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Abstract 

The numeric investigation of non-stationary filtration slightly-compressible 

viscous fluid in porous media with high-permeable vugs was carried out. 

Obtained evidence that dynamic of pressure distribution in such media could not 

be described by solution of classical piezoconductivity equation (analogue of the 

heat equation). Using multipole expansion for describing pressure field 

perturbation was taken into account. This approach   allowed to  describe the  

change of  the  liquid density in porous phase near vugs during filtration and, as 

a result, modified piezoconductivity equation was obtained. Comparison of 

numeric solution of modified piezoconductivity equation with results of direct 

numeric simulation of filtration in heterogeneous media shows that new equation 

could better describe this process. 

 

Keywords: filtration, porous media, vugs, caves, heterogeneous media. 

 

 

Inruduction 

For describing the filtration process in porous media with inclusions or voids (vugs), specialist’s 

usually use a classical conductivity equation, an analogue of the heat equation. This equation involves 

effective parameter that characterizes the mobility of fluid, which is a conductivity coefficient that equals to 

the ratio of permeability to fluid viscosity, effective compressibility of system fluid-rock and rock porosity 

(Basniev et al., 2006 ). James Maxwell was the first scientist, followed by others,  to propose equations 

(Maxwell, 1892; McPhedran, McKenzie, 1978; McKenzie, McPhedran, Derrick, 1978). for calculation of 

effective media conductivity, which includes conductive spheres,  forming  a simple cubic, body-centered 
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cubic, or face-centered cubic lattices. Also, expressions for effective media conductivity were obtained that 

equals to ratio of Darcy’s coefficient to fluid viscosity, containing inclusions of arbitrary form (Fricke, 

1924). However, in those works the effective transport coefficient was determined for problems, in which 

local electric potential (in problems of fluid filtration it equivalent to pressure) is constant in time. In this 

way Laplace’s equation was considered in this approach. Specialists often use the obtained effective 

coefficients to solve non-stationary problems, though the legitimacy of such approach is not given, 

therefore, it is necessary to consider the possibility of modifying the non-stationary piezoconductivity 

equation. Then the obtained expressions were used to solve non-stationary equations of fluid transport in 

porous solid media. Therefore, in such approach only right side of conductivity equation modified. The rare 

example of the opposite approach is the derivation of an equation for describing of fluid in fractured-porous 

rock (Barenblat, Entov, Ryzhik, 1972).  for dual-porosity model. In the paper was modified left side of 

equation, involving time derivative. In this work we try to modify the equation of conductivity for cavernous 

media, which leads to the appearance of a time derivative of a series of partial derivatives of pressure with 

respect to coordinates. 

 

Theory 

Considering filtration process in heterogeneous media, that contain high conductive inclusions (in the 

extreme case - vugs) of spherical form with radius R.  In this case it could assume that the pressure P on 

inclusion’s surface is constant, and this suppose does not diminish the generality of the conclusions 

presented below. Perturbation physical fields because of vug P’ is presents as a sum of multipole fields. The 

multipole potential of order l is expressed in the next form:  

𝜑(𝑙) =
𝐷𝛼1...𝛼𝑙𝑥𝛼1...𝛼𝑙

𝑙!𝑟2𝑙+1
 (1) 

where αi - the indices of the corresponding axes (αi = 1 or 2 or 3), x – coordinates, r - radius vector module. 

The multipole potential coefficients are found by the formula 𝐷𝛼1...𝛼𝑙 = 𝑅2𝑙+1 𝜕𝑙

𝜕𝑥𝛼1 ...𝜕𝑥𝛼𝑙
.  Choosing the 

degree r in the denominator, as in formula (1), leads to the fact that the Laplacian of the perturbation has the 

following form: 
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At the each point in space around of inclusion, such a pressure perturbation leads, due to compressibility, to 

a change in the mass of the liquid. For each cavity, it could be find the "excess" pressure by integrating over 

space outside the cavity: 

( )

1

R R
l

iR R

P P dV dV
  +

=

  = =    (3) 

It is easy to show that the result of integrating the potentials of multipoles of odd orders is equal to zero. 

