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1 Introduction

Because of its attractive mathematical features and numerous applications in various fields,
Weibull distribution has attracted the attention of statisticians and practitioners from different
disciplines. Besides Weibull distribution is the most widely used lifetime distribution; it has
been exploited to model data from various fields such as economics, physics, medical
sciences, ecology, biology, and climatology. This article aims to compare different known
test procedures and present new goodness-of-fit tests to test the conformity of sample data to
a two-parameter Weibull model.

Over the last forty years, many research articles tackled the problem of goodness-of-fit for
Weibull distribution. Usually, these tests are based on some characteristics of the distribution.
For example, Mann et al. (1973) developed a test statistic for two-parameter Weibull
distribution based on normalized spacing. Many other tests are based on spacing and leaps,
such as Mann and Fertig (1975a), Littell and others (1979), Tiku and Singh (1981), Lockhart
and others (1986), and Gibson and Higgins (2000) tests.

The Shapiro-Wilk normality test, which is based on a ratio of two estimates of the population
variance, was modified by Shapiro and Brain (1987) and then further modified by Oztiirk and
Korukoglu (1988) to test for Weibull. Furthermore, Coles (1989) proposed a Weibull
goodness-of-fit test based on the sample correlation between the order statistics of a sample
and their corresponding expectations.

Well-known test statistics, such as Kolmogorov-Smirnov (D), Cramer-von Mises (W?), and
Anderson Darling (A?), have been modified to be applied for the Weibull distribution. For
example, Bush and others (1983) modified W? and A? statistics and computed their
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corresponding critical values, Khamis (1997) modified the D statistic, and Liao and
Shimokawa (1999) introduced a test combining D, W? and A? tests.

Many authors have presented directed tests of Weibull distribution against a specified
alternative distribution. For example, Hager and others (1971), Engelhardt and Bain (1975),
and Gupta and Kundu (2003) proposed tests to test the Weibull against exponential
distribution. Moreover, tests handling the gamma distribution as an alternative have been
proposed, among others, by Bain and Engelhardt (1980b), Kappenman (1982), and Chen
(1987). Furthermore, Fearn and Nebenzahl (1991), Balasooriya and Abeysinghe (1994),
Dumonceaux et al. (1973b), and Kappenman (1982, 1988) suggested tests for the Weibull
against the lognormal alternative.

In Section 2 of this article, we propose goodness-of-fit tests for two-parameter Weibull
distribution based on the coefficient of variation (C.V.) of the logarithmic transformation of
the Weibull variable. The distributions and asymptotic distributions of the proposed tests are
investigated in Section 3. As with most goodness-of-fit test statistics, the distributions of the
proposed tests do not have closed forms. Therefore, simulations are carried out in Section 3
to compute selected percentiles for the proposed statistics. In Section 4, selective quantiles of
each of Kolmogorov-Smirnov, Cramer-von Mises, Anderson-Darling, Mann-Scheurer-Fertig,
Liao-Shimokawa, Smith-Bain, and Shapiro-Brain statistics are simulated for samples of sizes
10, 20, and 50. Finally, the suggested tests are compared to the abovementioned tests in terms
of their powers.

2 Test Statistics Based on the coefficient of variation
Lett G ={G(x 8),x € (0,),0 = (8,7) € (0,)?} be the family of two-parameter

Weibull distribution with respective distribution and density functions

G (x;z,5) :1—exp{—(xﬁ)r}, (2.1)
-1 ;
g (x;r,9)=%(%j exp{—(%) }.x >0;8>0,7>0. 2.2)

Assume that X,,..., X
vector of parameters. To test H,:F(X,8) € G versus H,:F(X,0) ¢ G, we develop test

is a random sample with distribution function F(x, 8), where € is a

n

statistics that are based on the coefficient of variation of X ~ = log(X).

letY, =log( X, /@) ,i =1,2,...,n. It can be shown that under the null hypothesis, each ofY,

i=1,..,n, has the Extreme-Value distribution with scale parameter (1/ 7 )and location zero,
* 2

hence E[Yi]z-%, and fori = 1%, n, Var][Y,]=Var[log(X . / 8)] =Var (X) :%
T
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where y is the Euler constant, y [10.577216. Thus, the coefficient of variation of Yi is
EYi) _ -@/Y) _ -9
War(i)  Jep?/t2  ep

Y
Obviously,
YV

where Y, =EZY_ X :12|og(xi)andsn2 =i2(x ToX ) :LZ(Yi Y
N ni= n-17=% n-173

P 2y 2
By the laws of large numbers, Y, ——yz* and S — ?r 2, hence ”—22”2 -1
n

Based on the statistics Y,” ands ?, several test statistics may be suggested. The two-sided

testsT,, and T, defined below, are just two possibilitiesT , = Vn [Y—” Vg and

Sp P
7[2 Y_Z
67 S 4

T2,n = \/n_

n

Each of T, and T, ,measures deviations of the sample coefficient of variation from its
asymptotic limit.
In most real life applications, the parameters f and rare unknown and must be estimated

from the sample. As a matter of fact, the distributions of T,  and T, ., and consequently their

powers, depend on the method of estimation. The maximum likelihood (ML) and a hybrid
method of estimation will be used to estimate the unknown parameters.

