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Abstract 

In this work, we consider a system of Delay differential equations for 

SEIR models with logistic and bilinear incidence. This model shows a 

bifurcation point where a stable disease-free equilibrium (DFE) coexists 

with a stable endemic equilibrium, according to studies (EE). When the 

reproduction number determines the local equilibrium stability 

requirements and the presence of Hopf bifurcations. To obtain stable 

behavior, we also performed a branch analysis with expected lag times. 

Numerical simulations were used to demonstrate the relevance and 

validity of the theoretical results. 

Keywords:Delay, Stability analysis, Bifurcation, SEIR Model. 

 

1. Introduction 

 In recent decades, mathematical modeling has become increasingly important in 

epidemiological theory. Various epidemic models have been developed and extensively studied, 

greatly advancing the study of disease control and prevention [1-7]. From equations to statistical 

analysis, a full understanding of disease dynamics requires a variety of mathematical techniques. 

Although mathematics has made admirable contributions to the field of epidemiology, there is no 

denying that certain elements still need proper mathematical models. 

 Mathematical models help design and engineer, estimate and evaluate, compare, and 

optimize in combating disease through prevention, treatment, and other control programs. In the 

SEIR model, the entire population is distributed as susceptible (𝑆), exposed (𝐸), infected (I), and 
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recovered or cleared (R) individuals. Difficulties in understanding thedetails of infectious disease 

transmission tend to change depending on the situation. Furthermore, the choice of generalized 

incidence rate function flexibly determines the function from the incidence rate to be used. 

 Most of these mathematical models of disease start with the same premise: that the 

population can be divided into collections of distinct groups based on their experience with the 

disease. Nonlinear differential equations are used to describe most of them (Delay difference, 

Stochastic, etc.). 

 The inclusion of time delay is frequently used to represent the latent period, which is the 

interval between infection and the host becoming infectious [9]. The majority of authors believe 

that disease latent periods are insignificant.,i.e.,Each susceptible individual (𝑆) other than exposed 

(𝐸) becomes infectious (𝐼) almost instantly after being infected, and later recovers (𝑅) with 

permanent or temporary acquired immunity. These models are commonly referred to as SEIR 

(susceptible, Exposed, infectious, recovered) models [10-13]. 

 In this study, we add a separate time delay to the model to reflect the time it takes for a 

suspected individual to become infected. This is called the latent period. The result of this process is 

a system of delay differential equations. We analyze transcendental characteristic equations of 

linearized systems in positively infected steady-state, understand the dynamics of delay models, and 

attempt to determine analytical environments in which the infected steady-state stabilizes. 

Numerical simulations are performed to illustrate the results obtained. 

The following is an overview of the paper's structure. In Section 2, we first propose the SEIR 

epidemic model with time delay system, after which we verify the existence of equilibrium and the 

reproduction number for the system. The stability of the disease-free and infected steady states, as 

well as the existence of Hopf bifurcation around the positive equilibrium, are discussed in Section 

3. The length of the delay to maintain stability was described in section 4. In Section 5, we use 

numerical simulations to demonstrate the paper's primary findings. Finally, we will come to a 

conclusion and discussion in section 6 

2. Characterization of the SEIR model 

The following SEIR epidemic model with discrete delay is proposed in this study. As our basic 

model, we have the following set of equations from [14]. 
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𝑑𝑆

𝑑𝑡
= 𝑟𝑆  1 −

𝑆

𝐾
 − 𝛽𝑆𝐼

𝑑𝐸

𝑑𝑡
= 𝛽𝑆𝐼 −  

𝜈𝐼

1 + 𝜁𝐼
+ 𝜇 𝐸

𝑑𝐼

𝑑𝑡
= 𝛽𝑆𝐼 − (𝜇 + 𝛼 + 𝛾)𝐼 −

𝜈𝐼

1 + 𝜁𝐼
𝑑𝑅

𝑑𝑡
= 𝛾𝐼 +

𝜈𝐼

1 + 𝜁𝐼
− 𝜇𝑅                                                                    (1)

