Construction the Linear Codes in Projective Plane of Order Sixteen

${ }^{1}$ Najm Abdulzahra Makhrib Al-Seraji, ${ }^{2}$ Dunia Alawi Jarwan
Department of Mathematics, College of Science, Mustansiriyah University, Baghdad, Iraq
dr.najm@uomustansiriyah.edu.iq
dunia.alawi@uoanbar.edu,iq

Article Info

Page Number: 2070-2087
Publication Issue:
Vol 71 No. 4 (2022)

Article History

Article Received: 25 March 2022
Revised: 30 April 2022
Accepted: 15 June 2022
Publication: 19 August 2022

Abstract

The major aim of this research is to introduce the maximum value of size of complete ($\mathrm{n} ; \mathrm{r}$)-arc to be existence in the projective plane of order sixteen $\operatorname{PG}(2,16)$ and then study the relationship between coding theory and a finite projective plane, so apply the results of complete $(n ; r)-\operatorname{arc}$; $r=4, \ldots, 17$ to coding theory.

Keywords: Projective Plane and coding theory .
1.Introduction. The aim of coding theory is to develop methods that enable the recipient of message to detect or even correct that occur while transmitting data. Many aspects of coding theory can be directly translated into geometry problems. A linear $[n ; k, n-r]_{q}$-code is an n dimensional subspace of the k-dimensional vector space $V(k, q)$ with non zero vectors weight at least d . An important problem in coding theory is that to optimise one of the parameters k, n, d for given value of the other two and fixed q. The subject of arcs is not only interesting in its purely geometrical setting. An (n;r)-arcs have applications in coding theory, where they can be interpreted as a linear $[n ; n-r]_{q}$-code. So every $[n ; 3, n-r]_{q}$-code is equivalent to $(n ; r)-\operatorname{arc}$ in $P G(2, q)$ containing at least r collinear points. In [5] R. Hill studied a the fundamentals of coding theory. In [7] Al-Zangana has been studied the geometry of the plane of order nineteen and its application to error -correcting codes. For more details see [11],[3]. The aim of this research is to construct the complete ($n ; r$) $-\operatorname{arcs}$
where $r=4, \ldots, 17$, and construct the all codes corresponding to these arcs. All calculations are by Gap program[4].

2.The projective plane $\mathbf{P G}(2,16)$.

In $\operatorname{PG}(2,16)$ there are 273 points and lines, 17 points on each line and 17 lines passage through each point. Take $H(X)=X^{2}+X+\omega^{2}$ in $F_{16}[X]$, where

$$
F_{16}=\left\{0,1, \omega, \omega^{2}, \omega^{3}, \omega^{4}, \omega^{5}, \omega^{6}, \omega^{7}, \omega^{8}, \omega^{9}, \omega^{10}, \omega^{11}, \omega^{12}, \omega^{13}, \omega^{14}\right\}
$$

a polynomial is primitive in F_{16}. The companion matrix of H is $T=\left[\begin{array}{ccc}0 & 1 & 0 \\ 0 & 0 & 1 \\ \omega^{7} & 1 & 0\end{array}\right]$.The points of $\operatorname{PG}(2,16)$ are generated by T as follows: $P_{i}=P[1,0,0] T^{i} ; \quad i=0, \ldots 272$.

To find the lines in $\operatorname{PG}(2,16)$:Let l_{0} contains of 17 points such that the third coordinate of it is equal to zero. Then the points $P_{i}=i$ and the lines l_{i} in $P G(2,16)$ can be represented by:
$l_{0=\{0,1,3,7,15,31,63,90,116,127,136,181,194,204,233,138,255\} . \quad \text { Moreover, } l_{i}=}$ $l_{0} T^{i} ; \quad i=0, \ldots 272$.

3.Some definitions and basic properties

Definition 3.1.[6] An $(n ; r)$-arc \mathcal{K} in $\operatorname{PG}(2, q)$ is a set of n points,, satisfies that every line meet it in less than or equal r points, that is $|K \cap l| \leq r$ for all $l \in P G(2,16)$.

Definition 3.2[9]:The points out of arc K which passes through it i bisecant of K is called a point of index i.The number of these points is denoted by c_{i}. So which represents the number of the points not on bisecant of K.

Lemma 3.1: For a (n, r) $-\operatorname{arc} K$, the following equations hold:

$$
\begin{gather*}
\sum_{i=0}^{n^{\prime}} c_{i}=q^{2}+q+1-n \tag{1.1}\\
\sum_{i=0}^{n} i c_{i}=K(k-1)(q-1) / 2 \tag{1.2}\\
\sum_{i=0}^{n} i(i-1) c_{i}=K(K-1)(K-2)(K-3) / 8 \tag{13}
\end{gather*}
$$

$$
\text { such that } n^{\prime}=\left\lfloor\frac{1}{2} n\right\rfloor
$$

Proof. See[1].
Definition 3.3.[1] An linear $[n, k, d]_{q}$-code C over a finite field is subspace of dimension k of the n - dimensional vector space $V(n, q)=F_{q}^{n}$ such that any two distinct vectors in C differ in at least of d places. The elements of the code are called codewords. Also the parameters n, k and d are called length, dimension, and minimum distance of C.

Definition 3.4.[5] For any two code words the minimum distance (Hamming distance) between c_{1} and, c_{2} is denoted by $d\left(c_{1}, c_{2}\right)$ and it is defined to be the number of positions in which the corresponding coordinates differ. The minimum distance of C is $d(C)=$ \min \{id $\left.\left(c_{1}, c_{2}\right) ; c_{1}, c_{2} \in C, c_{1} \neq c_{2}\right\}$.

Definition 3.5.[5] The weight $w(x)$ of $x \in V(n, q)$ is $w(x)=d(x, 0)$; that is, $w(x)$ is the number of non-zero elements in x.

Lemma 3.1. $d\left(c_{1}, c_{2}\right)=w\left(c_{1}-c_{2}\right)$ for $c_{1}, c_{2} \in C$.

Proof. See [1].
Definition 3.6.[5] Let C be a linear $[n, k, d]_{q}$-code and A_{i} be the number of codewords of weight i in a code C, the list A_{i} for $0 \leq i \leq n$ is called the weight distribution of C.