The two likelihood equations are

t
nt to” i
-+ — = =0
BEEATE

t
Iog§5+ =0

Explicit solution is not possible, so some numerical methods must be used to compute
estimates of 3 and t based on a given sample.

g
N o &X;0
" nilogb+§ log(X;)-a o
t i=1 i=1 9

2
Using Var (log(X ;)) = g_2 , the moment estimator of t is
T
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t= . Plugging in the above

J6p . ) & N
S

. Equation (1) can be rewritten as b = g—é X!
n.
i=1

QH-I-I-IOE

n

no gt

moment estimator of t, we get b = g—a X U+ | In the sequel, we will refer to t and b as
n.
=1

&H-I-I |

hybrid estimators of t and 3, respectively.
1 Asymptotic Distributions of T, ;and T, when 8 is known

Let X =(X,....,X,)"be a vector of iid random variables each distributed Weibull (z,6) , where

n

iy

0 is assumed to be known, and let W, = = where Y; = Log(X, /0);i=1,2, ...,n, we

then have
E(Y, Var(Y, Cov(Y,, Y,
E[W,]= ( ;_) and Cov[vnW,]= ( 1)2 (Y, 21) . (3.6)
E(Y?) Cov(Y,, YZ)  Var(Y?)
If u; =E(Y;),r=12,...,are the rth non-central moment of Y, , then it can be shown that
2 2
Y Y 2&(3)
S (Y L +— and
“1 T “2 T2 6T2 “3 T 2 3 T )
3t «?
=7"+ +—+—+8yE(3
W=y +y°n’ TREERRES)

where £(3) is the Apéry’s constant approximately equals to 1.2020569.

2 2

2
- n_ Y T T
Thus, E(Y,)=—, E(Y})=5+— , Var(Y)) =—,
( l) T ( 1) ’[2 6’[2 ( 1) 612

117" +720€(3)y +60m %y
907*

Var(Y) =, —p,’ = , and

., 6E(3) +7
Cov(Y,, Y,) = g —pup)y = _% :

Replacing yand &(3) by their approximate values, we have

~0.577216 1.644934  —4.303077
2 3
E(W,) = ¢ and Cov['nW, 10 ¢ ‘
1.978112 ~4.303077 19.648547
T 2 T 3 T 4

By the multivariate version of the central limit theorem, we have, as n — oo,
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1 Z":Y —0.577216 1.644934  —-4.303077

" =1 " T 0 ‘L'2 ‘L'3
N . —SN|[| |, . (3.7)

lz”: , 1978112 0)| —4.303077 19.648547

1Ny'y2 o

n - i 2 e r*

2 2 _1 _ n —2
Let g(u,v):iz,where c=" (I; ).Then,we have g(Y,%ZYﬁ) =— cY ,
vV—u 6yn i1 %zYiz_vz
i=1
therefore
ror _ 12
ag(U,V) , ’ — 2C”’£11“2 and Gg(u,v) , , — Cljl ] (38)
ou  |(ug,py) c ov o |(ug,p)) o
_ _ 2
Upon simplifying, we obtain(a—g a_g) - 4.166720(n -1z  0.607927(n -1)r )
ou oV (a4, 11y) n n
(3.9

Thus, by the delta method, we have

cY?
Jn (=™ —1) - N(0,14.020305) . Hence

y.n

t t

P(T,, <t) 5 20( ————=)-1and P(T,, <t) > O( —————)., (3.10)

" J14.020305 8 J14.020305

where ®(z ) signifies the standard normal distribution function.

In practice, the parameters, , are unknown. In this case, we modify the tests T1,and T2, to be

2 ;2 2 Y_Z
_zan - andTanﬂ—2 —-1,
6y° S/, ’ 6y° S,

1n

whereY, =(X, /6),i =1,..,n.

The distributions of these statistics may not have closed forms, further it is expected that the
convergence of the asymptotic distributions to be slower than that in the case of known
parameters. This lets simulated quantiles to be our best choice.