 

For the purposes of this discussion, we have changed the above model (3) and added a delay to the 

system, as follows: 

𝑑𝑆

𝑑𝑡
= 𝑟𝑆  1 −

𝑆

𝐾
 − 𝛽𝑆𝐼

𝑑𝐸

𝑑𝑡
= 𝛽𝑆𝐼 −  

𝜈𝐼

1 + 𝜁𝐼
+ 𝜇 𝐸

𝑑𝐼

𝑑𝑡
= 𝛽𝑆(𝑡 − 𝜏)𝐼(𝑡 − 𝜏) − (𝜇 + 𝛼 + 𝛾)𝐼 −

𝜈𝐼

1 + 𝜁𝐼
𝑑𝑅

𝑑𝑡
= 𝛾𝐼 +

𝜈𝐼

1 + 𝜁𝐼
− 𝜇𝑅.                                                                   (2)

 

Here,The numbers of susceptible, exposed, infectious, and recovery cells at time 𝑡 are denoted by 

𝑆(𝑡), 𝐸(𝑡), 𝐼(𝑡), and 𝑅(𝑡), respectively.𝑟 is the intrinsic growth rate of the susceptible population, 𝐾 

is the country's carrying capacity excluding infected and recovered people, 𝛽 is the transmission 

rate, 𝜇 is the natural death rate, 𝛼 is the disease-induced death rate, 𝛾 is the recovered rate, and 𝜈 is 

the maximum medical resources supplied per unit time and𝜁 is the half-saturation constant, which 

measures the effect of treatment delay. In this work, it is assumed that 𝜈 is a non-negative constant 

and that all other parameters are positive constants, with 𝜏 being the time required for a person to 

become infectious. 

Now that our model (2) has been simplified, we can see that it has two steady states: The stable 

infection-free state𝐸0 = (𝑆 , 𝐸 , 𝐼 , 𝑅 ) and the infected steady state 𝐸1 =  𝑆∗, 𝐸∗, 𝐼∗, 𝑅∗ . 

2.1. Positivity and Solution Boundedness 

In this section we consider the following system of differential equations 
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𝑑𝑆

𝑑𝑡
= 𝑟𝑆  1 −

𝑆

𝐾
 − 𝛽𝑆𝐼

𝑑𝐸

𝑑𝑡
= 𝛽𝑆𝐼 −  

𝜈𝐼

1 + 𝜁𝐼
+ 𝜇 𝐸,

𝑑𝐼

𝑑𝑡
= 𝛽𝑆𝐼 −  𝜇 + 𝛼 + 𝛾 𝐼 −

𝜈𝐼

1 + 𝜁𝐼
 3 

 

                                                                                                                                   (4)  

By summing up the above system of equations we have 

LimSup⁡(𝑆 + 𝐸 + 𝐼) ≤
𝛽

𝜇
 

so the feasible region for model is 

𝐹 = 𝑆, 𝐸, 𝐼: 𝑆 + 𝐸 + 𝐼 ≤
𝛽

𝜇
, 𝑆 > 0, 𝐸 > 0, 𝐼 > 0 

2.2. Equilibrium Points 

 In this section, we compute the models endemic equilibrium points. The disease free 

equilibrium is obtained by setting the system of differential equations to zero. At disease free 

equilibrium, there are no infections and recovery. The disease free equilibrium is given by; 

 𝑆∗, 𝐸∗, 𝐼∗, 𝑅∗ =  
𝛽

𝜇
, 0,0,0  

2.3. The basic reproduction number: 

 The basic reproduction number, 𝑅0, is the estimated number of secondary cases produced by 

a typical infected individual in a totally susceptible population, according to [15]. If 𝑅0 < 1, an 

infected person creates less than one new infected person on average throughout the course of their 

infectious period, and the infection cannot spread. 