Definition 3.7.[1] Two linear codes C_{1} and C_{2} in $V(n, q)$ are equivalent if C_{1} can be obtained from C_{2} by permuting coordinates and by multiplying coordinates by non-zero elements of F_{q}.

Definition 3.8.[1] A generator matrix of a linear $[n, k, d]_{q}$-code C is $k \times n$ matrix over the finite field F_{q} whose rows from a basis of C; it is denoted by G.

Definition 3.9.[1] For a linear $[n, k, d]_{q}$-code C over the finite field F_{q}, the singleton bound that $d(C) \leq n-k+1$.

Definition 3.10.[1] A linear $[n, k, d]_{q}$-code C over a finite field is said to be maximum distance separable (MDS) code if d satisfies the following bound :

$$
d(C)=n-k+1
$$

And if $d=n-k$, then the code is called almost maximum distance separable (AMDS).
Theorem 3.1.[5] There exists a projective $[n, K, d]_{q}$-code if and only if there exists a ($n, n-d$)-arc.

Definition 3.11.[1] For $x_{0} \in F_{q}^{n}$ and $r \in Z, r \geq 0$, the ball of centre x_{0} and radius r is

$$
S\left(x_{0}, r\right)=\left\{x \in F_{q}^{n} ; d\left(x_{0}, x\right) \leq r\right\}
$$

Definition 3.12.[1] The covering radius of linear $[n, k, d]_{q}$ code C is the smallest $\mu=\mu(C)$ such that $\mathrm{U}_{x \in C} S(x, \mu)=F_{q}^{n}$.

4. The construction of complete arc of higher degree in projective plane of order sixteen

Theorem 4.1. In projective plane PG $(2,16)$ there exists :
I. A complete $(36 ; 4)-$ arc .
II. A complete (46;5)-arc
III. A complete (57;6)-arc
IV. A complete (72;7)-arc
V. A complete (83;8)-arc
VI. A complete (100;9)-arc
VII. A complete (118;10)-arc
VIII. A complete (132;11)-arc
IX. A complete (154;12)-arc
X. A complete $(175 ; 13)$-arc
XI. A complete $(192,14)$-arc
XII. A complete (213;15)-arc
XIII. A complete ($234 ; 16$)-arc
XIV. A complete (273;17)-arc

Proof:

I. we choose the $(24 ; 3)$-arc and then intersect it with the lines in $\operatorname{PG}(2,16)$ when $r=4$.

The number of the points of c_{i} which is represents the number of points out of arc K which are passes through them $i 2$-secants of (24,4)-arc as follows:
$\left[c_{0}, \ldots, c_{12}\right]=[249,0,0,0,0,0,0,0,0,0,0,0,0]$
Then by adding the first point of the c_{0} of $(24 ; 4)$-arc to $(24 ; 4)$-arc to construct $(25 ; 4)$-arc, the values of parameters c_{i} of $(25 ; 4)$-arc $; i=0, \ldots 12$ are respectively, $\left[c_{0}, \ldots, c_{12}\right]=$ [183,65,0,0,0,0,0,0,0,0,0,0,0] ;

Then by adding the first point of the c_{0} of $(25 ; 4)$-arc to $(25 ; 4)$-arc to construct $(26 ; 4)$-arc, the values of parameters c_{i} of $(26 ; 4)$-arc $; i=0, \ldots 13$ are respectively, $\left[c_{0}, \ldots, c_{13}\right]=$ [180,65,0,0,0,0,0,0,0,0,0,0,0,0] ;

Then continue in the same way until we get $(36 ; 4)$-arc which is complete since $c_{0}=0$.
II. we choose the $(24 ; 3)$-arc and then intersect it with the lines in $\operatorname{PG}(2,16)$ when $r=5$.

The number of the points of c_{i} which is represents the number of points out of arc K which are passes through them $i 2$-secants of $(24,5)$-arc as follows:
$\left[c_{0}, \ldots, c_{12}\right]=[249,0,0,0,0,0,0,0,0,0,0,0,0]$
Then by adding the first point of the c_{0} of $(24 ; 5)$-arc to $(24 ; 5)$-arc to construct $(25 ; 5)$-arc, the values of parameters c_{i} of $(25 ; 5)$-arc $; i=0, \ldots 12$ are respectively, $\left[c_{0}, \ldots, c_{12}\right]=$ [148,0,0,0,0,0,0,0,0,0,0,0,0,0] ;

Then by adding the first point of the c_{0} of $(25 ; 5)$-arc to $(25 ; 5)$-arc to construct $(26 ; 5)$-arc, the values of parameters c_{i} of $(26 ; 5)$-arc $; i=0, \ldots 13$ are respectively, $\left[c_{0}, \ldots, c_{13}\right]=$ [146, $0,0,0,0,0,0,0,0,0,0,0,0,0]$;

Then continue in the same way until we get $(46 ; 5)$-arc which is complete since $c_{0}=0$.
III. we choose the $(24 ; 3)$-arc and then intersect it with the lines in $\operatorname{PG}(2,16)$ when $r=6$.

The number of the points of c_{i} which is represents the number of points out of arc K which are passes through them i 2 -secants of (24,6)-arc as follows:
$\left[c_{0}, \ldots, c_{12}\right]=[249,0,0,0,0,0,0,0,0,0,0,0]$

Then by adding the first point of the c_{0} of $(24 ; 6)$-arc to $(24 ; 6)$-arc to construct $(25 ; 6)$-arc, the values of parameters c_{i} of $(25 ; 6)$-arc $; i=0, \ldots 12$ are respectively, $\left[c_{0}, \ldots, c_{12}\right]=$ [148,0,0,0,0,0,0,0,0,0,0,0,0,0] ;

Then by adding the first point of the c_{0} of $(25 ; 6)$-arc to $(25 ; 6)$-arc to construct $(26 ; 6)$-arc, the values of parameters c_{i} of $(26 ; 6)$-arc $; i=0, \ldots 13$ are respectively, $\left[c_{0}, \ldots, c_{13}\right]=$ [146,0,0,0,0,0,0,0,0,0,0,0,0,0] ;

Then continue in the same way until we get $(57 ; 6)$-arc which is complete since $c_{0}=0$.
V. we choose the $(24 ; 3)$-arc and then intersect it with the lines in $\operatorname{PG}(2,16)$ when $r=7$.

