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Abstract 

In the current study, a breakthrough approach of investigating the impact of 

chemical reaction and heat source/sink in an unsteady flow of Casson fluid 

with methanol, past an exponentially stretching surface was first proposed. 

Appurtenant similarity variables are adopted to transfigure the governing 

partial differential equations into a system of ordinary differential 

equations. Subsequently, numerical solutions to these equations are found. 

The repercussions of the physical components that affect the flow, heat and 

mass transmission phenomena are sketched, tabulated and scrutinized 

briefly.  

Keywords: Unsteady Casson fluid; Exponentially stretching surface; 

Chemical reaction; Heat source/sink. 

 

Introduction 

First and foremost, Crane [1] discovered the exact solution of steady flow past a sheet that is 

being stretched. The majority of the extant literature focuses on linearly stretching sheet. 

Nevertheless, it is often alleged that, realistically, the rate of surface stretching might not 

essentially be linear in real-world scenarios. There may be circumstances where the sheet 

stretches in an exponential order. Several investigators [2 – 5] focused on the boundary layer 

heat transmission over an exponentially stretching sheet. 

It is well known that Mathematicians, physicists and engineers lay great emphasis on the 

mechanics of non-Newtonian fluids. The simplest subclass among the non-Newtonian models 

is the Casson fluid, whose flow (such as blood and certain oils) possesses distinctive features 

and has gained recent prominence. Numerous authors investigated the Casson fluid’s boundary 

layer flow in a variety of configurations. Mukhopadhyay et al. [6] and Mahdy [7] numerically 

elicited the unsteady Casson fluid across a stretching sheet under different conditions. 

Methanol is envisioned as the future fuel. Recent advances show that blending methanol with 

vegetable oil is characterised as the most cost-effective and environment-friendly fuel. Despite 

the overwhelming importance, no attempt has been made to analyse the flow of unsteady 

chemically reactive methanol mixed with Casson fluid across an exponentially stretching 

surface accompanied by a uniform heat source or sink. The impact of several dimensionless 

pertinent parameters on the velocity profile, temperature and concentration distributions are 

analysed through tables and graphs. 
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Nomenclature 

Mathematical Formulation 

Under consideration is a two-dimensional unsteady viscous flow of an electrically conducting, 

non-Newtonian Casson fluid past an exponentially stretching surface. As illustrated in Fig. 1, 

it is postulated that the exponentially stretching surface is positioned along the 𝑥-axis, and the 

𝑦-axis is perpendicular to it. The fluid is subjected to a uniform transverse magnetic field 

𝐵(𝑥, 𝑡) =
𝐵0

√1−𝑐𝑡
𝑒

𝑁𝑥

2𝐿  , where 𝐵0 is a constant. The exponential velocity is 𝑈𝑤(𝑥, 𝑡) =
𝑈0

1−𝑐𝑡
𝑒

𝑁𝑥

𝐿  , 

the temperature at the surface is placed at 𝑇𝑤(𝑥, 𝑡) = 𝑇∞ +
𝑇0

(1−𝑐𝑡)2 𝑒
𝑁𝑥

2𝐿   and the surface 

concentration is 𝐶𝑤(𝑥, 𝑡) = 𝐶∞ +
𝐶0

(1−𝑐𝑡)2
𝑒

𝑁𝑥

2𝐿  . 

As propounded by Casson [8], the isotropic and incompressible Casson fluid flow’s rheological 

equation of state is governed by the following equation: 