 Conversely, If 𝑅0, each infected person creates more than one new infection on average, and 

the sickness can spread across the population. 𝑅0 is simply the product of the infection rate and the 

mean duration of the infection in the case of a single infected compartment. We'll now determine 

the system's basic reproduction number. (2). Let 𝑋 = (𝑆, 𝐸, 𝐼, 𝑅)𝑇, then the model (2) can be written 

as 
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𝑑𝑋

𝑑𝑡
= ℱ(𝑋) − 𝒱(𝑋) 

Where, 

ℱ(𝑋) =  

𝛽𝐼𝑆
0
0
0

 

𝒱(𝑋) =

 
 
 
 
 
 
 
 
 (𝜇 + 𝛼 + 𝛾)𝐼 +

𝜈𝐼

1 + 𝜁𝐼

−𝛽𝑆𝐼 +  
𝜈𝐼

1 + 𝜁𝐼
+ 𝜇 𝐸

−𝑟𝑆  1 −
𝑆

𝐾
 

2

+ 𝛽𝑆𝐼

−𝛾𝐼 −
𝜈𝐼

1 + 𝜁𝐼
+ 𝜇𝑅

 
 
 
 
 
 
 
 
 

 

According to Theorem 2 in [16], the reproduction number of model (2) is 

𝑅0 =
𝛽𝐾

𝜇 + 𝛼 + 𝛾 + 𝜈
.                                                          (5)  

It is obvious that if 𝑅0 < 1, then the infection free steady state 𝐸0(𝑆 , 0,0,0) (where 𝑆 = 𝐾) is the 

only steady state, corresponding to the infection-free state's extinction. 

In terms of the presence of equilibria, we now obtain the following result. Theorem 2.1. If 𝑅0 > 1, 

then the system (2) has an unique equilibrium 𝐸1 𝑆
∗, 𝐸∗, 𝐼∗, 𝑅∗  (i.e., 𝑆∗ > 0, 𝐸 ∗> 0, 𝐼∗ > 0, 𝑅∗ > 0 

) where 𝑆∗, 𝐸∗, 𝐼∗ and 𝑅∗ are given in the proof. 

Proof. If 𝑅0 > 1, the system (2) then looks like this, 

𝑟𝑆∗  1 −
𝑆∗

𝐾
 − 𝛽𝑆∗𝐼∗ = 0,

𝛽𝑆∗𝐼∗ −  
𝜈𝐼∗

1 + 𝜁𝐼∗
+ 𝜇 𝐸∗ = 0,

𝛽𝑆∗𝐼∗ − (𝜇 + 𝛼 + 𝛾)𝐼∗ −
𝜈𝐼∗

1 + 𝜁𝐼∗
= 0,

𝛾𝐼∗ +
𝜈𝐼∗

1 + 𝜁𝐼∗
− 𝜇𝑅∗ = 0.                                    (6) 
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Hence, the system (2) has a unique equilibrium 𝐸1 𝑆
∗, 𝐸∗, 𝐼∗, 𝑅∗  if 𝑅0 > 1. 

As a result of the foregoing analysis, we arrive at the following conclusion. 

Theorem 2.2. Consider the system (2) with 𝑅0 defined in (5). If 𝑅0 < 1, then there is unique 

equilibrium, which is the infection-free steady state 𝐸0; while if 𝑅0 > 1, then there is unique 

equilibrium, which is the infected steady state 𝐸1. 

3. Stability analysis 

We adopt the following notation: ℝ4 is a four-dimensional real Euclidean space with norm |.|. For 

𝜏 > 0, we denote by 𝐶 = 𝐶 [−𝜏, 0], ℝ+
4  , the Banach space of continuous function mapping the 

interval [−𝜏, 0] into ℝ+
4  with the topology of uniform convergence. By the standard theory of 

functional differential equation [17 − 19], we know that for any 𝜙 ∈ 𝐶 [−𝜏, 0], ℝ+
4  , there exists a 

unique solution 

𝑍(𝑡, 𝜙) = (𝑆(𝑡, 𝜙), 𝐸(𝑡, 𝜙), 𝐼(𝑡, 𝜙), 𝑅(𝑡, 𝜙)), 

of the delayed system (2), which satisfy 𝑍0 = 𝜙, where 𝜙 =  𝜙1, 𝜙2, 𝜙3, 𝜙4 ∈ ℝ+
4  with 𝜙𝑖(𝜉) ≥