Integration of the components of even multipoles containing any coordinate in an odd power will also give a 

zero result. Therefore, expression (2) will contain only even powers of the pressure derivative by the 

corresponding coordinates. However, integrating the quadrupole moment to infinity leads to a diverging 

integral, and it must be limited from physical considerations. It also follows from formula (2) that the 

disturbance from an external field, the Laplacian of which is not equal to zero, "creates" in each point 

around the cavity in accordance with the conductivity equation some "source of mass", which can also be 

found by integrating: 
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𝑄 =
𝜕

𝜕𝑡
∫ ∑ 𝜌𝛽𝜑𝜑(𝑙)+∞

𝑖=1
𝑅′

𝑅
𝑑𝑉 (4) 

Here ρ - is the density of the liquid, β - is the compressibility, φ - is porosity of the medium. 

Similarly to the integral (3), in (4) only those terms of the multipole moments remain that contain the 

product of the squares of the two coordinates. These perturbations depend on the pressure Laplacian, which 

is zero for the stationary problem. Therefore, the perturbations are not zero only for the non-stationary case. 

Since the “additional” mass and “source of mass” are associated with the perturbation pressure of the cavity, 

they can be taken into account by applying the law of conservation of mass to a certain volume of the 

medium containing a sufficiently large number of cavities: 

𝜌𝜑𝛽 (
𝑃 + 𝑏2(𝑃11 + 𝑃22 + 𝑃33) + 𝑏4(𝑃1111 + 𝑃2222 + 𝑃3333 + 2𝑃1122 + 2𝑃2233 + 2𝑃1133) +

𝑏6 (
5

8
(𝑃111111 + 𝑃222222 + 𝑃333333) +

12

7
(𝑃111122 + 𝑃111133 + 𝑃112222 + 𝑃113333 + 𝑃112233 + 𝑃222233))

)

𝑡

= 

=
𝑘∗

𝜇
(𝑃11 + 𝑃22 + 𝑃33)(5) 

On the right side of the equation (5) k* -  is the effective permeability of the medium (Darcy 

coefficient), calculated, for example, using the approaches described in (Maxwell, 1892; McPhedran, 

McKenzie, 1978; McKenzie, McPhedran, Derrick, 1978; Fricke, 1924), µ - is the viscosity of the liquid, ρ - 

is the density of the liquid, β - is the compressibility, φ - is porosity of the medium. The subscripts at the 

pressure denote the corresponding derivatives by the corresponding coordinates, for example: 

𝑃1122 =
𝜕4𝑃

𝜕2𝑥1
2𝜕2𝑥2

2 (6) 

Consequently, the right part of the equation contains the pressure Laplacian emerging as the 

divergence from the vector of liquid filtration rate.   

In the left part of the equation we see the derivative with time from the liquid mass in the volume 

unit of the porous rock containing vugs. It is also implicitly taken into account that if the vug concentration 

in the rock volume unit n is introduced, “the additional” mass in the rock volume unit is the product of n by 

“the additional mass” emerging due to the influence of this vug. There are 4 terms in large stocks. The first 

is the actual pressure of the liquid, the second is the additional mass caused by the quadrupole moment, the 

third and fourth are mulpole moments of orders 4 and 6. 

The transformed equation containing partial derivatives of the 8th, 10th and higher even orders in the 

left part of the equation can be similarly considered, however, they are insignificant for this work. It should 

be pointed out that if the derivatives of nth order are introduced into the equation, it should contain all lower 

order derivatives.  

It should be specified that the proposed equation (5) contains the coefficients before the derivatives 

of different orders, which are calculated for the special case when the vugs are spherical. For example, there 

are factors 1 and 2 in brackets before the fourth derivatives, and factors 5/8 and 12/7 before the derivatives 

of the sixth order, obtained as a result of integrating the components of multipole moment of pressure 

disturbance around the spherical vugs. For vugs of different shape, the coefficients or relations between the 

coefficients can be different. However, irrespective of the vug shape, the pressure disturbance at quite long 

distance from them can be represented as the sum of multipole moments whose coefficients depend on the 

pressure derivatives of different order, and the integration of these disturbances around the vugs will give 

non-zero components only from even derivatives by the pressure coordinates, and then to the modified 

piezoconductivity equation of the same type as the equation (5).  
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If the vug shape is unknown, we can write down a little bit different expression with a large number 

of unknown variables: 