The number of the points of c_{i} which is represents the number of points out of arc K which are passes through them $i 2$-secants of (24,7)-arc as follows:
$\left[c_{0}, \ldots, c_{12}\right]=[249,0,0,0,0,0,0,0,0,0,0,0,0]$
Then by adding the first point of the c_{0} of $(24 ; 7)$-arc to $(24 ; 7)$-arc to construct $(25 ; 7)$-arc, the values of parameters c_{i} of $(25 ; 7)$-arc $; i=0, \ldots 12$ are respectively, $\left[c_{0}, \ldots, c_{12}\right]=$ [148,0,0,0,0,0,0,0,0,0,0,0,0] ;

Then by adding the first point of the c_{0} of $(25 ; 7)$-arc to $(25 ; 7)$-arc to construct $(26 ; 7)$-arc, the values of parameters c_{i} of $(26 ; 7)$-arc $; i=0, \ldots 13$ are respectively, $\left[c_{0}, \ldots, c_{13}\right]=$ [146,0,0,0,0,0,0,0,0,0,0,0,0,0] ;

Then continue in the same way until we get $(72 ; 7)$-arc which is complete since $c_{0}=0$.
IV. we choose the $(24 ; 3)$-arc and then intersect it with the lines in $\operatorname{PG}(2,16)$ when $r=8$.

The number of the points of c_{i} which is represents the number of points out of arc K which are passes through them i 2 -secants of $(24,8)$-arc as follows:
$\left[c_{0}, \ldots, c_{12}\right]=[249,0,0,0,0,0,0,0,0,0,0,0,0]$
Then by adding the first point of the c_{0} of $(24 ; 8)$-arc to $(24 ; 8)$-arc to construct $(25 ; 8)$-arc, the values of parameters c_{i} of $(25 ; 8)$-arc $; i=0, \ldots 12$ are respectively, $\left[c_{0}, \ldots, c_{12}\right]=$ [148,0,0,0,0,0,0,0,0,0,0,0,0] ;

Then by adding the first point of the c_{0} of $(25 ; 8)$-arc to $(25 ; 8)$-arc to construct $(26 ; 8)$-arc, the values of parameters c_{i} of $(26 ; 8)$-arc $; i=0, \ldots 13$ are respectively, $\left[c_{0}, \ldots, c_{13}\right]=$ [146,0,0,0,0,0,0,0,0,0,0,0,0,0] ;

Then continue in the same way until we get $(83 ; 8)$-arc which is complete since $c_{0}=0$.
V. we choose the $(24 ; 3)$-arc and then intersect it with the lines in $\operatorname{PG}(2,16)$ when $r=9$.

The number of the points of c_{i} which is represents the number of points out of arc K which are passes through them $i 2$-secants of $(24,9)$-arc as follows:
$\left[c_{0}, \ldots, c_{12}\right]=[249,0,0,0,0,0,0,0,0,0,0,0,0]$
Then by adding the first point of the c_{0} of $(24 ; 9)$-arc to $(24 ; 9)$-arc to construct $(25 ; 9)$-arc, the values of parameters c_{i} of $(25 ; 9)$-arc $; i=0, \ldots 12$ are respectively, $\left[c_{0}, \ldots, c_{12}\right]=$ [148,0,0,0,0,0,0,0,0,0,0,0,0] ;

Then by adding the first point of the c_{0} of $(25 ; 9)$-arc to $(25 ; 9)$-arc to construct $(26 ; 9)$-arc, the values of parameters c_{i} of $(26 ; 9)$-arc $; i=0, \ldots 13$ are respectively, $\left[c_{0}, \ldots, c_{13}\right]=$ [146,0,0,0,0,0,0,0,0,0,0,0,0,0] ;

Then continue in the same way until we get $(100 ; 9)$-arc which is complete since $c_{0}=0$.
VI. we choose the $(24 ; 3)$-arc and then intersect it with the lines in $\operatorname{PG}(2,16)$ when $r=10$.

The number of the points of c_{i} which is represents the number of points out of arc K which are passes through them $i 2$-secants of $(24,10)$-arc as follows:
$\left[c_{0}, \ldots, c_{12}\right]=[249,0,0,0,0,0,0,0,0,0,0,0,0]$
Then by adding the first point of the c_{0} of $(24 ; 10)$-arc to $(24 ; 10)$-arc to construct $(25 ; 10)$-arc, the values of parameters c_{i} of $(25 ; 10)$-arc $; i=0, \ldots 12$ are respectively, $\left[c_{0}, \ldots, c_{12}\right]=$ [148,0,0,0,0,0,0,0,0,0,0,0,0] ;

Then by adding the first point of the c_{0} of $(25 ; 10)$-arc to $(25 ; 10)$-arc to construct $(26 ; 10)$-arc, the values of parameters c_{i} of $(26 ; 10)$-arc $; i=0, \ldots 13$ are respectively, $\left[c_{0}, \ldots, c_{13}\right]=$ [146,0,0,0,0,0,0,0,0,0,0,0,0,0] ;

Then continue in the same way until we get $(118 ; 10)$-arc which is complete since $c_{0}=0$.
VII. we choose the (24;3) -arc and then intersect it with the lines in $\mathrm{PG}(2,16)$ when $r=11$.

The number of the points of c_{i} which is represents the number of points out of arc K which are passes through them $i 2$-secants of $(24,11)$-arc as follows:
$\left[c_{0}, \ldots, c_{12}\right]=[249,0,0,0,0,0,0,0,0,0,0,0,0]$
Then by adding the first point of the c_{0} of $(24 ; 11)$-arc to $(24 ; 11)$-arc to construct $(25 ; 11)$-arc, the values of parameters c_{i} of $(25 ; 11)$-arc $; i=0, \ldots 12$ are respectively, $\left[c_{0}, \ldots, c_{12}\right]=$ [148,0,0,0,0,0,0,0,0,0,0,0,0] ;

Then by adding the first point of the c_{0} of $(25 ; 11)$-arc to $(25 ; 11)$-arc to construct $(26 ; 11)$-arc, the values of parameters c_{i} of $(26 ; 11)$-arc $; i=0, \ldots 13$ are respectively, $\left[c_{0}, \ldots, c_{13}\right]=$ [146,0,0,0,0,0,0,0,0,0,0,0,0,0] ;

Then continue in the same way until we get $(132 ; 11)$-arc which is complete since $c_{0}=0$.
VIII. we choose the $(24 ; 3)$-arc and then intersect it with the lines in $\operatorname{PG}(2,16)$ when $r=12$.