0: (𝜉 ∈ [−𝜏, 0], 𝑖 = 1,2,3,4), and 𝜙1(0), 𝜙2(0), 𝜙3(0), 𝜙4(0) > 0. And the initial conditions are 

given by, 

𝑆(𝜉) = 𝜙1(𝜉), 𝐸(𝜉) = 𝜙2(𝜉)                                                          (7)

𝐼(𝜉) = 𝜙3(𝜉), 𝑅(𝜉) = 𝜙4(𝜉).                                                          (8)
 

Theorem 3.1. Let 𝑍(𝑡, 𝜙) be the solution of the delayed system (2) with the initial conditions (7). 

Then 𝑆(𝑡), 𝐸(𝑡), 𝐼(𝑡) and 𝑅(𝑡) are all non-negative and ultimately uniformly bounded (∀𝑡 ≥ 0) at 

which the solution exists. 

3.1. Local stability analysis 

In this section, we look at the model's local stability analysis. (2).  

Theorem 3.2. The infection free steady state of model (2) is unstable when 𝑅0 > 1 and locally 

asymptotically stable at 𝐸0 when 𝑅0 < 1 in the case of 𝜏 ≥ 0. 
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When 𝑅0 > 1, the system (2) hasa infected steady state 𝐸1 =  𝑆∗, 𝐸∗, 𝐼∗, 𝑅∗ . Then the 

characteristic polynomial of the the linearized system (2) at 𝐸1 is 

 𝜆4 + 𝐴1𝜆
3 + 𝐴2𝜆

2 + 𝐴3𝜆 + 𝐴4 + 𝑒−𝜆𝜏 (𝜆) = 𝐵1𝜆
3 + 𝐵2𝜆

2 + 𝐵3𝜆 + 𝐵4 = 0        (9) 

Theorem 3.3. The infected steady state of model (2) is locally asymptotically stable when 𝑅0 > 1 in 

the case of 𝜏 > 0. 

Proof. In the case of 𝜏 > 0, the above characteristic equation (9) an be rewritten as 

𝐻(𝜆, 𝜏) = 𝑃(𝜆) + 𝑄(𝜆)𝑒−𝜆𝜏 = 0, 

where 𝑃(𝜆) = 𝜆4 + 𝐴1𝜆
3 + 𝐴2𝜆

2 + 𝐴3𝜆 + 𝐴4  and 𝑄(𝜆) = 𝐵1𝜆
3 + 𝐵2𝜆

2 + 𝐵3𝜆 + 𝐵4. 

Theorem 3.4. Suppose 𝑅0 > 1, the following result can be obtained. 

1 The infected equilibrium 𝐸1 is stable when 𝜏 ∈  0, 𝜏∗  and unstable when 𝜏 > 𝜏∗. 𝜏 is the 

Hopf bifurcation value, which means that periodic solutions will bifurcate from this infected 

equilibrium as 𝜏 passes through the critical value 𝜏∗. 

4. Estimation of the Length of Delay to Preserve Stability 

Following lines of Erbe et al. [20] and using the Nyquist criterion [21], it can be shown that the 

sufficient conditions for the local asymptotic stability of 𝐸1 𝑆
∗, 𝐸∗, 𝐼∗, 𝑅∗  are given by, 

ImH⁡ 𝑖𝜔0 > 0,                                                                     (10)

Re⁡𝐻 𝑖𝜔0 = 0,                                                                    (11)
 

where 𝐻(𝜚) = 𝜚4 + 𝐴1𝜚
3 + 𝐴2𝜚

2 + 𝐴3𝜚 + 𝐴4 + 𝑒−𝜚𝜏  𝐵1𝜚
3 + 𝐵2𝜚

2 + 𝐵3𝜚 + 𝐵4  and 𝜔0 is the 

smallest positive root of (11). 