𝜇 Dynamic viscosity 𝜈 Kinematic viscosity 

𝜎 Electrical conductivity 𝜌 Density 

𝜅 Thermal conductivity 𝑞𝑟 Radiative heat flux 

𝜌𝑐𝑝 Heat capacitance 𝑡 Time factor 

𝑄∗ Heat source / sink 𝑁 Exponential parameter 

𝜎∗ Stefan-Boltzmann Constant 𝑘∗ Mean absorption coefficient 

𝑇 Temperature 𝐶 Concentration 

𝑇0 Reference temperature 𝐶0 Reference concentration 

𝑇∞ Ambient temperature 𝐶∞ Ambient concentration 

𝑔 Acceleration due to gravity 𝐿 Characteristic length 

𝑉(𝑥) Suction/injection 𝜓 Stream function 

𝜂 Similarity variable 𝜃 Dimensionless temperature 

𝜙 Dimensionless concentration 𝐶𝑓 skin friction coefficient 

𝑁𝑢𝑥 Local Nusselt number 𝑆ℎ𝑥 Local Sherwood number 

𝐴 Unsteadiness parameter 𝑀 Magnetic field parameter 

𝐺𝑟 Thermal Grashof number 𝐺𝑐 Concentration Grashof number   

𝑅 Radiation parameter 𝑄 Heat source/sink parameter 

𝐸𝑐 Eckert number 𝑆𝑐 Schmidt number 

𝑘 Chemical reaction parameter 𝑠 Suction/injection parameter 

𝛽 Casson fluid parameter 𝐷𝑚 Diffusion coefficient 

𝑅𝑒𝑥 Local Reynolds number 𝑄0 Initial value of heat source / sink 

𝜇𝐵 plastic dynamic viscosity 𝑃𝑦 yield stress 

τ𝑖𝑗 
(𝑖, 𝑗)𝑡ℎ component of stress 

tensor 
𝑒𝑖𝑗 

Deformation rate’s (𝑖, 𝑗)𝑡ℎ 

component 

𝑃𝑟 Prandtl number 𝑘𝑙 rate of chemical reaction 
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τ𝑖𝑗 = {
2 (𝜇𝐵 +

𝑃𝑦

√2𝜋
) 𝑒𝑖𝑗        𝜋 > 𝜋𝑐

2 (𝜇𝐵 +
𝑃𝑦

√2𝜋𝑐
) 𝑒𝑖𝑗       𝜋 < 𝜋𝑐   

      

 (1) 

From equation (1), 𝜋 = 𝑒𝑖𝑗𝑒𝑖𝑗 and in accordance with the non-Newtonian model, 𝜋𝑐 is the 

critical value of 𝜋. 

 

Fig. 1 Coordinate system of fluid flow 

These suppositions lead to the standard Boussinesq approximation, which accrues the 

following governing equations for the prevailing flow. 

𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
= 0           

 (2) 

𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
= 𝜈 (1 +

1

𝛽
)

𝜕2𝑢

𝜕𝑦2 + 𝑔𝛽𝑇(𝑇 − 𝑇∞) + 𝑔𝛽𝐶(𝐶 − 𝐶∞) −
𝜎𝐵2𝑢

𝜌
   

 (3) 

𝜕𝑇

𝜕𝑡
+ 𝑢

𝜕𝑇

𝜕𝑥
+ 𝑣

𝜕𝑇

𝜕𝑦
=

1

𝜌𝑐𝑃
[𝜅

𝜕2𝑇

𝜕𝑦2
−

𝜕𝑞𝑟

𝜕𝑦
+ 𝜇 (1 +

1

𝛽
) (

𝜕𝑢

𝜕𝑦
)

2

+ 𝑄∗(𝑇 − 𝑇∞) + 𝜎𝐵2𝑢2]             

 (4) 

𝜕𝐶

𝜕𝑡
+ 𝑢

𝜕𝐶

𝜕𝑥
+ 𝑣

𝜕𝐶

𝜕𝑦
= 𝐷𝑚

𝜕2𝐶

𝜕𝑦2
− 𝑘𝑙(𝐶 − 𝐶∞)       

 (5) 

In this instance, 𝑢 and 𝑣 are the 𝑥 and 𝑦 directional velocity components respectively. Also, 

𝛽 =
𝜇𝐵√2𝜋𝑐

𝑃𝑦
 , 𝑄∗ =

𝑄0𝑒
𝑁𝑥
𝐿

1−𝑐𝑡
  and 𝑘𝑙 =

𝑘0𝑒
𝑁𝑥
𝐿

1−𝑐𝑡
  where 𝑘0 is a constant. Rosseland approximation [9] 

is employed to evaluate 𝑞𝑟 which is as follows: 
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𝑞𝑟 = −
4𝜎∗