The number of the points of c_{i} which is represents the number of points out of arc K which are passes through them $i 2$-secants of $(24,12)$-arc as follows:
$\left[c_{0}, \ldots, c_{12}\right]=[249,0,0,0,0,0,0,0,0,0,0,0,0]$
Then by adding the first point of the c_{0} of $(24 ; 12)$-arc to $(24 ; 5)$-arc to construct $(25 ; 12)$-arc, the values of parameters c_{i} of $(25 ; 12)$-arc $; i=0, \ldots 12$ are respectively, $\left[c_{0}, \ldots, c_{12}\right]=$ [148,0,0,0,0,0,0,0,0,0,0,0,0] ;

Then by adding the first point of the c_{0} of $(25 ; 12)$-arc to $(25 ; 12)$-arc to construct $(26 ; 12)$-arc, the values of parameters c_{i} of $(26 ; 12)$-arc $; i=0, \ldots 13$ are respectively, $\left[c_{0}, \ldots, c_{13}\right]=$ [146,0,0,0,0,0,0,0,0,0,0,0,0,0] ;

Then continue in the same way until we get $(154 ; 12)$-arc which is complete since $c_{0}=0$.
IX. we choose the $(24 ; 3)-\operatorname{arc}$ and then intersect it with the lines in $\operatorname{PG}(2,16)$ when $r=13$.

The number of the points of c_{i} which is represents the number of points out of arc K which are passes through them $i 2$-secants of $(24,13)$-arc as follows:
$\left[c_{0}, \ldots, c_{12}\right]=[249,0,0,0,0,0,0,0,0,0,0,0,0]$

Then by adding the first point of the c_{0} of $(24 ; 13)$-arc to $(24 ; 13)$-arc to construct $(25 ; 13)$-arc, the values of parameters c_{i} of $(25 ; 13)$-arc $; i=0, \ldots 12$ are respectively, $\left[c_{0}, \ldots, c_{12}\right]=$ [148,0,0,0,0,0,0,0,0,0,0,0,0] ;

Then by adding the first point of the c_{0} of $(25 ; 13)$-arc to $(25 ; 13)$-arc to construct $(26 ; 13)$-arc, the values of parameters c_{i} of $(26 ; 13)$-arc $; i=0, \ldots 13$ are respectively, $\left[c_{0}, \ldots, c_{13}\right]=$ [146,0,0,0,0,0,0,0,0,0,0,0,0,0] ;

Then continue in the same way until we get $(175 ; 13)$-arc which is complete since $c_{0}=0$.
X. we choose the $(24 ; 3)$-arc and then intersect it with the lines in $\operatorname{PG}(2,16)$ when $r=14$.

The number of the points of c_{i} which is represents the number of points out of arc K which are passes through them $i 2$-secants of $(24,5)$-arc as follows:
$\left[c_{0}, \ldots, c_{12}\right]=[249,0,0,0,0,0,0,0,0,0,0,0,0]$
Then by adding the first point of the c_{0} of $(24 ; 14)$-arc to $(24 ; 14)$-arc to construct $(25 ; 14)$-arc, the values of parameters c_{i} of $(25 ; 14)$-arc $; i=0, \ldots 12$ are respectively, $\left[c_{0}, \ldots, c_{12}\right]=$ [148,0,0,0,0,0,0,0,0,0,0,0,0] ;

Then by adding the first point of the c_{0} of $(25 ; 14)$-arc to $(25 ; 14)$-arc to construct $(26 ; 14)$-arc, the values of parameters c_{i} of $(26 ; 14)$-arc $; i=0, \ldots 13$ are respectively, $\left[c_{0}, \ldots, c_{13}\right]=$ [146,0,0,0,0,0,0,0,0,0,0,0,0,0] ;

Then continue in the same way until we get $(192 ; 14)$-arc which is complete since $c_{0}=0$.
XI. we choose the $(24 ; 3)$-arc and then intersect it with the lines in $\mathrm{PG}(2,16)$ when $r=15$.

The number of the points of c_{i} which is represents the number of points out of arc K which are passes through them $i 2$-secants of $(24,15)$-arc as follows:
$\left[c_{0}, \ldots, c_{12}\right]=[249,0,0,0,0,0,0,0,0,0,0,0,0]$
Then by adding the first point of the c_{0} of $(24 ; 15)$-arc to $(24 ; 15)$-arc to construct $(25 ; 15)$-arc, the values of parameters c_{i} of $(25 ; 15)$-arc $; i=0, \ldots 12$ are respectively, $\left[c_{0}, \ldots, c_{12}\right]=$ [148,0,0,0,0,0,0,0,0,0,0,0,0] ;

Then by adding the first point of the c_{0} of $(25 ; 15)$-arc to $(25 ; 15)$-arc to construct $(26 ; 15)$-arc, the values of parameters c_{i} of $(26 ; 15)$-arc $; i=0, \ldots 13$ are respectively, $\left[c_{0}, \ldots, c_{13}\right]=$ [146, $0,0,0,0,0,0,0,0,0,0,0,0,0]$;

Then continue in the same way until we get $(214 ; 15)$-arc which is complete since $c_{0}=0$.
XII. we choose the $(24 ; 3)$-arc and then intersect it with the lines in $\operatorname{PG}(2,16)$ when $r=$ 16.

The number of the points of c_{i} which is represents the number of points out of arc K which are passes through them $i 2$-secants of (24,16)-arc as follows:
$\left[c_{0}, \ldots, c_{12}\right]=[249,0,0,0,0,0,0,0,0,0,0,0,0]$
Then by adding the first point of the c_{0} of $(24 ; 16)$-arc to $(24 ; 16)$-arc to construct $(25 ; 16)$-arc, the values of parameters c_{i} of $(25 ; 16)$-arc $; i=0, \ldots 12$ are respectively, $\left[c_{0}, \ldots, c_{12}\right]=$ [148,0,0,0,0,0,0,0,0,0,0,0,0] ;

Then by adding the first point of the c_{0} of $(25 ; 16)$-arc to $(25 ; 5)$-arc to construct $(26 ; 16)$-arc, the values of parameters c_{i} of $(26 ; 16)$-arc $; i=0, \ldots 13$ are respectively, $\left[c_{0}, \ldots, c_{13}\right]=$ [146,0,0,0,0,0,0,0,0,0,0,0,0,0] ;

Then continue in the same way until we get $(234 ; 16)$-arc which is complete since $c_{0}=0$.
XIII. we choose the $(24 ; 3)$-arc and then intersect it with the lines in $\operatorname{PG}(2,16)$ when $r=17$.