To simulate quantiles, we first simulate a random sample of specific sample size n from a
Weibull distribution with some shape and scale parameters. Then, the maximum likelihood
method is applied to estimate both of the parameters from the simulated sample. We

transform the sample values (x,,...,X,) into (y,,....y,), where y, =log(x, 16),i =1,...,n,

and @ is the MLE of @. After that, we compute the values of T1nand T2, from the y sample.
This procedure is repeated 20,000 times, for each of which T1, and T2, are computed, then
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all computed values are sorted and specified quantiles are located. It is noticed that the Y’s
are @ free and each of T1inand Tz, is 7 free. Thus, the tests are invariant of the choices of ¢
and . Simulated quantiles of T1nand T2, for the unknown parameters case, are displayed in
Tables Al and A2, respectively.

2 Power Comparisons

The simulated powers of T, and T, will be compared to tests based on EDFs, spacing, and
on ratios of estimators of t. First, we conduct a comparison among the following three EDFs
based tests:
1. Kolmogorov-
. j j—1
Smirnov D test, where D = max{max(l -F(z;, )) ,max(F(z(j) )—J—ﬂ, 4.1)
i \n j n

where F is the distribution function of Weibull(1,1) variate and z ;,, j =1,2,...,n is the jth

ordered standardized sample value; that is Z =( g’} .

The null hypothesis is rejected when D is large.

2. Cramer-von Mises W? test with computational form
2
1 52j-1
W2=—+| Y2 ——F(z, : 4.2
12n (JZ; n “))] (42)
The hypothesis is rejected for large values of W?.
3. Anderson-Darling A”test with computational form

13 . .
A’ =—n—HZ[(21 —D)log(F(z;,)+(2n-2j+1)log(1-F(z,))] - (4.3)
=1
The hypothesis is rejected when AZis large.

The simulated critical points of these tests, and other tests to be discussed later, with nominal
values « = 0.1, 0.05, and 0.01 and sample sizes n=10, 20, 30, 50, and 100 are displayed in
Table 2. These values are obtained based on 20,000 simulated samples. Also, the simulated
powers of the above three tests are computed when testing the two unknown parameters
Weibull distribution against wide spectrum of Alternative distributions. For comparison
purposes, only « =0.05 is considered. The power is computed as the proportion of rejections
in 10,000 samples from alternative distribution.

Table 2. Critical values of considered tests’ statistics based on ML estimates.

n [a |D |w? | A |MSF[SB [LS [T, T,, | SHBR

10 |01 |0.2410.100 | 0.622 | 2.504 | 0.145 [ 1.151 | 0.229 | -.26 | 0.198 | - | 1.47

20 0.174 [ 0.100 | 0.623 | 1.823 | 0.097 | 1.013 | 0.204 | -.22 | 0.192 | 1.15 | 1.58

30 0.144 | 0.102 | 0.628 | 1.605 | 0.074 | 0.956 | 0.183 | -.20 | 0.177 |- | 1.64
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50 0.113 | 0.102 | 0.634 | 1.422 | 0.053 | 0.893 | 0.156 | -.17 | 0.150 | 1.31 | 1.61
100 0.081 | 0.102 | 0.629 | 1.266 | 0.033 | 0.824 | 0.121 | -.13 | 0.116 | - 1.57
1.37
1.44
1.48
10 | 0.05|0.263 | 0.120 | 0.730 | 3.299 | 0.180 | 1.253 | 0.282 | -.31 | 0.234 | - 1.81
20 0.189 | 0.120 | 0.726 | 2.129 | 0.120 | 1.094 | 0.246 | -.27 | 0.222 | 1.33 | 1.96
30 0.156 | 0.123 | 0.751 | 1.813 | 0.094 | 1.036 | 0.219 | -.25 | 0.205 | - 1.97
50 0.123 | 0.124 | 0.759 | 1.558 | 0.068 | 0.970 | 0.187 | -.21 | 0.173 | 1.52 | 1.92
100 0.088 | 0.122 | 0.753 | 1.353 | 0.042 | 0.896 | 0.145 | -.16 | 0.134 | - 1.92
1.61
1.68
1.75
10 [0.01]0.300 | 0.169 | 0.992 | 5.714 | 0.256 | 1.539 | 0.389 | - 0.321 | - 2.65
20 0.219 | 0.171 | 1.004 | 2.916 | 0.181 | 1.313 | 0.344 | .410 | 0.282 | 1.62 | 2.75
30 0.180 | 0.170 | 1.013 | 2.312 | 0.142 | 1.210 | 0.313 | - 0.253 | - 2.62
50 0.144 | 0.177 | 1.051 | 1.870 | 0.110 | 1.140 | 0.267 | .375 | 0.215 | 1.93 | 2.66
100 0.102 | 0.179 | 1.055 | 1.526 | 0.074 | 1.059 | 0.207 | - 0.169 | - 2.54
347 2.01
291 2.11
232 2.27
Table 3. Powers of D, W?, and A%for n=20 and 50 at 0=0.05.
n=20 n=50
Alternative D W2 A? D w2 A?
W (1,1) 0.049 |0.051 |0.052 |0.050 | 0.047 | 0.048
HN(2) 0.063 |0.066 |0.078 |0.097 | 0.104 | 0.125
LN(0,1) 0.153 | 0.206 |0.221 |0.357|0.482 | 0.549
G(0.5,1) 0.066 | 0.074 |0.085 |0.094|0.103 | 0.126
G(4,1) 0.073 |0.086 |0.087 |0.116|0.146 | 0.165
U(0,1) 0.233 | 0.308 |0.386 |0.549 | 0.696 | 0.811
Pa(2,1) 0.871 |0.935 [0.953 | 1.000 | 1.000 | 1.000
B(2,1) 0.235 | 0.311 [0.385 |0.561|0.706 | 0.823
N[1,1] 0.0913 | 0.1029 | 0.1227 | 0.152 | 0.175 | 0.221
Logistic[1,1] | 0.0627 | 0.0711 | 0.0785 | 0.079 | 0.084 | 0.101
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T[1] 0.2717 1 0.3573 | 0.3684 | 0.630 | 0.738 | 0.764
T[4] 0.0562 | 0.0640 | 0.0676 | 0.071 | 0.080 | 0.090
C[1,1] 0.3832 | 0.4726 | 0.4759 | 0.781 | 0.859 | 0.866
IG[1,1] 0.1839 | 0.2453 | 0.2611 | 0.435 | 0.590 | 0.674
F[3,2] 0.3024 | 0.3930 | 0.4111 | 0.682 | 0.797 | 0.836
Inv.Chi[2] 0.5217 | 0.6655 | 0.6904 | 0.931 | 0.975 | 0.988
GDI[1,1] 0.0965 | 0.1132 | 0.1314 | 0.178 | 0.217 | 0.257
Inv. Gam[2,1] | 0.3958 | 0.5201 | 0.5490 | 0.835 | 0.926 | 0.957
Levy[0.5,1] 0.8666 | 0.9386 | 0.9535 | 1.000 | 1.000 | 1.000