3𝑘∗

𝜕𝑇4

𝜕𝑦
       

 (6) 

It is presumed that the flow’s internal temperature variations are suitably modest. Truncation 

of higher order terms after expanding 𝑇4 using Taylor’s series about 𝑇∞ gives: 

𝑇4 ≡ 4𝑇∞
3 𝑇 − 3𝑇∞

4                             

 (7)  

Equation (4) is modified by incorporating (6) and (7) to produce 

𝜕𝑇

𝜕𝑡
+ 𝑢

𝜕𝑇

𝜕𝑥
+ 𝑣

𝜕𝑇

𝜕𝑦
=

𝜅

𝜌𝑐𝑃

𝜕2𝑇

𝜕𝑦2 +
16𝜎∗𝑇∞

3

3𝜌𝑐𝑃𝑘∗  
𝜕2𝑇

𝜕𝑦2 +
𝜈

𝑐𝑃
(1 +

1

𝛽
) (

𝜕𝑢

𝜕𝑦
)

2

+
𝑄∗

𝜌𝑐𝑃
(𝑇 − 𝑇∞) +

𝜎𝐵2𝑢2

𝜌𝑐𝑃
 

 (8) 

Boundary Conditions 

The appurtenant boundary constraints can be expressed as  

at 𝑦 = 0   : 𝑢 = 𝑈𝑤(𝑥, 𝑡),     𝑣 = −𝑉(𝑥),     𝑇 = 𝑇𝑤(𝑥, 𝑡),     𝐶 = 𝐶𝑤(𝑥, 𝑡)  

as 𝑦 → ∞ : 𝑢 → 0,     𝑇 → 𝑇∞,     𝐶 → 𝐶∞                               

 At the wall, a peculiar kind of velocity 𝑉(𝑥) is taken into account [6]. Here 𝑉(𝑥) =

𝑉0𝑒
𝑁𝑥

2𝐿  where 𝑉0 is a constant. In addition, 𝑉(𝑥) > 0 and 𝑉(𝑥) < 0 signifies the suction velocity 

and blowing (injection) velocity respectively. Also, the expressions for 𝑈𝑤(𝑥, 𝑡), 𝑇𝑤(𝑥, 𝑡) and 

𝐶𝑤(𝑥, 𝑡) are valid only if 𝑐𝑡 < 1. 

Method of Solution 

The equation of continuity (2) is met by opting 𝜓(𝑥, 𝑦) such that 𝑢 =
𝜕𝜓

𝜕𝑦
  and 𝑣 = −

𝜕𝜓

𝜕𝑥
 . The 

following similarity transformation is utilized to transmogrify the equations (3), (8) and (5). 

𝜂 = √
𝑈0

2𝜈𝐿(1−𝑐𝑡)
 𝑒

𝑁𝑥

2𝐿  𝑦                     

 (9a) 

𝜓(𝑥, 𝑦) = √
2𝑈0𝜈𝐿

1−𝑐𝑡
 𝑒

𝑁𝑥

2𝐿  𝑓(𝜂)                    

 (9b) 

𝜃(𝜂) =
𝑇−𝑇∞

𝑇𝑤−𝑇∞
                      

 (9c) 

𝜙(𝜂) =
𝐶−𝐶∞

𝐶𝑤−𝐶∞
                      

 (9d) 
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The transformed set of ordinary differential equations take the following form: 

(1 +
1

𝛽
) 𝑓′′′ − (𝐴𝜂 − 𝑁𝑓)𝑓′′ − 2𝑁𝑓′2

− 2(𝑀 + 𝐴)𝑓′ + 2𝐺𝑟𝜃 + 2𝐺𝑐𝜙 = 0             

 (10) 

1

𝑃𝑟
(1 +

4

3
𝑅) 𝜃′′ − (𝐴𝜂 − 𝑁𝑓)𝜃′ − (4𝐴 + 𝑁𝑓′ + 𝑄)𝜃 + 𝐸𝑐 (1 +

1

𝛽
) 𝑓′′2

+ 2𝑀𝐸𝑐𝑓′2
= 0      

  (11) 