𝜌𝜑𝛽(𝑃 + (𝑏21𝑃11 + 𝑏22𝑃22 + 𝑏23𝑃33) + (𝑏41111𝑃1111 + 𝑏42222𝑃2222 + 𝑏43333𝑃3333 +

𝑏41122𝑃1122 + 𝑏42233𝑃2233 + 𝑏41133𝑃1133))𝑡 =
𝑘∗

𝜇
(𝑃11 + 𝑃22 + 𝑃33)(7) 

It is taken into account in this expression that for the vugs of the arbitrary shape coefficients 𝐷𝛼1...𝛼𝑙 

also depend on the corresponding derivatives but with different coefficients С𝛼1...𝛼𝑙: 

𝐷𝛼1...𝛼𝑙 = С𝛼1...𝛼𝑙
𝜕𝑙𝑃

𝜕𝑥𝛼1 ...𝜕𝑥𝛼𝑙
(8) 

The expression of these coefficients for spherical vugs was given before. This results in the fact that 

the coefficients at “similar” derivatives in the modified piezoconductivity equation are different and the 

medium can demonstrate anisotropic properties. It should be taken into account that in the formula (7) the 

components containing only the derivatives up to the fourth order are given, and in the formula (5) – also the 

components with the derivatives up to the sixth order. 

From the formula (7) it is seen that the number of coefficients describing the filtration properties of 

the cavernous medium significantly increases. The obtained equation (7) can describe anisotropic filtration 

properties of the rock. 

 

Results and Discussions 

To check the obtained equation, one can use the classical problem of fluid filtration in porous media 

in a half-space. In this case, only the derivatives by one coordinate and time will be left in the equation (5). 

Consider a semi-infinite region containing cavities. At the boundary of the region the pressure rises sharply 

and then is maintained constant: 

𝜕𝑝

𝜕𝑡
+ 𝑏2

𝜕

𝜕𝑡

𝜕2𝑝

𝜕𝑥2
+ 𝑏4

𝜕

𝜕𝑡

𝜕4𝑝

𝜕𝑥4
= 𝑎2

𝜕2𝑝

𝜕𝑥2
 

𝑝(0, 𝑡) = 𝑝0 

𝑝(𝑥, 𝑡) → 0;
𝜕𝑝

𝜕𝑥
→ 0; 𝑥 → +∞ (9) 

For verification of the equation (9) was simulated filtration of viscous slightly-compressible fluid in 

long bar in three cases: homogeneous bar without vugs, bar with lattice of spherical vugs (Fig. 1 A), and bar 

of irregular arrays of vugs (Fig. 1  B).  

 
Figure 1 View of computational domains with a periodic arrangement of cavities (A) and with a uniformly random arrangement 

(B) 
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The permeability of the vugs material was set 4 orders of magnitude higher than the material of the 

bars. Initially, the pressure field was set to be uniform; however, at the initial moment of the calculation, at 

one of its ends, the pressure rose sharply and then was kept constant. On the lateral boundary, the “non-

leakage” condition was set. 

For the homogeneous medium, in which the vugs are missing, in the equations (9) coefficients b2, b4 

and a4 equal zero. The solution of the problem set is well-known (Basniev et al., 2006). and is represented as 

follows: 

𝑃 = 𝑃0 +
𝑃(0)−𝑃0

√𝜋
∫ 𝑒𝑥𝑝 (−

𝜉2

2
) 𝑑𝜉

+∞

𝑥/√4𝑎2𝑡
(10) 

 

Here P0 – initial pressure value, P(0) – pressure in the beginning of coordinates at all time moments 

t>0, P(0)-P0 – instant pressure change in the beginning of coordinates.  

From the solution it is seen that it depends on dimensionless coordinate 𝑥/√𝑡, which will be further 

called as “dimensionless coordinate”. 

In Fig. 2 shown the results of calculations in "self-similar" coordinates. For a homogeneous bar (Fig. 

2. A) all points form one curve, however for bars with vugs this is not the case (see Fig. 2 B). This means 

that the classical piezoconductivity conduction equation could give only an approximate solution. Also in 

Figure 2В we can see that the curves for different time moments at the value of dimensionless coordinate 

natural logarithm equal to 1 differ by 8%. It is assumed that if specialists carry out the calculations using a 

classical piezoconductivity equation, the error in determining the parameters can be such value, therefore, 

for more accurate calculations the improved system of equations similar to the equations (5) and (9) can be 

required. 