Inequality (10) and (11) can alternatively be written as 

𝐴2𝜔0 − 𝜔0
3 > −𝐵2𝜔0cos⁡ 𝜔0𝜏 + 𝐵3sin⁡ 𝜔0𝜏 − 𝐵1𝜔0

2sin⁡ 𝜔0𝜏 ,                               (12)

𝐴3 − 𝐴1𝜔0
2 = 𝐵1𝜔0

2cos⁡ 𝜔0𝜏 − 𝐵3cos⁡ 𝜔0𝜏 − 𝐵2𝜔0sin⁡ 𝜔0𝜏 .                                   (13)
 

Now if (12) and (13) are both satisfied at the same time, they are sufficient to provide stability. 

These are now used to estimate how long the time delay will be. The goal is to establish an upper 
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bound 𝜔+to 𝜔0 from (13) that is independent of 𝜏, and then to estimate 𝜏 so that (12) holds true for 

all values of 𝜔 such that 0 ≤ 𝜔 ≤ 𝜔+, and hence, in particular at 𝜔 = 𝜔0. Equation (13) can be 

rewritten as 

𝐴1𝜔0
2 = 𝐴3 − 𝐵1𝜔0

2cos⁡ 𝜔0𝜏 + 𝐵3cos⁡ 𝜔0𝜏 + 𝐵2𝜔0sin⁡ 𝜔0𝜏 .                                    (14) 

Maximizing the right hand side of (14) subject to, 

 sin⁡ 𝜔0𝜏  ≤ 1,  cos⁡ 𝜔0𝜏  ≤ 1,                                                                                      (15) 

we obtain 

 𝐴1 𝜔0
2 ≤  𝐴3 +  𝐵3 +  𝐵1 𝜔0

2 +  𝐵2 𝜔0.                                                                        (16) 

Hence if, 

𝜔+ =
1

2  𝐴1 − 𝐵1  
  𝐵2 +  𝐵2

2 + 4  𝐴1 −  𝐵1    𝐴3 +  𝐵3   ,                                      (17) 

then clearly from (16) we have 𝜔0 ≤ 𝜔+. 

From (12), we obtain 

𝜔0
2 < 𝐴2 + 𝐵2cos⁡ 𝜔0𝜏 + 𝐵1𝜔0cos⁡ 𝜔0𝜏 −

𝐵3sin ⁡ 𝜔0𝜏 

𝜔0
.                                (18) 

Since 𝐸1 𝑆
∗, 𝐼∗, 𝑅∗  is locally asymptotically stable for 𝜏 = 0, the inequality (18) will continue to 

hold for sufficiently small 𝜏 > 0. Using (14) and (18) can be rearranged as 

 𝐵3 − 𝐵1𝜔0
2 − 𝐴1𝐵2  cos⁡ 𝜔0𝜏 − 1 +   𝐵2 − 𝐴1𝐵1 𝜔0 +

𝐴1𝐵3

𝜔0
 sin⁡ 𝜔0𝜏 

< 𝐴1𝐴2 − 𝐴3 − 𝐵3 + 𝐵1𝜔0
2 + 𝐴1𝐵2 .                       (19)

 

Using the bound 
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 𝐵3 − 𝐵1𝜔0
2 − 𝐴1𝐵2  cos⁡ 𝜔0𝜏 − 1 =  𝐵3 − 𝐵1𝜔0

2 − 𝐴1𝐵2 2sin2⁡ 
𝜔0𝜏

2
 

≤
1

2
  −𝐵3 + 𝐵1𝜔0

2 + 𝐴1𝐵2  𝜔+
2 𝜏2

  𝐵2 − 𝐴1𝐵1 𝜔0 +
𝐴1𝐵3

𝜔0
 sin⁡ 𝜔0𝜏 ≤    𝐵2 − 𝐴1𝐵1  𝜔+

2 +  𝐴1  𝐵3  𝜏,            (20)