1

𝑆𝑐
𝜙′′ − (𝐴𝜂 − 𝑁𝑓)𝜙′ − (4𝐴 + 𝑁𝑓′ + 𝑘)𝜙 = 0                 

 (12) 

The associated boundary conditions after applying equation (9) are: 

at  𝜂 = 0   : 𝑓(𝜂) = 𝑠,     𝑓′(𝜂) = 1,     𝜃(𝜂) = 1,     𝜙(𝜂) = 1             

 (13) 

as 𝜂 → ∞ : 𝑓′(𝜂) → 0,      𝜃(𝜂) → 0,     𝜙(𝜂) → 0                 

 (14) 

where the prime notation delineates the differentiation with respect to 𝜂. 

The dimensionless parameters obtained during this transformation include: 

𝐴 =
𝑐𝐿

𝑈0𝑒
𝑁𝑥
𝐿

 , 𝑀 =
𝜎𝐵0

2𝐿

𝜌𝑈0
  , 𝐺𝑟 =

𝑔𝐿𝛽𝑇(𝑇𝑤−𝑇∞)

𝑈𝑤
2  , 𝐺𝑐 =

𝑔𝐿𝛽𝐶(𝐶𝑤−𝐶∞)

𝑈𝑤
2  , 𝑅 =

4𝜎∗𝑇∞
3

𝜅𝑘∗  , 𝑄 =
2𝐿𝑄0

𝜌𝑐𝑝𝑈0
 , 𝐸𝑐 =

𝑈𝑤
2

𝑐𝑝(𝑇𝑤−𝑇∞)
 , 

𝑆𝑐 =
𝜈

𝐷𝑚
 , 𝑘 =

2𝐿𝑘0

𝑈0
 , 𝑠 =

𝑉(𝑥)

𝑁√
𝜈𝑈0

2𝐿(1−𝑐𝑡)
  𝑒

𝑁𝑥
2𝐿

  and 𝑃𝑟 =
𝜈

𝜅
 . 

The physical quantities of interest viz., 𝐶𝑓, 𝑁𝑢𝑥 and 𝑆ℎ𝑥 in the dimensionless form can be 

expressed as 

𝐶𝑓√𝑅𝑒𝑥
2⁄

√𝑥
𝐿⁄

 =  (1 +
1

𝛽
) 𝑓′′(0)                    

 (15) 

𝑁𝑢𝑥

√𝑅𝑒𝑥
2⁄ √𝑥

𝐿⁄

= −𝜃′(0)                    

 (16) 

𝑆ℎ𝑥

√𝑅𝑒𝑥
2⁄ √𝑥

𝐿⁄

= −𝜙′(0)                    

 (17) 
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where 𝑅𝑒𝑥 =
𝑥𝑈𝑤

𝜈
 .  

Results and Discussions 

Numerical solutions are provided for the resulting transformed equations (10) – (12) and the 

boundary conditions (13) and (14) using MATLAB bvp4c inbuilt package. For the sake of 

brevity, the solutions of this present model have been illustrated through graphs and tables. The 

procured 𝑓′′(0) for ample values of 𝐴 are reported in Table 1 so as to authenticate the precision 

of the numerical technique employed in this study. Table 2 was drawn under limiting conditions 

to compare the numerical values of −𝜃′(0) for several values of 𝑃𝑟 and 𝑀 when 𝑁 = 1 and in 

the absence of other involved parameters. It is affirmed that the numerical findings of the current 

assessment were in very good accord with the existing literature. For numerical results, the fixed 

values of the pertinent parameters are taken as 𝐴 = 0.5, 𝑠 = 0.1, 𝛽 = 2, 𝐸𝑐 = 0.01, 𝐺𝑟 =

𝐺𝑐 = 1, 𝑄 = 0.3, 𝑀 = 0.5, 𝑘 = 0.1 and  𝑁 = 1 . Moreover, the case of air (𝑃𝑟 = 𝑆𝑐 = 0.7) is 

indicated by dotted lines and the methanol case at 25℃ (𝑃𝑟 = 6.83 and 𝑆𝑐 = 1.14) is shown 

by solid lines, except the values that vary are mentioned explicitly in appropriate tables and 

figures.  

