$\delta\mathchar`-Semi Normal and <math display="inline">\delta\mathchar`-Semi Compact Spaces$

Afraa R. Sadek¹, Ayman A. Ali², Jalal H. Hussein³ and Haider Jebur Ali⁴

^{1,2}Department of mathematics, College of Science, Baghdad University

³Department of mathematics, College of Science Women, Baghdad University

⁴ Department of mathematics, College of Science, Al-MustansiriyaUniversity

Article Info	Abstract
Page Number: 2062 - 2069 Publication Issue:	In this paper by using δ -semi.open sets we introduced the concept of
Vol 71 No. 4 (2022)	weakly $\delta\mbox{-semi.normal}$ and $\delta\mbox{-semi.normal}$ spaces . Many properties and
	results were investigated and studied. Also we present the notion of $\delta\mathchar`-$
Article History	semi.compact spaces and we were able to compare with it $\delta\mbox{-semi.regular}$
Article Received: 25 March 2022	spaces.
Revised : 30 April 2022 Accented: 15 June 2022	Keyword: Generalized separation axioms, \mathcal{R}_1 , \mathcal{R}_0 - spaces, δ -semi.open
Publication: 19 August 2022	regular and normal spaces.

1. Introduction and preliminaries.

In what follows \mathcal{X} , \mathcal{Y} denoted topological spaces. Let \mathscr{B} be a subset of a space \mathcal{X} , we denote the interior and closure of \mathscr{B} by $\operatorname{Int}(\mathscr{B})$ and $\operatorname{Cl}(\mathscr{B})$ respectively.Levine [4] introduced the concept of semi.open sets and semi. continuouity in topological spaces. A subset \mathscr{B} is said to be semi.open if and only if $\mathscr{B} \subset \operatorname{Cl}(\operatorname{Int}(\mathscr{B}))$. The complement of semi.open is called semi.closed. A subset \mathscr{B} is called regular closed (resp.regular open) if $\operatorname{Cl}(\operatorname{Int}(\mathscr{B})) = \mathscr{B}$ (resp.Int($\operatorname{Cl}(\mathscr{B})$)= $\mathscr{B}[5]$. A subset \mathscr{B} is said to be δ -open [5] if for each $x \in \mathscr{B}$ there exists regular open set \mathscr{H} such that $x \in \mathscr{H} \subset \mathscr{B}$. A subset \mathscr{B} is said δ -semi.open[2] if there exists a δ -open set \mathscr{V} of \mathcal{X} such that $\mathcal{V} \subset \mathscr{B} \subset \operatorname{Cl}(\mathcal{V})$.The complement of δ -semi.opencalled δ -semi.closed. We denote the family of all δ -semi.open(resp. δ -semi.closed) in a space \mathcal{X} by δ -SO(\mathcal{X}) (resp. δ -SC(\mathcal{X})).

The intersection of δ -semi.closed(resp. δ -semi.open) that contain a subset \mathcal{B} is called the δ -semi.closure(resp. δ -semi.kernal) and denotes by s.Cl_{δ}(\mathcal{B}) (resp.sker_{δ}(\mathcal{B})) [2]. Recall that [2] a space \mathcal{X} is δ -semi. \mathcal{T}_1 (resp. δ -semi. \mathcal{R}_0 , δ -semi. \mathcal{R}_1) if for any distinct pairs of point x and ψ in \mathcal{X} , there are two δ -semi.open \mathcal{U} and \mathcal{V} such that

 $x \in \mathcal{U} - \mathcal{V}$ and $\psi \in \mathcal{V}$ - \mathcal{U} (resp. If every δ -semi.open set contains the δ -semi.closure of each of its singleton, if for x, ψ in \mathcal{X} with s.Cl_{δ}({x}) \neq s.Cl_{δ}({ ψ }), there exist distinct δ -semi.open sets \mathcal{U} and \mathcal{V} such that s.Cl_{δ}({x}) $\subset \mathcal{U}$ and s.Cl_{δ}({ ψ }) $\subset \mathcal{V}$). Finally A.A.Ali and A.R.Sadek [1] studied in depth the concept of δ -semi.regulative of spaces.