 
Figure 2 Pressure distribution at different times in a homogeneous computational domain (A) and in a cavernous computational 

domain (B). 

 

Using expression (9), it is possible to numerically find such constants b2, b4, a2 at which the curves 

obtained in the numerical calculation will be satisfactorily described by the solution of equation (5). 

To solve the equation (9) with the constant value of the required function on the boundary, the 

program in the Python software was written, which numerically solves the problem at the specified 

coefficients b2, b4, a2, based on the implicit numerical scheme of the second order of convergence by 

coordinate and fifth order of convergence by time allowing to find the solution by sweep method in each 

time layer. Varying the step by time and step by coordinate, it was found that the convergence order by time 

was 1.98, and the convergence order by coordinate – 4.186. 
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Then, a series of calculations at different values of coefficients were made with the help of this 

program to select the best. As a result, the values of coefficients were found, at which the pressure 

distribution obtained in the process of 3D numerical modeling coincided with the solution results in the 

equation (9): b2=- 0.000265, b4= 0.0000000000021, a2=120. 

As you can see in Fig. 3, the solution of the derived modified equation describes the points of the 

numerical experiment much better than the solution of the classical equation. The demonstrated 

dependencies describe the calculation results shown in Fig. 2В, however, in Fig. 3 the coordinates are not 

dimensionless for better visual comparison with the solution results in the equation (9). Therefore, it can be 

argued that the obtained modified equation describes the pressure field in vug media with a higher accuracy 

than the classical equation of piezoconductivity. In a similar way, a modified equation can be derived based 

on expressions for multipoles of the third and higher order, where partial derivatives of higher orders are 

present, and describing the dependences of the pressure fields even more accurately. 

It also seems complicated now to predict coefficients for a general case of location and shape of 

vugs, but it can be recommended, if all the necessary data are known, to carry out the numerical modeling of 

3D case in the heterogeneous medium of some problem and then choose the coefficients in the modified 

piezoconductivity equation in such a way that the solutions will coincide. 

 

 
Figure 3 Comparison of the results of direct modeling of the pressure distribution along the cavernous bar at different points in 

time (dotted line) with the solution of the modified piezoconductivity equation (dashed lines). 

 

To derive the modified system of equations, we also did not consider the issue of setting the 

boundary conditions, as well as the influence of vugs near the boundary of the calculation region on the 

liquid filtration rate. However, if the constant value of the required function is set on the boundary, only the 

pressure distribution in the calculation region is of interest, out of which the liquid flows can be determined. 

At the same time, the influence of vugs on the liquid flow from the wall into the calculation region is not 
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considered in the paper. The calculation of the flow expression applying the multipole approximation of the 

pressure disturbance around the vugs will contain not only the pressure gradient components but also the 

derivatives of a higher order.  

The case when the vugs consist of highly-permeable material in comparison with the permeability of 

the material into which they are impregnated was considered in the paper. However, if there is a vug with 

any different permeability from the surrounding rock, the pressure disturbance around it can be also 

described with the help of multipole approximation, the coefficients of which will depend on the relation of 

these permeabilities.  

The issue of correctness of setting boundary problems for the derived type of equation, existence and 

uniqueness of the solution was also not considered in this paper. 

 

Conclusion 

In numeric simulation of viscous and compressible fluid filtration in porous media with high-

permeable inclusions was get evidences that pressure dynamic is not exactly descries by solution of classical 

piezoconductivity equation. Using multipole expansion for describing the pressure field perturbation 

because of vugs was obtained modification of piezoconductivity equation. This equation has more 

complicated structure and includes a time derivative of a series of partial derivatives of pressure with respect 

to coordinates. Using numerical solution of modified piezoconductivity equation was shown that the 

modified equation could more batter describe the proses of fluid filtration in heterogeneous media with high-

permeable inclusions. 

The results obtained can also be applied to solve problems of heat transfer in solid media containing 

inclusions, since in each point the temperature change is described by the heat conductivity equation and 

heat flow vector – by Fourier formula, which are analogous to piezoconductivity equation and Darcy’s law. 
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