TABLE 1    Comparison of −𝑓′′(0) for various values 𝐴 and for Newtonian fluid 

𝐴 Mukhopadhyay et al. [6] Mahdy [7] Present Study 

0.8 1.261479 1.261012 1.261094 

1.2 1.377850 1.377842 1.377929 

TABLE 2    Comparison of present values of −𝜃′(0) for variation in 𝑃𝑟 and 𝑀  

Figs. (2a) – (2c) explicates the noticeable effect of 𝑀 on 𝑓′(𝜂), 𝜃(𝜂) and 𝜙(𝜂) respectively. 

For both air and methanol, as the value of 𝑀 increases, the fluid flow is resisted as a result of 

strong Lorentz force, which also leads to a drop in 𝑓′(𝜂). A subsequent increase in 𝜃(𝜂) and 

𝜙(𝜂) are observed. 

𝑀 𝑃𝑟 
Magyari and Keller 

[2] 

El-Aziz 

[3] 

Bidin and Nazar 

[4] 

Ishak 

[5] 

Present 

Study 

0.0 1.0 0.954782 0.954785 0.9548 0.95478 0.954811 

 2.0   1.4714 1.47146 1.471454 

 3.0 1.869075 1.869072  1.86907 1.869069 

 5.0 2.500135 2.500132  2.50012 2.500125 

 10.0 3.660379 3.660372  3.66027 3.660379 
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In figs. (3a) – (3c), the velocity profile, temperature distribution and concentration distribution 

are drawn versus 𝜂 respectively for several values of 𝐴. The graph makes it crystal clear that 

enhancing 𝐴 results in depreciation of 𝑓′(𝜂), 𝜃(𝜂) and 𝜙(𝜂). The reason behind this is that, 𝐴 

has a diminishing influence on the momentum boundary layer thickness. Moreover, the sheet 

transmits less solute and less heat to the fluid. 

 

 

 

Figs. (4a) and (4b) are plotted to expose the impact of 𝐺𝑟 on 𝑓′(𝜂) and 𝜃(𝜂). An inflation in 

the values of 𝐺𝑟, skyrockets the velocity 𝑓′(𝜂) which in-turn depreciates the temperature 𝜃(𝜂). 
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Similarly increasing the values of 𝐺𝑐, enhances the velocity 𝑓′(𝜂) and decreases the 

concentration distribution 𝜙(𝜂). This is seen vividly through figs. (5a) and (5b). 

The effect of radiation parameter 𝑅 are shown in figs. (6a) and (6b). It has been perceived that 

increasing the values of 𝑅 has the tendency to rise both 𝑓′(𝜂) and also 𝜃(𝜂) in the boundary 

layer. 
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Fig. (7) illustrates how the fluid temperature behaves when the values of 𝑄 gets altered. 

Enhancing the values of 𝑄 led to a significant rise in 𝜃(𝜂). Similarly, fig. (8) shows that a rise 

in the values of 𝐸𝑐 causes an escalation in the temperature distribution 𝜃(𝜂). 

The concentration distribution 𝜙(𝜂) for disparate 𝑘 values is plotted in fig. (9). Owing to the 

fact that species conversion results via chemical reactions, augmenting the values of 𝑘 brings 

down the boundary layer concentration. 

 

 

Figs. (10a) – (10c) depicts the striking instigation of 𝑁 on velocity profile, temperature and 

concentration distributions respectively. 𝑓′(𝜂), 𝜃(𝜂) and 𝜙(𝜂) decreases as 𝑁 increases. This 

depreciation is attributable to the heat being transmitted from the wall to the fluid nearby, which 

consequently pushes the particles to migrate away from the wall. 