The number of the points of c_{i} which is represents the number of points out of arc K which are passes through them $i 2$-secants of (24,17)-arc as follows:
$\left[c_{0}, \ldots, c_{12}\right]=[249,0,0,0,0,0,0,0,0,0,0,0,0]$
Then by adding the first point of the c_{0} of $(24 ; 17)$-arc to $(24 ; 17)$-arc to construct $(25 ; 17)$-arc, the values of parameters c_{i} of $(25 ; 17)$-arc $; i=0, \ldots 12$ are respectively, $\left[c_{0}, \ldots, c_{12}\right]=$ [$148,0,0,0,0,0,0,0,0,0,0,0,0]$;

Then by adding the first point of the c_{0} of $(25 ; 17)$-arc to $(25 ; 17)$-arc to construct $(26 ; 17)$-arc, the values of parameters c_{i} of $(26 ; 17)-\operatorname{arc} ; i=0, \ldots 13$ are respectively, $\left[c_{0}, \ldots, c_{13}\right]=$ [146,0,0,0,0,0,0,0,0,0,0,0,0,0] ;

Then continue in the same way until we get $(273 ; 17)$-arc which is complete since $c_{0}=0$.

5. Constructions of the linear codes in projective plane of order sixteen

The problem of determine the largest size of $(n ; r)$-arcs in $\operatorname{PG}(2, q)$ demonstrated an interesting connection with coding theory. This connection is between ($n ; r$) - arcs in $\mathrm{PG}(2, q)$ and the $[n, k, d]_{q}$ codes in coding theory. This link gives the following theorem.

Theorem 5.1. In projective plane $\operatorname{PG}(2,16)$ there exists:
I. A projective $[36,3,32]_{16}$-code if there exists a $(36,4)$-arc .
II. A projective $[46,3,41]_{16}$-code if there exists a $(41,5)$-arc .
III. A projective $[57,3,51]_{16}$-code if there exists a (57,6)-arc .
IV. A projective $[72,3,65]_{16}$-code if there exists a (72,7)-arc .
V. A projective $[83,3,75]_{16}$-code if there exists a (83,8)-arc .
VI. A projective $[100,3,91]_{16}$-code if there exists a $(100,9)$-arc .
VII. A projective $[118,3,108]_{16}$-code if there exists a $(118,10)$-arc .
VIII. A projective $[132,3,121]_{16}$-code if there exists a $(132,11)$-arc .
IX. A projective $[154,3,142]_{16}$-code if there exists a $(154,12)$-arc.
X. A projective $[175,3,162]_{16}$-code if there exists a $(175,13)$-arc .
XI. A projective $[192,3,178]_{16}$-code if there exists a $(192,14)$-arc .
XII. A projective $[213,3,198]_{16}$-code if there exists a $(213,15)$-arc .

XIII A projective $[234,3,218]_{16}$-code if there exists a $(234,16)$-arc .
XIV. A projective $[273,3,256]_{16}$-code if there exists a $(273,17)$-arc .

Proof.

According to the theorem (3.1) and (4.1) an $(n, n-d)$-arc in $P G(k-1, q)$ is equivalent to a projective $[n, k, d]_{q}-$ code. Now if $q=16, K=3$ and $n-d=r ; r$ is degree of arc, then there is an one to one correspondence between $(n ; r)-\operatorname{arc}$ in $P G(k-1, q)$ and a projective $[n, 3, n-r]_{q}-$ code .
I. $(36 ; 4)$-arc give linear $[36,3,32]_{16}$ - code define by the generator matrix $G_{3 \times 36}$.

$$
G_{3 \times 36}=\left[\begin{array}{cccccccccc}
1 & 0 & 0 & \mathrm{w}^{7} & 1 & \mathrm{w}^{11} & \mathrm{w}^{13} & \mathrm{w}^{4} & \mathrm{w}^{9} & \mathrm{w}^{6} \\
0 & 1 & 0 & 1 & 1 & \mathrm{w}^{3} & \mathrm{w}^{7} & \mathrm{w}^{9} & \mathrm{w}^{13} & \cdots \\
0 & 0 & 1 & 0 & 1 & 1 & 1 & 1 & 1 & 1
\end{array}\right]
$$

With $e=\lfloor(d-1) / 2\rfloor=15$, the weight distribution $\left(A_{0}, A_{1}, \ldots, A_{36}\right)=(1,0,0,0,0$, $, 0,960,915,945,705,570)$. Not that $A_{0}=1$, $A_{32}=960, A_{33}=915, A_{34}=945, A_{35}=705,, A_{36}=570, \quad$ and $\mathrm{S}=A_{0}+A_{32}+A_{33}+A_{34}+$ $A_{35}+A_{36}=4096=16^{3}$ and the covering radius $\mu=33$.
II. $(46 ; 5)$-arc give linear $[46,3,41]_{16}-$ code define by the generator matrix $G_{3 \times 46}$.