A space \mathcal{X} is said to be δ -semi.regular if for each $x \in \mathcal{X}$ and each semi.closed set \mathcal{H} such that $x \notin \mathcal{H}$ there exist disjoint $\mathcal{V}_1, \mathcal{V}_2 \in \delta$ -SO(\mathcal{X}) such that $x \in \mathcal{V}_1, \mathcal{H} \subset \mathcal{V}_2$. In this paper we introduced the δ -semi.normal and weakley δ -semi.normal spaces. Many results were proved as well as we investigated the relationship between δ -semi normal and δ -semi.regular by us the δ -semi.compact spaces.

2. Weakly δ -semi.normal spaces .

We will start with the following definition

Definition 2.1. Aspace \mathcal{X} is called weakly δ -semi.normal(w. δ -semi.normal for short), if for each distinct closed subset \mathcal{E}_1 and \mathcal{E}_2 of \mathcal{X} there exist disjoint δ - semi. open set \mathcal{U} , \mathcal{V} such that $\mathcal{E}_1 \subset \mathcal{U}$, $\mathcal{E}_2 \subset \mathcal{V}$.

Example 2.2.let (\mathcal{X}, τ) be a topological space such that $\mathcal{X} = \{a, b, c, d\}$ and

 $\tau = \{\phi, \mathcal{X}, \{a\}, \{b\}, \{a, b\}\}$ implies $\tau^c = \{\phi, \mathcal{X}, \{b, c, d\}, \{a, c, d\}, \{c, d\}\}$. Clearly the family of all δ-open sets is the family τ and δ .S.O(\mathcal{X})= $\{\phi, \mathcal{X}, \{a\}, \{b\}, \{a, b\}\}$

 $\{a,c\}$ {b,c}, {b,d}, {a,b,c}, {a,b,d}, {a,c,d}, {b,c,d}. It is not difficult to check that (X, τ) is not normal while it is w. δ -semi.normal space.

Theorem2.3. A space \mathcal{X} is w. δ -semi.normal if for each closed set \mathcal{F} of \mathcal{X} , the δ -semi.closedneighborhood of \mathcal{F} form a basis of neighborhood of \mathcal{F} .

Proof: Let \mathcal{F} be a closed set in \mathcal{X} and let \mathcal{N} be a neighborhood of \mathcal{F} , so there is an open set \mathcal{O} in \mathcal{X} such that $\mathcal{F} \subset \mathcal{O} \subset \mathcal{N}$. Thus \mathcal{F} and \mathcal{X} - \mathcal{O} are distinct closed sets in

 \mathcal{X} , and by the w. δ -semi.normality, we have $\mathcal{U}, \mathcal{V} \in \delta.SO(\mathcal{X})$ such that $\mathcal{F} \subset \mathcal{U}, (\mathcal{X}-\mathcal{O}) \subset \mathcal{V}$ and $\mathcal{U} \cap \mathcal{V} = \phi$. Hence $\mathcal{F} \subset \mathcal{U} \subset (\mathcal{X}-\mathcal{V}) \subset \mathcal{O} \subset \mathcal{N}$, thus $\mathcal{X}-\mathcal{V}$ is δ -semi.closedneighborhood of \mathcal{F} contains in \mathcal{N} .

Recall that [1] a map $f: \mathcal{X} \to \mathcal{Y}$ is said to be δ -semi.open (resp. δ -semi.irresulute) if $f(\mathcal{V}) \in \delta.SO(\mathcal{Y})$ where $\mathcal{V} \in \delta.SO(\mathcal{X})$ (resp. $f^{-1}(\mathcal{U}) \in \delta.SO(\mathcal{X})$ where $\mathcal{U} \in \delta.SO(\mathcal{Y})$).

Theorem2.4.let $f: \mathcal{X} \rightarrow \mathcal{Y}$ be a surjective, continuous and δ -semi.open map, then the image of w. δ -semi.normalspace is w. δ -semi.normal.