Augmenting the values of 𝛽 has a decreasing impact on the velocity profile. On the contrary, 

the fluid’s temperature was noticed a minute boost as 𝛽 increases. These are explicitly observed 

through figs. (11a) and (11b). 
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Fig. (12) exemplifies how the boundary layer thickness suppresses as 𝑃𝑟 intensifies. Notable 

changes for different values of 𝑃𝑟 under different values of exponential parameter 𝑁 was 

witnessed. 

 

 

The concentration distribution’s behaviour for a range of 𝑆𝑐 values in the case of air and 

methanol can be found in fig. (13). The thickness of the solute boundary layer gets dwindled 

with escalation in the values of 𝑆𝑐. As a result, the concentration distribution 𝜙(𝜂) gets 

suppressed. 

Figs. (14a) – (14c) illustrates the 𝑓′(𝜂), 𝜃(𝜂) and 𝜙(𝜂) versus 𝜂 respectively for proliferating 

values of 𝑠. 𝑠 has a depreciating influence on both the wall shear stress and 𝑓′(𝜂) in the 

boundary layer. Similarly, 𝜃(𝜂) and 𝜙(𝜂) are found to decrease with increasing 𝑠. 
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The following results were concluded from the tabulated values of factors affecting 𝐶𝑓, 

𝑁𝑢𝑥  and 𝑆ℎ𝑥 (Table 3). A rise in the value of 𝑀 depreciates 𝐶𝑓, 𝑁𝑢𝑥 and 𝑆ℎ𝑥whereas the 

reverse trend is observed for thermal and solutal Grashof number. The value of friction factor 

gets declined, the Sherwood number and Nusselt number gets enhanced when the values of 𝐴, 

𝑁 and 𝑠 gets proliferated. The reverse phenomena are observed for 𝛽. Enhancing 𝑅, 𝐸𝑐 and 𝑄 

increases 𝐶𝑓 and 𝑆ℎ𝑥 which consequently depletes 𝑁𝑢𝑥 but the opposite discussion holds for 

𝑃𝑟. The values of 𝐶𝑓 and 𝑁𝑢𝑥 gets suppressed but 𝑆ℎ𝑥 gets intensified as the values of 𝑆𝑐 and 

𝑘 increases.  
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TABLE 3    The values of factors affecting 𝐶𝑓, 𝑁𝑢𝑥  and 𝑆ℎ𝑥 for several pertinent parameters 

 

  
 

 

  
 

 

  
 

 

  
 

 

  
 

 

  
 

 

  
 

 

  
 

 

  
 

 

  
 

 

  
 

 

  
 

 

  
 

 

  
 

   

  
 

0.5 2 0.5 1 1 0.8 0.01 0.3 0.1 1 0.1 0.7 0.7 
-

0.9874 
0.9528 1.55372 

1                         
-

1.4749 
1.24926 1.93227 

  2.5                       
-

0.9339 
0.95204 1.5529 

    1                     
-

1.3545 
0.93734 1.53899 

      2                   
-

0.2824 
0.97701 1.58042 

        2                 
-

0.4153 
0.96831 1.57208 

          1.5               
-

0.9325 
0.78423 1.55767 

            0.1             
-

0.9802 
0.92353 1.55419 

              0.5           
-

0.9705 
0.8979 1.55492 

                1         
-

1.0336 
0.95013 1.82811 

                  5       
-

3.2543 
1.5034 2.46016 

                    0.5     
-

1.1694 
1.01992 1.70192 

                      6.83   
-

1.3632 
3.37195 1.53131 

                        1.14 
-

1.0611 
0.94856 1.98648 

Conclusions 

The following are the key findings observed in light of this study: 

• Fluid velocity, temperature and concentration decreases significantly due to the rise in the 

𝐴, 𝑁 and 𝑠. 

• Furthermore, increasing 𝑁 enhances the heat and mass transfer rates.  

• It's intriguing to comprehend that the influence of chemical reaction is so influencing, 

which ultimately augments the Sherwood number. 

• The role of 𝑄 in 𝜃(𝜂) is vital for their effects on heat transfer are significant. 

• In the absence of 𝑁, 𝑄 and for Newtonian fluid, the outcomes match those of Ishak [5]. 
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