With $\quad e=\lfloor(d-1) / 2\rfloor=20$, the weight distribution $\left(A_{0}, A_{1}, \ldots, 46\right)=(1,0,0,0,0$, , $0,795,750,720$, $915,765,150)$. Not that $A_{0}=1, A_{41}=795, A_{42}=750, A_{43}=720, A_{44}=915,, A_{45}=765$, $A_{46}=150$ and $\mathrm{S}=A_{0}+A_{41}+A_{42}+A_{43}+A_{44}+A_{45}+A_{46}=4096=16^{3}$ and the covering radius $\mu=43$.
III. $(57 ; 6)$-arc give linear $[57,3,51]_{16}$ - code define by the generator matrix $G_{3 \times 57}$.

$$
G_{3 \times 57}=\left[\begin{array}{ccccccccccc}
1 & 0 & 0 & \mathrm{w}^{7} & 1 & \mathrm{w}^{11} & \mathrm{w}^{13} & \mathrm{w}^{4} & \mathrm{w}^{9} \mathrm{w}^{4} & \mathrm{w}^{10} & \mathrm{w}^{6} \\
0 & 1 & 0 & 1 & 1 & \mathrm{w}^{3} & \mathrm{w}^{7} & \mathrm{w}^{9} & \mathrm{w}^{13} & \mathrm{w}^{9} & \mathrm{w}^{8}
\end{array} \ldots \mathrm{w}^{7}\right]
$$

With $e=\lfloor(d-1) / 2\rfloor=25$, the weight distribution $\left(A_{0}, A_{1}, \ldots, 57\right)=(1,0,0,0,0$, $, 0, \quad 0$, $0,0,750,450,765,930,810,315,75)$. Not that $A_{0}=1, A_{51}=750, A_{52}=450, A_{53}=765$, $A_{54}=930, A_{55}=810, A_{56}=315, A_{57}=75$ and $\mathrm{S}=A_{0}+A_{51}+A_{52}+A_{53}+A_{54}+A_{55}+A_{56}+$ $A_{57}=4096=16^{3}$ and the covering radius $\mu=53$.
IV. $(72 ; 7)$-arc give linear $[72,3,65]_{16}-$ code define by the generator matrix $G_{3 \times 72}$.

$$
G_{3 \times 72}=\left[\begin{array}{ccccccccccc}
1 & 0 & 0 & \mathrm{w}^{7} & 1 & \mathrm{w}^{11} & \mathrm{w}^{13} & \mathrm{w}^{4} & \mathrm{w}^{9} \mathrm{w}^{4} & \mathrm{w}^{10} & \mathrm{w}^{3} \\
0 & 1 & 0 & 1 & 1 & \mathrm{w}^{3} & \mathrm{w}^{7} & \mathrm{w}^{9} & \mathrm{w}^{13} & \mathrm{w}^{9} & \mathrm{w}^{8}
\end{array} \ldots \quad \mathrm{w} .\right.
$$

With $e=\lfloor(d-1) / 2\rfloor=32$, the weight distribution $\left(A_{0}, A_{1}, \ldots, 72\right)=(1,0,0,0,0$, , $0,0$, 0, $0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,870,465,540,735,930,495,60,0)$.

Not that $A_{0}=1, A_{65}=870, A_{66}=465, A_{67}=540, A_{68}=735, A_{69}=930, A_{70}=495, A_{71}=60$ and $\mathrm{S}=A_{0}+A_{65}+A_{66}+A_{67}+A_{68}+A_{69}+A_{70}+A_{71}=4096=16^{3}$ and the covering radius $\mu=67$.
V. $(83 ; 8)$-arc give linear $[83,3,75]_{16}-$ code define by the generator matrix $G_{3 \times 83}$.

$$
G_{3 \times 83}=\left[\begin{array}{cccccccccccc}
1 & 0 & 0 & \mathrm{w}^{7} & 1 & \mathrm{w}^{11} & \mathrm{w}^{13} & \mathrm{w}^{4} & \mathrm{w}^{9} & \mathrm{w}^{4} & \mathrm{w}^{10} & \mathrm{w}^{7} \\
0 & 1 & 0 & 1 & 1 & \mathrm{w}^{3} & \mathrm{w}^{7} & \mathrm{w}^{9} & \mathrm{w}^{33} & \mathrm{w}^{9} & \mathrm{w}^{8} & \ldots \\
0 & 0 & 1 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1
\end{array}\right]
$$

With $\quad e=\lfloor(d-1) / 2\rfloor=37$, the weight distribution $\left(A_{0}, A_{1}, \ldots, 83\right)=(1,0,0,0,0$, , $0,0$, $0,810,285,510,615,1095,615,165,0,0)$.

Not that $A_{0}=1, A_{75}=810, A_{76}=285, A_{77}=510, A_{78}=615, A_{79}=1095, A_{80}=615, A_{81}=165$ and $\mathrm{S}=A_{0}+A_{75}+A_{76}+A_{77}+A_{78}+A_{79}+A_{80}+A_{81}=4096=16^{3}$ and the covering radius $\mu=78$.
VI. (100;9)-arc give linear $[100,3,91]_{16}$ - code define by the generator matrix $G_{3 \times 100}$.

$$
G_{3 \times 100}=\left[\begin{array}{ccccccccccc}
1 & 0 & 0 & \mathrm{w}^{7} & 1 & \mathrm{w}^{11} & \mathrm{w}^{13} & \mathrm{w}^{4} & \mathrm{w}^{9} \mathrm{w}^{4} & \mathrm{w}^{10} & \mathrm{w}^{11} \\
0 & 1 & 0 & 1 & 1 & \mathrm{w}^{3} & \mathrm{w}^{7} & \mathrm{w}^{9} & \mathrm{w}^{13} & \mathrm{w}^{9} & \mathrm{w}^{8}
\end{array} \ldots \mathrm{w}^{2}\right]
$$

With $e=\lfloor(d-1) / 2\rfloor=45$, the weight distribution $\left(A_{0}, A_{1}, \ldots, 100\right)=(1,0,0,0,0$, , $0,0$, $0,0$, 825, 480,390,630,900, 630,225,15,0,0).

Not that $A_{0}=1, A_{91}=825, A_{92}=480, A_{93}=390, A_{94}=630, A_{95}=900, A_{96}=630, A_{97}=225$, $A_{98}=15$, and $\mathrm{S}=A_{0}+A_{91}+A_{92}+A_{93}+A_{94}+A_{95}+A_{96}+A_{97}+A_{98}=4096=16^{3}$ and the covering radius $\mu=94$.
VII. $(118 ; 10)$-arc give linear $[118,3,108]_{16}-$ code define by the generator matrix $G_{3 \times 118}$.

$$
G_{3 \times 118}=\left[\begin{array}{ccccccccccc}
1 & 0 & 0 & \mathrm{w}^{7} & 1 & \mathrm{w}^{11} & \mathrm{w}^{13} & \mathrm{w}^{4} & \mathrm{w}^{9} \mathrm{w}^{4} & \mathrm{w}^{10} & \mathrm{w}^{5} \\
0 & 1 & 0 & 1 & 1 & \mathrm{w}^{3} & \mathrm{w}^{7} & \mathrm{w}^{9} & \mathrm{w}^{13} & \mathrm{w}^{9} & \mathrm{w}^{8}
\end{array} \ldots \mathrm{w}^{8} 0\right.
$$

With $e=\lfloor(d-1) / 2\rfloor=53$, the weight distribution $\left(A_{0}, A_{1}, \ldots, 118\right)=(1,0,0,0,0$, , $0, \quad 0$, $0,0$, $0,0,0,0,0,0,0,0,0,0,0,915,600,330,540,810,660,240,0,0,00)$.