Proof. Let $\mathcal{E}_1, \mathcal{E}_2$ be a disjoint closed sets in the space \mathcal{Y} . By the continuity of f we have $f^{-1}(\mathcal{E}_1), f^{-1}(\mathcal{E}_2)$ are closed in \mathcal{X} . Now $f^{-1}(\mathcal{E}_1) \cap f^{-1}(\mathcal{E}_2) = \phi$ [6], so by the w. δ -semi.normality of the space \mathcal{X} , there are two disjoint sets $\mathcal{U}, \mathcal{V} \in \delta$. SO(\mathcal{X}) such that $f^{-1}(\mathcal{E}_1) \subset \mathcal{U}$ and $f^{-1}(\mathcal{E}_2) = \mathcal{V}$. Further $f(f^{-1}(\mathcal{E}_1)) = \mathcal{E}_1 \subset f(\mathcal{U}), f(f^{-1}(\mathcal{E}_2)) = \mathcal{E}_2 \subset f(\mathcal{V})$ and Since f is δ - semi. open the proof is complete

Theorem 2.5. Let $f: \mathcal{X} \rightarrow \mathcal{Y}$ be an injective, closed and δ -semi.irresolutemap.Then \mathcal{X} is w. δ -semi.normalspace if \mathcal{Y} is δ -semi.normal.

Proof.Suppose \mathcal{E}_1 , \mathcal{E}_2 are two are disjoint closed subsets of \mathcal{X} and since f is injective and closed ,so $f(\mathcal{E}_1), f(\mathcal{E}_2)$ are disjoint closed in \mathcal{Y} .But \mathcal{Y} is w. δ -semi.normal, hence there are two disjoint $\mathcal{U}, \mathcal{V} \in \delta$.SO(\mathcal{Y}) such that $f(\mathcal{E}_1) \subset \mathcal{U}$ $f(\mathcal{E}_2) \subset \mathcal{V}$.Now $\mathcal{E}_1 \subset f^{-1}(f(\mathcal{E}_1)) \subset f^{-1}(\mathcal{U})$ and $\mathcal{E}_2 \subset f^{-1}(f(\mathcal{E}_2)) \subset f^{-1}(\mathcal{V})$ [6] and since $\mathcal{U} \cap \mathcal{V} = \phi$, therefore $f^{-1}(\mathcal{U})$ and $f^{-1}(\mathcal{V})$ are required subsets.

3. δ -semi.normaland δ -semi.compact spaces .

We present in this section a new type of spaces, we called it δ -semi.normal space. Many properties of this space were studied. First, we introduce the following definition.

Definition 3.1. A space \mathcal{X} is said to be δ -semi.normalif for each disjoint semi.closed sets \mathcal{F}, \mathcal{K} of \mathcal{X} . There exist $\mathcal{U}, \mathcal{V} \in \delta$.SO(\mathcal{X}) such that $\mathcal{F} \subset \mathcal{U}, \mathcal{K} \subset \mathcal{V}$ and $\mathcal{U} \cap \mathcal{V} = \phi$.

Example 3.2.Consider the following topology $\tau = \{\phi, \mathcal{X}, \{c_1\}, \{c_2\}, \{c_1, c_2\}\}$ on the set $\mathcal{X} = \{c_1, c_2, c_3\}$. Then δ .SO(\mathcal{X}) = $\{\phi, \mathcal{X}, \{c_1\}, \{c_2\}, \{c_1, c_2\}, \{c_2, c_3\}, \{c_1, c_3\}\}$ and the family of semiclosed are S.C(\mathcal{X}) = $\{\phi, \mathcal{X}, \{c_2, c_3\}, \{c_1, c_3\}, \{c_3\}, \{c_1\}, \{c_2\}\}$. Now it is not difficult to show that the space \mathcal{X} is δ -semi.normal.

Some properties are holds in a δ -semi.normal spaces as shown in the next theorem and remark.

Theorem 3.3.Let \mathcal{X} be a δ -semi.normal space, then for each semi.closed $\mathcal{F} \subset \mathcal{X}$ and for every δ -semi.open set \mathcal{V} containing \mathcal{F} there exists $\mathcal{U} \in \delta$.SO(\mathcal{X}) such that $\mathcal{F} \subset \mathcal{U} \subset \text{sCl}_{\delta}(\mathcal{U}) \subset \mathcal{V}$.