Testing Weibull against wide spectrum of alternatives, We can conclude from Table 3. that
Anderson-Darling test considerably outperforms Kolmogorov-Smirnov and slightly overtakes

Cramer-von Mises tests. Subsequently, out of the above three tests, we will consider only A?

to be compared to our proposed tests and to other tests under consideration. Besides A?, four
more tests are considered:

4. Mann, Scheure, and Fertig (1973), to be labeled MSF, test. This test is based on
normalized spacing of the sample. The test statistic form s

no(z,—Z 4 )
(J) (j-1)
rZ—I

j=r+1 i Ij_l

(n—r)z( (i~ L)

=

MSF =

(4.4)

where r is the floor of (n/2), and

I, =log [—Iog (1—%]] (4.5).

The test is one-sided and the hypothesis is rejected when MSF is large.
5. Smith and Bain (1976), to be labeled S.B., test. This test is based on the sample
correlation between the sample order statistics ant its expectation.

(v - 7)('0)"_))2
Y (v -9) Zi (- T)

Whereljy is as in (4.5).

SB=1-

(4.6)

The test is one-sided and the hypothesis is rejected when S.B. is large.
6. Shapiro and Brain (1987), to be labeled SBr. This test is based on the ratio of two
estimates of scale parameter b =(1/17)of the Log-Weibull distribution. We consider a

modification of the test statistic by Oztlirk and Korukoglu (1988) which has the form
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« (b/6)-1.0-013/n+1.18/n

W
0.49/ \/n —0.36n

4.7)

Where & is the standard deviation of the sample, and b is D’Agostino (1971a) estimate of
(1/ ) given by

. n n

b= 1[0.60792 OniYin —0.2570) @Y., |, (4.8)
n i-1 i—1

Where

n+1 . . IS s .
@ =In - i=1..,n-L @, =n-Y a;o,,; =0 (1+Ine )-Li=1..,n-1 and
n+1-i —

n-1

Wy, =0.4228n- . -
i=1

The test is two-sided and the hypothesis is rejected for small and large values of W™

7. Liao and Shimokawa (1999), to be labeled L.S., test. This test combines D, W?, and
A’tests. The test statistic has the form

Ls o L e maxI(i/n) - F(z;) ). (F(z;)) - -D7/m1 -
Jn i3 JF(z))[-F(z)

(4.9)

The test is one-sided and the hypothesis is rejected for large values of L.S.