Not that $A_{0}=1, A_{108}=915, A_{109}=600, A_{110}=330, A_{111}=540, A_{112}=810, A_{113}=660$, $A_{114}=240$, and $\mathrm{S}=A_{0}+A_{108}+A_{109}+A_{110}+A_{111}+A_{112}+A_{113}+A_{114}=4096=16^{3}$ and the covering radius $\mu=111$.
VIII. $(132 ; 11)$-arc give linear $[132,3,121]_{16}-$ code define by the generator matrix $G_{3 \times 132}$.

$$
G_{3 \times 132}=\left[\begin{array}{ccccccccccc}
1 & 0 & 0 & \mathrm{w}^{7} & 1 & \mathrm{w}^{11} & \mathrm{w}^{13} & \mathrm{w}^{4} & \mathrm{w}^{9} & \mathrm{w}^{4} & \mathrm{w}^{10} \\
0 & 1 & 0 & 1 & 1 & \mathrm{w}^{3} & \mathrm{w}^{7} & \mathrm{w}^{9} & \mathrm{w}^{13} & \mathrm{w}^{9} & \mathrm{w}^{8}
\end{array} \ldots \mathrm{w}^{13}\right]
$$

With $e=\lfloor(d-1) / 2\rfloor=60$, the weight distribution $\left(A_{0}, A_{1}, \ldots, 132\right)=(1,0,0,0,0$, , $0,0$, $0,0$, 0,0,0 $, 0,195,570,660,495$, 435,690,720, $300,30,0,0,0)$.

Not that $A_{0}=1, A_{121}=195, A_{122}=570, A_{123}=660, A_{124}=495, A_{125}=435, A_{126}=690$, $A_{127}=720, A_{128}=300, A_{129}=30$ and $\mathrm{S}=A_{0}+A_{121}+A_{122}+A_{123}+A_{124}+A_{125}+A_{126}+$ $A_{127}+A_{128}+A_{129}=4096=16^{3}$ and the covering radius $\mu=124$.
IX. $(154 ; 12)$-arc give linear $[154,3,142]_{16}-$ code define by the generator matrix $G_{3 \times 154}$.

$$
G_{3 \times 154}=\left[\begin{array}{ccccccccccc}
1 & 0 & 0 & w^{7} & 1 & w^{11} & w^{13} & w^{4} & w^{9} & w^{4} & w^{10} \\
0 & 1 & 0 & 1 & 1 & w^{11} \\
0 & 0 & 1 & 0 & 1 & 1 & 1 & w^{7} & w^{9} & w^{13} & 1 \\
w^{9} & 1 & 1 & 1 & w^{8} & w^{13}
\end{array}\right]
$$

With $e=\lfloor(d-1) / 2\rfloor=70$, the weight distribution $\left(A_{0}, A_{1}, \ldots, 154\right)=(1,0,0,0,0$, $, 0,0$, $0,0$, 0,0,0 $, 0,0$, $825,570,1020,480,345,585,540,285,15,0,0,0,0)$.

Not that $A_{0}=1, A_{142}=825, A_{143}=1020, A_{144}=480, A_{145}=345, A_{146}=585, A_{147}=540$, $A_{148}=285, A_{149}=15$, and $\mathrm{S}=A_{0}+A_{142}+A_{143}+A_{144}+A_{145}+A_{146}+A_{147}+A_{148}+A_{149}$ $=4096=16^{3}$ and the covering radius $\mu=144$.
X. $(175 ; 13)$-arc give linear $[175,3,162]_{16}-$ code define by the generator matrix $G_{3 \times 175}$.

With $e=\lfloor(d-1) / 2\rfloor=80$, the weight distribution $\left(A_{0}, A_{1}, \ldots, 175\right)=(1,0,0,0,0$, , $0,0$, $0, \quad 0,0,0$, $0, \quad 0,0,0,0,0,0,0$, $0, \quad 990,1155,495,285,435,540,195 \quad, 0,0$, $0,0,0,0,0)$.

Not that $A_{0}=1, A_{162}=990, A_{163}=1155, A_{164}=495, A_{165}=285, A_{166}=435, A_{167}=540$, $A_{168}=195$, and $\mathrm{S}=A_{0}+A_{162}+A_{163}+A_{164}+A_{165}+A_{166}+A_{167}+A_{168}=4096=16^{3}$ and the covering radius $\mu=166$.
XI. $(192 ; 14)$-arc give linear $[192,3,178]_{16}-$ code define by the generator matrix $G_{3 \times 192}$.

With $e=\lfloor(d-1) / 2\rfloor=88$, the weight distribution $\left(A_{0}, A_{1}, \ldots, 192\right)=(1,0,0,0,0$, , $0,0$, $0,0$, 0,0,0 , $0, \quad 0,0,0,0,0,0,0$, $0,915$, $1110,780,300,360,435,180,15,0,0,0,0,0,0,0)$.