Proof.Let $\mathcal{F} \subset \mathcal{X}$ and let \mathcal{V} be any δ -semi.open set containing \mathcal{F} .Now $\mathcal{F} \cap (\mathcal{X} - \mathcal{V}) = \phi$ and $(\mathcal{X} - \mathcal{V})$ is δ -semi.closed ,hence it is semi.closed [5].By the δ -semi.normality of \mathcal{X} , there exist $\mathcal{U}, \mathcal{G} \in \delta$.SO (\mathcal{X}) such that $\mathcal{F} \subset \mathcal{U}$, ($\mathcal{X} - \mathcal{V}$) $\subset \mathcal{G}$ and $\mathcal{U} \cap \mathcal{G} = \phi$. Thus $\mathcal{U} \subset \mathcal{X} - \mathcal{G}$ and since ($\mathcal{X} - \mathcal{G}$) is δ -semi.closed, hence $\mathcal{F} \subset \mathcal{U} \subset \mathrm{SCl}_{\delta}(\mathcal{U}) \subset (\mathcal{X} - \mathcal{G}) \subset \mathcal{V}$.

Remark 3.4. If \mathcal{X} is δ -semi.normal space than for any two distinct semi.closed sets \mathcal{F}, \mathcal{K} , then $\operatorname{sker}_{\delta}(\mathcal{F}) \cap \operatorname{sker}_{\delta}(\mathcal{K}) = \phi$.

Proof. From δ -semi.normality of \mathcal{X} we have $\mathcal{U}, \mathcal{V} \in \delta$.SO(\mathcal{X}) such that $\mathcal{F} \subset \mathcal{U}, \mathcal{K} \subset \mathcal{V}$ and $\mathcal{U} \cap \mathcal{V} = \phi$ and since $\operatorname{sker}_{\delta}(\mathcal{F}) \subset \mathcal{U}, \operatorname{sker}_{\delta}(\mathcal{K}) \subset \mathcal{V}[2]$, hence $\operatorname{sker}_{\delta}(\mathcal{F}) \cap \operatorname{sker}_{\delta}(\mathcal{K}) = \phi$.

Caldas[2] shows that any δ -semi \mathcal{R}_1 space is δ -semi \mathcal{R}_0 . In the following preposition we will show the converse is true in δ -semi.normal spaces.

Proposition 3.5. A δ -semi \mathcal{R}_0 and δ -semi.normal space δ -semi \mathcal{R}_1 .

Proof.Let \mathcal{X} be a space and $x, \mathcal{Y} \in \mathcal{X}$ such that $sCl_{\delta}(\{x\}) \neq sCl_{\delta}(\{y\})$. Since \mathcal{X}

is δ -semi \mathcal{R}_{o} , hences $\operatorname{Cl}_{\delta}(\{x\}) \cap \operatorname{sCl}_{\delta}(\{y\}) = \phi$ [2, p.123]. But $\operatorname{sCl}_{\delta}(\{x\})$, $\operatorname{sCl}_{\delta}(\{y\})$ are δ -semi.closed sets [2] consequently semi.closed sets [5], hence by the δ -semi.normality of \mathcal{X} there exist $\mathcal{U}, \mathcal{V} \in \delta.$ SO(\mathcal{X}) such that $\operatorname{sCl}_{\delta}(\{x\}) \subset \mathcal{U}, \operatorname{sCl}_{\delta}(\{y\}) = \mathcal{V}$ and $\mathcal{U} \cap \mathcal{V} = \phi$. Thus, \mathcal{X} is δ -semi \mathcal{R}_{1} .

The following two theorems are good characterizations for δ -semi.normalspaces.

Theorem3.6. A space \mathcal{X} is δ -semi.normalif and only if for eachdisjoint semi.closed sets \mathcal{E} and \mathcal{F} , there exists a δ -semi.open set \mathcal{U} containing \mathcal{E} such that $\mathcal{F} \cap \mathrm{sCl}_{\delta}(\mathcal{U}) = \phi$.