The simulated critical points, computed under ML estimation, for designated nominal values
and sample sizes are displayed in Table 2. It is worth noting that the tests 4, 5, and 6 are

parameter free. The powers of the abovementioned four tests along with that of A?and the
proposed tests T, . and T, for n=20 and o =0.05 are depicted in Table 4. Simulated powers

for other sample sizes n=10, 50, and 100 are displayed in Tables A3-A5 in Appendix A.

Table 4. Powers of A?,L.S., S.B., MSF, SBr, T,,,,and T, for n=20 and 0=0.05 .

Alternative A2 LS SB MSF | SBr T, T,,

W (1,1) 0.052 |0.050 |0.051]0.050|0.051]0.051 |0.049
HN(2) 0.078 [0.099 |0.064 |0.020 | 0.088 | 0.092 |0.074
LN(0,1) 0.221 [0.168 |0.251 |0.306 | 0.288 | 0.229 | 0.295
G(0.5,1) 0.085 [0.105 |0.067 | 0.020 | 0.092 | 0.091 | 0.071
G(4,1) 0.087 [0.058 |0.088|0.133|0.109 | 0.074 | 0.105
uU(0,1) 0.386 |[0.419 |0.144 | 0.003 | 0.467 | 0.210 |0.170
Pa(2,1) 0.953 [0.902 |0.990 |0.952 0942 | 0964 | 0.980
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B(2,1) 0.385 10.420 |0.147|0.004 | 0.471 | 0.212 | 0.168

N[1,1] 0.1227 | 0.1555 | 0.088 | 0.016 | 0.136 | 0.1245 | 0.0974
Logistic[1,1] | 0.0785 | 0.0974 | 0.067 | 0.026 | 0.081 | 0.0917 | 0.0753
T[1] 0.3684 | 0.3306 | 0.332 | 0.354 | 0.432 | 0.3247 | 0.3738
T[4] 0.0676 | 0.0749 | 0.068 | 0.052 | 0.078 | 0.0774 | 0.0752
C[1,1] 0.4759 | 0.4396 | 0.392 | 0.385 | 0.500 | 0.3737 | 0.4154
IG[1,1] 0.2611 | 0.1819 | 0.338 | 0.387 | 0.336 | 0.2902 | 0.3747
F[3,2] 0.4111 | 0.3497 | 0.428 | 0.465 | 0.498 | 0.4153 | 0.4831
Inv.Chi[2] 0.6904 | 0.6046 | 0.776 | 0.755 | 0.742 | 0.7484 | 0.8091
GDI[1,1] 0.1314 | 0.1658 | 0.093 | 0.015 | 0.150 | 0.1303 | 0.1061
Inv. Gam[2,1] | 0.5490 | 0.4649 | 0.641 | 0.638 | 0.640 | 0.6070 | 0.6841
Levy[0.5,1] 0.9535 1 0.9044 | 0.991 | 0.960 | 0.942 | 0.9623 | 0.9763

4. Comparing the powers of the one-sided test T, to that of the two-sided test T,  we see
from Table 4. that the two tests compete for many alternatives. However, the two-sided T, |
test outperforms the one sided T, test , considerably, when testing against L.N. (1,1),
IGaus(1,1), IChis(2,1), and 1Gam(2,1). So, choosing between T, and T, tests, it might be

reasonable to choose T, , .

From Table 4., it can be noticed that T, outperforms all considered tests when testing

against F(3,2), INVCHI[2], and INVGAM]2,1], and outperformed by at least one test when
testing against UNIF[0,1], BETA[2,1], FNOR(1,1), and FCAUJ1,1], and performs almost the
same as other tests for the rest of alternatives. Inspecting

Table 4. and Table A3, It is noticed that, for small and moderate sample sizes, the powers of
all considered tests, when testing against HNOR[2], GAM[0.5,1], GAM[4,1], FNOR(1,1),
FLOGIO0,1], T[4], and GUMIJ1,1], barely exceed the nominal value. This motivates
developing directed tests addressing these alternatives.

From the above discussion, we conclude that the proposed one-sided T, , test competes well

with prominent tests such as Anderson-Darling, Smith-Bain and Shapiro-Brain tests. Also,
we notice that none of the tests considered in this article is uniformly most powerful for all
alternatives. Moreover, all considered tests show low powers against gamma and folded
symmetric alternatives. However, some tests show, comparably, higher powers than others.
Finally, computed powers of all considered tests improve as the sample size gets larger,
which indicates consistency of these tests.
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Appendix A.

