (1-\alpha) \end{aligned}$$

This shows that condition (6) is satisfied.

Hence $f(z) \in C_+(b_1, \alpha)$ for $0 \le \alpha < 1$.

Conversely, suppose $f(z) \in C_+(b_1, \alpha)$ for $z \in U$.

Therefore, by (6)

$$(4-\alpha)|b_1| + \sum_{n=2}^{\infty} (n-1)(3n+1-\alpha) b_n \le (1-\alpha)$$

Now, set $\lambda_n = \frac{(n-1)(3n+1-\alpha)}{(1-\alpha)} b_n$ for $n \ge 2$ and $\lambda_1 = 1 - \sum_{n=2}^{\infty} \lambda_n$

Therefore $\frac{z}{f(z)} = 1 + b_1 z + \sum_{n=2}^{\infty} b_n z^n$ $= \lambda_1 + \sum_{n=2}^{\infty} \lambda_n + b_1 z + \sum_{n=2}^{\infty} \lambda_n \frac{1-\alpha}{(n-1)(3n+1-\alpha)} z^n$ $= b_1 z + \lambda_1 + \sum_{n=2}^{\infty} \lambda_n \left[1 + \frac{1-\alpha}{(n-1)(3n+1-\alpha)} z^n \right]$ $= b_1 z + \sum_{n=1}^{\infty} \lambda_n \frac{z}{f_n(z)}$

This completes the proof.

The following results discuss growth and distortion bounds for the subclass $C_+(b_1, \alpha)$.

Theorem 3.3

If $f \in C_+(b_1, \alpha)$ for $z \in U$ and $0 \le \alpha < 1$, $0 \le |b_1| \le 1/4$, then for |z| = r < 1, then $\max\left\{0, \ 1 - |b_1|r - \frac{1-\alpha}{7-\alpha}r^2\right\} \le \left|\frac{z}{f(z)}\right| \le 1 + |b_1|r + \frac{1-\alpha}{7-\alpha}r^2$

Proof: Since $f(z) \in C_+(b_1, \alpha)$, by Theorem 2.2

$$\frac{z}{f(z)} = b_1 z + \sum_{n=1}^{\infty} \lambda_n \frac{z}{f_n(z)}$$

= $b_1 z + \lambda_1 + \sum_{n=2}^{\infty} \lambda_n \left[1 + \frac{1 - \alpha}{(n-1)(3n+1-\alpha)} z^n \right]$
= $1 + b_1 z + \sum_{n=2}^{\infty} \lambda_n \frac{1 - \alpha}{(n-1)(3n+1-\alpha)} z^n$ (8)

So

From (8), write

$$\begin{aligned} \left| \frac{z}{f(z)} \right| &\ge 1 - |b_1 z| - \left| \sum_{n=2}^{\infty} \lambda_n \frac{1 - \alpha}{(n-1)(3n+1-\alpha)} z^n \right| \\ &\ge 1 - |b_1| |z| - |z|^2 \left| \sum_{n=2}^{\infty} \lambda_n \frac{1 - \alpha}{(n-1)(3n+1-\alpha)} \right| \\ &\ge 1 - |b_1| r - \frac{1 - \alpha}{(7-\alpha)} r^2 \quad \text{for } |z| = r < 1 \end{aligned}$$

Therefore

$$\max\left\{0, \ 1 - |b_1|r - \frac{1-\alpha}{(7-\alpha)}r^2\right\} \le \left|\frac{z}{f(z)}\right| \le 1 + |b_1|r + \frac{1-\alpha}{(7-\alpha)}r^2$$

Theorem 3.4

If
$$f \in C_+(b_1, \alpha)$$
, $z \in U$ for $0 \le \alpha < 1, 0 \le |b_1| \le 1/4$, $|z| = r < 1$, then

$$\max\left\{0, |b_1| - \frac{2(1-\alpha)}{7-\alpha}r\right\} \le \left|\left\{\frac{z}{f(z)}\right\}'\right| \le |b_1| + \frac{2(1-\alpha)}{7-\alpha}r.$$

Proof: Let $f(z) \in C_+(b_1, \alpha)$, then from (8),

$$\frac{z}{f(z)} = 1 + b_1 z + \sum_{n=2}^{\infty} \lambda_n \frac{1-\alpha}{(n-1)(3n+1-\alpha)} z^n$$
$$\left\{\frac{z}{f(z)}\right\}' = b_1 + \sum_{n=2}^{\infty} n \lambda_n \frac{1-\alpha}{(n-1)(3n+1-\alpha)} z^{n-1}$$

And

also

$$\begin{split} \left| \left\{ \frac{z}{f(z)} \right\}' \right| &\ge |b_1| - \left| \sum_{n=2}^{\infty} n \,\lambda_n \frac{1-\alpha}{(n-1)(3n+1-\alpha)} z^{n-1} \right| \\ &\ge |b_1| - |z| \left| \sum_{n=2}^{\infty} n \,\lambda_n \frac{1-\alpha}{(n-1)(3n+1-\alpha)} \right| \\ &\ge |b_1| - \frac{2(1-\alpha)}{7-\alpha} r \text{ for } |z| = r < 1 \end{split}$$

Therefore

 $\max\left\{0, |b_1| - \frac{2(1-\alpha)}{7-\alpha} r\right\} \le \left|\left\{\frac{z}{f(z)}\right\}'\right| \le |b_1| + \frac{2(1-\alpha)}{7-\alpha} r$

References:

- 1. Ahuja. O. P, Pawan, K, Jain On the spiral-likeness of rational functions, Rendiconti del Circolo Matematico di . Palermo Serie II, Tomo XXXV(1986), pp.376-385.
- 2. Mitrinovic´.D.S.- On the univalence of rational functions, Univ. Beograd.Publ. Elektrotehn. Fak. Ser. Mat. Fiz. 634–677 (1979) 221–227.
- 3. Obradovi'c. M., Ponnusamy.S., Coefficient characterization for certain classes of univalent functions, Bull. Belg. Math. Soc. Simon Stevin 16 (2009), 251–263.
- Obradovi´c. M., Ponnusamy. S., Singh. V. and Vasundhra. P. Univalency, Starlikeness and Convexity Applied to Certain Classes of Rational Functions, Analysis22, 225 - 242 (2002).
- Obradovi´c. M. Starlikeness and Certain Class of Rational Functions Math.Nachr. 175 (1995) 263-268.
- Reade M.O, Silverman. H, and Todorov.P.G. On the starlikeness and convexity of a class of analytic functions, Rendiconti del Circolo Matematico di . Palermo SerieII, Tomo XXXIII(1984), pp.265–272.

7. Reade M.O, Silverman. H, and Todorov.P.G. - Classes of rational functions-Contemporary Mathematics, Volume 38 (1985), 99-103.