Proof. Suppose \mathcal{X} is a δ -semi.normal space, and $\mathcal{F} \cap \mathcal{E} = \phi$, where \mathcal{E} and \mathcal{F} are semi.closed sets in \mathcal{X} . Thus there exist $\mathcal{U}, \mathcal{V} \in \delta$.SO(\mathcal{X}) such that $\mathcal{F} \subset \mathcal{V}, \mathcal{E} \subset \mathcal{U}$ and $\mathcal{U} \cap \mathcal{V} = \phi$, hence \mathcal{V} is δ -semi.open containing \mathcal{F} which not intersect \mathcal{U} , implies $\mathcal{F} \cap \operatorname{sCl}_{\delta}(\mathcal{U}) = \phi$. For sufficiency since there exists $\mathcal{U} \in \delta$.SO (\mathcal{X}) containing \mathcal{E} such that $\mathcal{F} \cap \operatorname{sCl}_{\delta}(\mathcal{U}) = \phi$ where \mathcal{F} and \mathcal{E} as in the assumption, that is mean there exist a family { $\mathcal{V}_{\alpha}, \alpha \in \Delta$ } of δ -semi.open sets containing x_{α} for all $x_{\alpha} \in \mathcal{E}$ and $\mathcal{U} \cap \mathcal{V}_{\alpha} = \phi$, $\alpha \in \Delta$. But $\bigcup_{\alpha \in \Delta} {\{\mathcal{V}_{\alpha}\}}$ is δ -semi.open[2] which complete the proof.

Theorem 3.7. In any topological space the following are equivalent.

(1) \mathcal{X} is δ -semi.normal space.

(2) For any two distinct δ -semi.closed sets \mathcal{F} and \mathcal{K} there exists two δ -semi.open sets \mathcal{V}_1 and \mathcal{V}_2 such that $\mathcal{F} \subset \mathcal{V}_1$ and $\mathcal{K} \subset \mathcal{V}_2$ and $\mathrm{sCl}_{\delta}(\mathcal{V}_1) \cap \mathrm{sCl}_{\delta}(\mathcal{V}_2) = \phi$.

Proof.(2) \rightarrow (1) obviously.

(1) \rightarrow (2) Take any two distinct semiclosed sets \mathcal{F} and \mathcal{K} there exist disjoint δ -semi.open sets \mathcal{V}_1 and \mathcal{V}_2 such that $\mathcal{F} \subset \mathcal{V}_1$, and $\mathcal{K} \subset \mathcal{V}_2$. By [1] we have two δ -semi.open sets \mathcal{U} and \mathcal{V} such that $\mathcal{F} \subset \mathcal{U} \subset \mathrm{sCl}_{\delta}(\mathcal{U}) \subset \mathcal{V}_1$ and $\mathcal{K} \subset \mathcal{V} \subset \mathrm{sCl}_{\delta}(\mathcal{V}) \subset \mathcal{V}_2$ since $\mathcal{V}_1 \cap \mathcal{V}_2 = \phi$ impliess $\mathrm{Cl}_{\delta}(\mathcal{U}) \cap \mathrm{sCl}_{\delta}(\mathcal{V}) = \phi$ and we have done.

A δ -semi.normal space is δ -semi.regular under a given condition as shown in the following remark.

Remark. 3.8. A δ -semi.normaland δ -semi \mathcal{T}_1 space is δ -semi.regular.

Proof. Let \mathcal{F} be a semiclosed subset in \mathcal{X} and let x be any point in \mathcal{X} such that $x \notin \mathcal{F}$. Now since \mathcal{X} is δ -semi \mathcal{T}_1 , then every singleton in \mathcal{X} is δ -semiclosed and , then is semiclosed [5]. Thus there exist a disjoint $\mathcal{U}, \mathcal{V} \in \delta$. SO(\mathcal{X}) such that $x \in \mathcal{U}$ and $\mathcal{F} \in \mathcal{V}$, hence \mathcal{X} is δ -semiclosed.

Corollary3.9. A δ -semi.normal and δ -semi \mathcal{T}_1 space is δ -semi \mathcal{R}_1 .