Table Al. Selected simulated quantiles of T,

when both parameters are unknown

0.5 0.75 0.9 95 975 995

0.0917 | 0.1576 | 0.2292 | 0.2819 | 0.3289 0.4179
0.0835 | 0.1422 | 0.2037 | 0.2459 | 0.2873 0.3838
0.0758 | 0.1289 | 0.1827 | 0.2190 | 0.2554 0.3401
0.0699 | 0.1176 | 0.1685 | 0.2014 | 0.2367 0.3099
0.0637 | 0.1085 | 0.1556 | 0.1870 | 0.2185 0.2987
0.0604 | 0.1019 | 0.1450 | 0.1753 | 0.2015 0.2806
0.0576 | 0.0973 | 0.1394 | 0.1672 | 0.1927 0.2666
0.0521 | 0.0886 | 0.1254 | 0.1519 | 0.1784 0.2427
0.0504 | 0.0850 | 0.1209 | 0.1445 | 0.1705 0.2385

Table A2. Selected simulated quantiles of T,, when both parameters are unknown

0.001

0.025

0.05

0.90

0.95

0.975

0.995

-0.4096

-0.3140

-0.2602

0.1556

0.1976

0.2344

0.3206

-0.3751

-0.2720

-0.2215

0.1542

0.1919

0.2220

0.2818

-0.3472

-0.2507

-0.1987

0.1433

0.1770

0.2050

0.2534

-0.3287

-0.2304

-0.1807

0.1304

0.1597

0.1842

0.2329

-0.2913

-0.2086

-0.1647

0.1223

0.1499

0.1732

0.2153
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-0.2819 | -0.1945 | -0.1577 | 0.1151 | 0.1397 | 0.1623 | 0.1995
-0.2623 | -0.1864 | -0.1474 | 0.1074 | 0.1322 | 0.1547 | 0.1934
-0.2556 | -0.1717 | -0.1384 | 0.1023 | 0.1259 | 0.1464 | 0.1825
-0.2401 | -0.1673 | -0.1321 | 0.0983 | 0.1201 | 0.1402 | 0.1744
-0.2321 | -0.1599 | -0.1265 | 0.0939 | 0.1155 | 0.1337 | 0.1690

Table A3. Simulated powers of A?, L.S., S.B., MSF, SBr, T,,, and T,, for n=10 and
0=0.05

Alternative D W? A2 LS SB MSF | SBr | T, T,,

W (1,1) 0.051 | 0.047 | 0.046 | 0.049 | 0.051 | 0.053 | 0.052 | 0.048 | 0.049
HN(2) 0.063 | 0.058 | 0.066 | 0.088 | 0.047 | 0.032 | 0.061 | 0.080 | 0.064
LN(0,1) 0.096 | 0.108 | 0.098 | 0.060 | 0.150 | 0.154 | 0.143 | 0.068 | 0.127
G(0.5,1) 0.059 | 0.056 | 0.063 | 0.086 | 0.046 | 0.031 | 0.069 | 0.076 | 0.062
G(4,1) 0.061 | 0.061 | 0.056 | 0.034 | 0.079 | 0.087 | 0.070 | 0.061 | 0.065
uU(0,1) 0.135 | 0.154 | 0.195 | 0.241 | 0.075 | 0.014 | 0.203 | 0.145 | 0.110
Pa(2,1) 0.481 | 0.610 | 0.603 | 0.463 | 0.786 | 0.703 | 0.642 | 0.526 | 0.673
B(2,1) 0.136 | 0.150 | 0.187 | 0.233 | 0.076 | 0.014 | 0.204 | 0.148 | 0.113
N[1,1] 0.068 | 0.069 | 0.081 | 0.113 | 0.053 | 0.026 | 0.084 | 0.092 | 0.073
Logistic[1,1] | 0.057 | 0.061 | 0.065 | 0.083 | 0.050 | 0.036 | 0.065 | 0.072 | 0.062
T[1] 0.144 | 0.167 | 0.158 | 0.121 | 0.203 | 0.169 | 0.212 | 0.132 | 0.200
T[4] 0.058 | 0.060 | 0.060 | 0.067 | 0.061 | 0.051 | 0.067 | 0.064 | 0.066
C[1,1] 0.193 | 0.224 | 0.216 | 0.177 | 0.242 | 0.184 | 0.269 | 0.183 | 0.248
IG[1,1] 0.106 | 0.121 | 0.113 | 0.063 | 0.180 | 0.186 | 0.148 | 0.076 | 0.146
F[3,2] 0.144 | 0.177 | 0.167 | 0.118 | 0.239 | 0.216 | 0.240 | 0.136 | 0.216
Inv.Chi[2] 0.262 | 0.326 | 0.316 | 0.227 | 0.444 | 0.398 | 0.387 | 0.279 | 0.408
GD[1,1] 0.080 | 0.079 | 0.094 | 0.123 | 0.055 | 0.026 | 0.098 | 0.102 | 0.082
Inv. Gam[2,1] | 0.198 | 0.245 | 0.232 | 0.154 | 0.332 | 0.304 | 0.310 | 0.194 | 0.308
Levy[0.5,1] 0.483 | 0.612 | 0.607 | 0.471 | 0.782 | 0.714 | 0.639 | 0.535 | 0.681