Not that $A_{0}=1, A_{178}=915, A_{179}=1110, A_{180}=780, A_{181}=300, A_{182}=360, A_{183}=435$, $A_{184}=180, A_{185}=15$ and $\mathrm{S}=A_{0}+A_{178}+A_{179}+A_{180}+A_{181}+A_{182}+A_{183}+A_{184}+A_{185}$ $=4096=16^{3}$ and the covering radius $\mu=181$.
XII. $(213 ; 15)$-arc give linear $[213,3,198]_{16}$ - code define by the generator matrix $G_{3 \times 213}$.

$$
G_{3 \times 213}=\left[\begin{array}{ccccccccccc}
1 & 0 & 0 & \mathrm{w}^{7} & 1 & \mathrm{w}^{11} & \mathrm{w}^{13} & \mathrm{w}^{4} & \mathrm{w}^{9} \mathrm{w}^{4} & \mathrm{w}^{10} & \mathrm{w} \\
0 & 1 & 0 & 1 & 1 & \mathrm{w}^{3} & \mathrm{w}^{7} & \mathrm{w}^{9} & \mathrm{w}^{13} & \mathrm{w}^{9} & \mathrm{w}^{8}
\end{array} \ldots \mathrm{w}^{2}\right)
$$

With $e=\lfloor(d-1) / 2\rfloor=98$, the weight distribution $\left(A_{0}, A_{1}, \ldots, 213\right)=(1,0,0,0,0$, , $0,0$, $0,0$, 0,0,0 , $0, \quad 0,0,0,0,0,0,0$, $0, \quad 0,0,0,0$, $0,1050,1305,675,285,405,270,105,0,0,0,0,0,0,0,0,0)$.

Not that $A_{0}=1, A_{198}=1050, A_{199}=1305, A_{200}=675, A_{201}=285, A_{202}=405, A_{203}=270$, $A_{204}=105$, and $\mathrm{S}=A_{0}+A_{197}+A_{199}+A_{200}+A_{201}+A_{202}+A_{202}+A_{203}+A_{204}$ $=4096=16^{3}$ and the covering radius $\mu=200$.
XIII. (234;16)-arc give linear $[234,3,218]_{16}-$ code define by the generator matrix $G_{3 \times 234}$.

$$
G_{3 \times 134}=\left[\begin{array}{cccccccccccc}
1 & 0 & 0 & \mathrm{w}^{7} & 1 & \mathrm{w}^{11} & \mathrm{w}^{13} & \mathrm{w}^{4} & \mathrm{w}^{9} & \mathrm{w}^{4} & \mathrm{w}^{10} & 1 \\
0 & 1 & 0 & 1 & 1 & \mathrm{w}^{3} & \mathrm{w}^{7} & \mathrm{w}^{9} & \mathrm{w}^{13} & \mathrm{w}^{9} & \mathrm{w}^{8} & \ldots \\
0 & 0 & 1 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1
\end{array}\right]
$$

With $e=\lfloor(d-1) / 2\rfloor=166$, the weight distribution $\left(A_{0}, A_{1}, \ldots, 234\right)=(1,0,0,0,0$, , $0,0$, $0,0$, 0,0,0 , $0, \quad 0,0,0,0,0,0,0$, $0, \quad 0,0,0,0$, $0,0$, 1290,1140,945, $225,345,135,15,0,0,0,0,0,0,0,0,0,0)$.

Not that $A_{0}=1, A_{218}=1290, A_{219}=1140, A_{220}=945, A_{221}=225, A_{222}=345, A_{223}=135$, $A_{224}=15$, and $\mathrm{S}=A_{0}+A_{218}+A_{219}+A_{220}+A_{221}+A_{222}+A_{223}+A_{224}+A_{225}=4096=16^{3}$ and the covering radius $\mu=220$.
XIII. $(273 ; 17)$-arc give linear $[273,3,256]_{16}-$ code define by the generator matrix $G_{3 \times 273}$.

$$
G_{3 \times 273}=\left[\begin{array}{cccccccccccc}
1 & 0 & 0 & \mathrm{w}^{7} & 1 & \mathrm{w}^{11} & \mathrm{w}^{13} & \mathrm{w}^{4} & \mathrm{w}^{9} & \mathrm{w}^{4} & \mathrm{w}^{10} & 1 \\
0 & 1 & 0 & 1 & 1 & \mathrm{w}^{3} & \mathrm{w}^{7} & \mathrm{w}^{9} & \mathrm{w}^{13} & \mathrm{w}^{9} & \mathrm{w}^{8} & \ldots \\
0 \\
0 & 0 & 1 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1
\end{array}\right]
$$

With $e=\lfloor(d-1) / 2\rfloor=127$, the weight distribution $\left(A_{0}, A_{1}, \ldots, 273\right)=(1,0,0,0,0$, , $0,0$, $0, \quad 0,0,0$, $0, \quad 0,0,0,0,0,0,0$, $0, \quad 0,0,0,0$, $0, \quad 0,0,0,0,0$, $0,00,4096,0,0,0,0,0,0,0,0,0,0,0$, $0,0,0,0,0,0$).

Not that $A_{0}=1, A_{256}=4095$, and $\mathrm{S}=A_{0}+A_{256}=4096=16^{3}$ and the covering radius $\mu=259$.

Conclusion

we constructed a complete (n, r)-arcs in projective plane with respect to \boldsymbol{r}, such that $r=4,5, . ., 17$ and find the relation between geometrical objects and linear codes.

References

[1] Hirschfeld, J.W.P., Coding theory ,Lectures, Sussex University, UK, 2014.
[2]Hirschfeld, J.W.P and Thas J.A., Hermitian varieties, General Galois Geometries, 2016:57-97.
[3] D. Barlotti, S., Marvugini and F. Pambianco, The non-exstence of some NMDS codes and the extremal size of complete($\mathrm{r} ; 3$)-arcs in $\mathrm{PG}(2,16)$, Des. Codes Cryptogr. 72(2014), 129-134.
[4] Gap Group, GAP. 2021, Reference manual URL http//www.gap-system,org.
[5] R. Hill, A first course in coding theory, Clarendon Press, Oxford, 1986.
[6] Hirschfield, J.W.P and Voloch J.F., Group-arcs of prime order on cubic curves, Finite Geometry and Combinatorics, 2015: V.191,P.177-185.
[7] E.B. Al-Zangana, The Geometry of the Plane of Order Nineteen and its Applications to Error- Correcting Codes, Ph.D. University of Sussex, UK., 2011.
[8] Alabdullah S. and Hirschfeld J.W.P., A new bound of the smallest complete (K; n)- arc in PG(2,q), Designs codes and Cryptography, 2019: 87(2-3), 679-683.
[9] Pichanick E.V.D. and Hirschfeld J.W.P., Bounded for arcs of arbitrary degree in finite Desarguesian Planes, Journal of Combinatorial Designs, 2016:24(4), 184-196.