Proof. Follows by remark (3.8)and proposition (3.5) since each δ -semi.regular is δ -semi $\mathcal{R}_0[1,p.956]$.

Before we will give the next theorem, we present the following definitions.

Definition 3.10. A covering of a set \mathcal{X} is a family \mathfrak{B} of subsets of \mathcal{X} such that

 $\mathcal{X}=\cup\{\mathcal{U}:\mathcal{U}\in\mathfrak{B}\}$. If \mathcal{X} is a topological space and every member of \mathfrak{B} is δ -semi.open, then \mathfrak{B} is called δ -semi.open cover of \mathcal{X} .

Definition 3.11. A space \mathcal{X} is said to be δ -semi.compact if every δ -semi. open cover of \mathcal{X} has a finite subcover.

The following is an example of δ -semi.compact space

Example 3.12.Let (\mathbb{R}, τ_{ind}) the Indiscrete topological space on the set of the real number \mathbb{R} . It is not difficult to check that (\mathbb{R}, τ_{ind}) is δ -semi.compact space.

Theorem 3.13. A δ -semi.compact , δ -semi.regular and δ -semi \mathcal{T}_1 space is δ -semi.normal space.

Proof.Suppose \mathcal{X} is δ -semi.regular and δ -semi \mathcal{T}_1 then \mathcal{X} is δ -semi $\mathcal{T}_2[1]$. Now let \mathcal{E} , \mathcal{F} be a disjoint semi.closed sets .Fix $e \in \mathcal{E}$ since \mathcal{X} is δ -semi \mathcal{T}_2 , then for each $f \in \mathcal{F}$ there exist δ -semi.open sets \mathcal{U}_{α} , \mathcal{V}_{α} such that $e \in \mathcal{V}_{\alpha}$, $f \in \mathcal{U}_{\alpha}$ and $\mathcal{V}_{\alpha}, \cap \mathcal{U}_{\alpha} = \phi$. Thus $\{\mathcal{U}_{\alpha}; \alpha \in \Delta\}$ is δ -semi.open cover of \mathcal{F} and since \mathcal{F} is δ -semi.compact so there exists a finite sub cover $\{\mathcal{U}_{\alpha 1}, \mathcal{U}_{\alpha 2}, \mathcal{U}_{\alpha 2$

..., $\mathcal{U}_{\alpha n}$ }, put $\mathcal{U}_{e} = \mathcal{U}_{\alpha 1} \cup \mathcal{U}_{\alpha 2} \cup ... \cup \mathcal{U}_{\alpha n}$ and $\mathcal{V}_{e} = \mathcal{V}_{\alpha 1} \cap \mathcal{V}_{\alpha 2} \cap ... \cap \mathcal{V}_{\alpha n}$ is δ -semi.open [2] and since \mathcal{X} is δ -semi.regular, then $\mathcal{V}_{\alpha i}$, i=1,2...n are also δ -semi.closed[1]. Thus \mathcal{V}_{e} is δ -semi.closed [2]. Thus we have $\mathcal{F} \subset \mathcal{U}_{e} \in \mathcal{V}_{e}$ and $\mathcal{V}_{e} \cap \mathcal{U}_{e=} \phi$. Now let e vary throughout \mathcal{E} , so we obtain a δ -semi.open cover { \mathcal{V}_{e} ; $e \in \mathcal{E}$ } of \mathcal{E} .As \mathcal{E} is δ -semi.compact there exists a finite sub cover \mathcal{V}_{e1} , $\mathcal{V}_{e2}, ..., \mathcal{V}_{er}$ means $\mathcal{V} = \mathcal{V}_{e1} \cup \mathcal{V}_{e2} \cup ... \cup \mathcal{V}_{er}$ and $\mathcal{U} = \mathcal{U}_{e1} \cap \mathcal{U}_{e2} ... \cap \mathcal{U}_{en}$. Now \mathcal{V} is δ -semi.open [2] and the δ -semi.regularity \mathcal{U} is also δ -semi.open. Then $\mathcal{F} \subset \mathcal{U}$, $\mathcal{E} \subset \mathcal{V}$ and $\mathcal{U} \cap \mathcal{V} = \phi$, hence \mathcal{X} is δ -semi.normal.