Table A4. Powers of A%, L.S., S.B., MSF, SBr, T,,, and T,, for n=50 and ¢=0.05

Alternative D W2 A2 LS SB MSF | SBr | T, T,,

W (1,1) 0.050 | 0.047 | 0.048 | 0.052 | 0.051 | 0.050 | 0.050 | 0.051 | 0.051
HN(2) 0.097 | 0.104 | 0.125 | 0.147 | 0.097 | 0.009 | 0.158 | 0.120 | 0.094
LN(0,1) 0.357 | 0.482 | 0.549 | 0.506 | 0.528 | 0.664 | 0.699 | 0.628 | 0.697
G(0.5,1) 0.094 | 0.103 | 0.126 | 0.149 | 0.096 | 0.010 | 0.159 | 0.122 | 0.095
G(4,1) 0.116 | 0.146 | 0.165 | 0.147 | 0.129 | 0.272 | 0.255 | 0.157 | 0.205
U(0,1) 0.549 | 0.696 | 0.811 | 0.822 | 0.304 | 0.001 | 0.914 | 0.375 | 0.311
Pa(2,1) 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000
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B(2,1) 0.561 | 0.706 | 0.823 | 0.834 | 0.319 | 0.000 | 0.907 | 0.376 | 0.307
N[1,1] 0.152 1 0.175 1 0.221 | 0.263 | 0.139 | 0.005 | 0.299 | 0.191 | 0.147
Logistic[1,1] | 0.079 | 0.084 | 0.101 | 0.126 | 0.091 | 0.015 | 0.105 | 0.106 | 0.085
T[1] 0.630 | 0.738 | 0.764 | 0.759 | 0.571 | 0.722 | 0.815 | 0.610 | 0.657
T[4] 0.071 | 0.080 | 0.090 | 0.106 | 0.080 | 0.058 | 0.100 | 0.078 | 0.077
C[1,1] 0.781 | 0.859 | 0.866 | 0.865 | 0.661 | 0.752 | 0.858 | 0.613 | 0.644
IG[1,1] 0.435 1 0.590 | 0.674 | 0.598 | 0.747 | 0.774 | 0.785 | 0.809 | 0.864
F[3,2] 0.682 1 0.797 | 0.836 | 0.818 | 0.763 | 0.864 | 0.899 | 0.830 | 0.865
Inv.Chi[2] 0.931 1 0.975 | 0.988 | 0.978 | 0.994 | 0.987 | 0.992 | 0.997 | 0.999
GDI[1,1] 0.178 |1 0.217 | 0.257 | 0.304 | 0.149 | 0.006 | 0.250 | 0.185 | 0.146
Inv. Gam[2,1] | 0.835 | 0.926 | 0.957 | 0.934 | 0.968 | 0.965 | 0.975 | 0.986 | 0.992
Levy[0.5,1] 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000

Table A5. Powers of A?, L.S., S.B., MSF, SBr, T,,, and T,, for n=100 and 0=0.05

Alternative D W? A2 LS SB MSF | SBr | T, T,,

W (1,1) 0.053 | 0.049 | 0.051 | 0.045 | 0.059 | 0.059 | 0.048 | 0.049 | 0.049
HN(2) 0.146 | 0.165 | 0.203 | 0.208 | 0.130 | 0.004 | 0.291 | 0.178 | 0.140
LN(0,1) 0.666 | 0.804 | 0.870 | 0.825 | 0.846 | 0.914 | 0.943 | 0.933 | 0.959
G(0.5,1) 0.151 | 0.168 | 0.205 | 0.211 | 0.127 | 0.004 | 0.288 | 0.178 | 0.139
G(4,1) 0.221 | 0.277 | 0.321 | 0.281 | 0.216 | 0.462 | 0.464 | 0.332 | 0.415
uU(0,1) 0.894 | 0.966 | 0.991 | 0.987 | 0.589 | 0.000 | 0.998 | 0.606 | 0.534
Pa(2,1) 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000
B(2,1) 0.888 | 0.963 | 0.993 | 0.987 | 0.589 | 0.000 | 0.997 | 0.611 | 0.539
N[1,1] 0.278 | 0.328 | 0.402 | 0.412 | 0.207 | 0.001 | 0.538 | 0.309 | 0.251
Logistic[1,1] | 0.117 | 0.120 | 0.141 | 0.151 | 0.125 | 0.008 | 0.155 | 0.154 | 0.123
T[1] 0.906 | 0.951 | 0.962 | 0.960 | 0.818 | 0.940 | 0.974 | 0.828 | 0.855
T[4] 0.101 | 0.118 | 0.137 | 0.145 | 0.086 | 0.066 | 0.114 | 0.078 | 0.074
C[11] 0.978 | 0.990 | 0.991 | 0.980 | 0.884 | 0.951 | 0.984 | 0.807 | 0.834
IG[1,1] 0.791 | 0.915 | 0.959 | 0.924 | 0.982 | 0.969 | 0.979 | 0.995 | 0.998
F[3,2] 0.943 | 0.978 | 0.988 | 0.980 | 0.961 | 0.989 | 0.995 | 0.981 | 0.988
Inv.Chi[2] 0.999 | 1.000 | 1.000 | 0.990 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000
GD[1,1] 0.333 | 0.403 | 0.458 | 0.474 | 0.229 | 0.001 | 0.353 | 0.296 | 0.246
Inv. Gam[2,1] | 0.992 | 0.999 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000
Levy[0.5,1] 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000