Lemma3.14. [3]If $f: \mathcal{X} \to \mathcal{Y}$ is continuous and open map, and if \mathcal{A} is semi.open in \mathcal{X} , then $f(\mathcal{A})$ is semi.open in \mathcal{Y} .

Under the same condition of f in the above lemma we have the following theorem.

Theorem3.15.Let $f: \mathcal{X} \rightarrow \mathcal{Y}$ be an injective, δ -semi.irresolute map, and \mathcal{Y} is δ -semi.normal space, then \mathcal{X} is δ -semi.normal space.

Proof.Suppose \mathcal{E}_1 , \mathcal{E}_2 are any disjoint semi.closed subset of \mathcal{X} . Now $f(\mathcal{E}_1), f(\mathcal{E}_2)$ are semi.closed (3.14) and disjoint since f is injective .Thus by the δ -semi.normality of \mathcal{Y} , there exist disjoint $\mathcal{U}, \mathcal{V} \in \delta$.SO(\mathcal{Y}) such that $f(\mathcal{E}_1) \subset \mathcal{U}, f(\mathcal{E}_2) \subset \mathcal{V}$. But $\mathcal{E}_1 \subset f^{-1}(f(\mathcal{E}_1)) \subset f^{-1}(\mathcal{U}), \mathcal{E}_2 \subset f^{-1}(f(\mathcal{E}_2)) \subset f^{-1}(\mathcal{V})$, clear that each of $f^{-1}(\mathcal{U}), f^{-1}(\mathcal{V})$ are δ -semi.open further they are disjoint [7]. Hence \mathcal{X} is δ -semi.normal space

Theorem 3.16.Let $f: \mathcal{X} \rightarrow \mathcal{Y}$ be an injective, continuous, and δ -semi.open, then \mathcal{Y} is δ -semi.normal if \mathcal{X} is δ -semi.normal space.

Proof.Suppose \mathcal{X} is δ -semi.normalspace.Let \mathcal{E}_1 , \mathcal{E}_2 are two disjoint semi.closed subset in \mathcal{Y} .Now since f is bijective and irresolute continuous, thus $f^{-1}(\mathcal{E}_1), f^{-1}(\mathcal{E}_2)$ are disjoint and semi.closed in \mathcal{X} , so by the δ -semi.normality of \mathcal{X} there exist $\mathcal{U}, \mathcal{V} \in \delta$.SO(\mathcal{X}) such that $f^{-1}(\mathcal{E}_1) \subset \mathcal{U}, f^{-1}(\mathcal{E}_2) \subset \mathcal{V}$ and $\mathcal{U} \cap \mathcal{V} = \phi$, hence $f(f^{-1}(\mathcal{E}_1)) = \mathcal{E}_1 \subset f(\mathcal{U})$ and $f(f^{-1}(\mathcal{E}_2)) = \mathcal{E}_2 \subset f(\mathcal{V})$. It is clear $f(\mathcal{U}), f(\mathcal{V})$ are disjoint and since f is δ -semi.open map so we have done .

Reference

- [1]A.A.Ali and A.R.Sadek,On regularδ-semi.openspace,Journal of interdisciplinary of mathematics 24(4),(2021),pp.953-960.
- [2] M.Caldas and T.Noiri, More on δ -semi.open sets ,Note di Mathematica.22 (2)(2003),pp.113-126.
- [3] S.G. Crossley and S.K. Hildebrand, Semi-topological properties, FundamentalMathematicae 74(3), (1972), pp.233-257.
- [4] N.Levine, Semi.open sets and continuity in topological space, The American Mathematical Monthly ,70(1),(1963),pp.36-41.
- [5] T. Noiri, Remarks on δ -semi.open sets and δ -preopen sets, Demonstratio Mathematica, 36,(2003),pp.1007-1020.
- [6]S.Willard, General Topology, Dover Publications, (2012).
- [7]A.R.Sadek,More on the minimal set of periods, Iraqi Journal of science 56(4A),(2015),pp.2453-2958.