hybrid
Alternative kol | cvm | A.D.| wats lish T1 T2
Weibull[1,1] 0.051 | 0.053 | 0.051 | 0.051 | 0.046 | 0.047 | 0.047
Weibull[3,4] 0.050 | 0.049 | 0.049 | 0.051 | 0.048 | 0.049 | 0.049
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HalfNormal[10] 0.061 | 0.061 | 0.056 | 0.040 | 0.029 | 0.042 | 0.017
LogNormal[0,1] 0.305 | 0.338 | 0.353 | 0.388 | 0.393 | 0.372 | 0.413
Gamma[0.5,1] 0.058 | 0.057 | 0.052 | 0.037 | 0.028 | 0.040 | 0.017
Gammal4,1] 0.119 1 0.130 | 0.138 | 0.158 | 0.159 | 0.144 | 0.170
Uniform[{0,1}] 0.165 | 0.198 | 0.191 | 0.118 | 0.079 | 0.087 | 0.009
Pareto[2,1] 0.963 | 0.976 | 0.983 | 0.980 | 0.982 | 0.971 | 0.979
Pareto[0.5,1] 0.964 | 0.976 | 0.982 | 0.980 | 0.982 | 0.973 | 0.980
Beta[2,1] 0.166 | 0.195 | 0.188 | 0.117 | 0.080 | 0.087 | 0.010
Beta[0.5,2.5] 0.082 | 0.088 | 0.080 | 0.048 | 0.030 | 0.048 | 0.007
InverseGamma[4,1] | 0.558 | 0.615 | 0.630 | 0.659 | 0.661 | 0.643 | 0.682
InverseChiSquare[2] | 0.768 | 0.811 | 0.825 | 0.838 | 0.840 | 0.827 | 0.854

Alternative kol cvm AD wats lish T1 T2

Weibul[1,1] 0.046 |0.046 |0.049 |0.044 |0.050 |0.049 |0.049

Weibul[3,4] 0.049 |0.051 |0.053 |0.048 |0.052 |0.054 |0.055

Exponentia[1] 0.046 |0.047 |0.049 |0.043 |0.048 |0.053 |0.052

HalfNorma[10] 0.065 |0.066 |0.079 |0.042 |0.099 |0.100 |0.089

LogNorma[0,1] 0.156 |0.200 |0.215 |0.263 |0.163 |0.170 |0.223

Gamma[0.5,1] 0.067 |0.069 |0.082 |0.046 |0.103 |0.101 |0.090

Gammal4,1] 0.075 |0.083 |0.084 |0.111 |0.058 |0.049 |0.069

Uniform[{0,1}] 0.225 |0.287 |0.369 |0.192 |0.407 |0.228 |0.205

Pareto[2,1] 0876 [0935 |0951 |0.955 |0.901 |0.941 |0.961

Pareto[0.5,1] 0.874 |0.933 |0.951 |0.955 |0.900 |0.941 |0.962

Beta[2,1] 0232 0291 |0374 |0.191 |0416 |0.237 |0.214

Beta[0.5,2.5] 0.106 |0.117 |0.147 |0.067 |0.179 |0.139 |0.125

InverseGamma[2,1] | 0.401 |0.525 |0.553 |0.603 |0.471 |0.536 |0.606

InverseGamma[4,1] | 0.315 |0.418 |0.450 |0.501 |0.371 |0.419 |0.491

InverseGamma[8,1] [ 0.261 |0.349 |0.375 |0.429 |0.303 |0.337 | 0.407

InverseChiSquare[2] | 0.523 | 0.653 |0.685 |0.725 |0.604 |0.677 |0.742

Levy[0,0.5] 0.663 |0.787 |0.814 |0.840 |0.741 |0.808 |0.857

Levy[0,2] 0.661 |0.784 |0.813 |0.835 |0.737 |0.810 |0.854
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