 

we obtain from (18) 

𝐿1𝜏
2 + 𝐿2𝜏 < 𝐿3,                                                                                                              (21) 

Where, 

𝐿1 =
1

2
  −𝐵3 + 𝐵1𝜔0

2 + 𝐴1𝐵2  𝜔+
2

𝐿2 =   𝐵2 − 𝐴1𝐵1  𝜔+
2 +  𝐴1  𝐵3 

𝐿3 = 𝐴1𝐴2 − 𝐴3 − 𝐵3 + 𝐵1𝜔+
2 + 𝐴1𝐵2                                                                                 (22)

 

Hence if, 

𝜏+ =
1

2𝐿1
 E2 +  𝐿2

2 + 4𝐿1𝐿3 ,                                                                                           (23) 

then for 0 ≤ 𝜏 ≤ 𝜏+, the Nyquist criterion holds true and 𝜏+estimates the maximum length of the 

delay preserving the stability. 

5. Numerical simulation 

In this part, we provide some numerical simulations to illustrate the theoretical results given in 

Theorems 2.2 and 3.2. The precise values of the time delays intervals for some parameter based on 

information, we assumed that 𝜏 is ≤ 6 days. 

(i) We choose the different values of parameters satisfying the conditions in Theorem 2.2 as 

follows. 

𝑟 = 0.7,1.3,1.3, 𝛽 = 0.02,0.3,0.02, 𝐾 = 0.8,0.05,0.08, 𝜇 = 0.5,0.9,0.2,

𝛼 = 0.1,0.05,0.5 𝛾 = 0.05,0.2,0.1, 𝜁 = 0.01,0.3,0.5, 𝜈 = 0.1,0.4,0.1.
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Then we have 𝑅0 = 0.021,0.099,0.0001 < 1, and due to Theorem 2.2 the disease-free equilibrium 

𝐸0 of System (3) is asymptotically stable which is shown well in Fig. 1. Here 

(𝑆(𝑡), 𝐸(𝑡), 𝐼(𝑡), 𝑅(𝑡)) are the solutions of System (2) with initial conditions 

𝑆(𝜉) = 𝜙1(𝜉) = 0.6, 𝐸(𝜉) = 𝜙2(𝜉) = 0.3, 𝐼(𝜉) = 𝜙3(𝜉) = 0.2, 𝑅(𝜉) = 𝜙4(𝜉) = 0.2, 𝜉

∈ [−𝜏, 0]. 

 

FIGURE 1: Solutions of the system (2) go to the disease-free steady state, where 𝑆(𝑡) represents the 

suspected cells, 𝐸(𝑡) represents the exposed cells, 𝐼(𝑡) represents the infected cells, and 𝑅(𝑡) 

represents recovered cells. 
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We can see from the preceding figures that our delay model (2) is fairly reliable. As a result, our 

numerical results are suitable for describing our model. Furthermore, minor changes in parameters 

will result in minute changes in the matrix entries required to calculate eigenvalues and determine 

the stability of two steady-state locations. 

6. Discussion and Conclusion 

 We have included time delay in our SEIR models in this work. We demonstrated that the 

threshold value 𝑅0 is crucial in determining the stability of the model dynamics' steady states. We 

have demonstrated that the infected steady state is locally asymptotically stable if the threshold 

value 𝑅0 is bigger than unity. The permissible time delay for activation of infected cells, as well as 

the prediction of the length of delay required to maintain stability, could be a crucial parameter beta 

in determining the disease's method of management. 

References 

[1] P. Krishnapriya, M. Pitchaimani and Tarynn M. Witten, Mathematical analysis of an influenza 

A epidemic model with discrete delay, J. Compt. and Appl. Math., 𝟑𝟐𝟒 (2017), 155-172. 

[2] P. Krishnapriya and M. Pitchaimani, Analysis of time delay in viral infection model with 

immune impairment, J. Appl. Math. Comput., 55 (2017), 421-453. 

[3] P. Krishnapriya and M. Pitchaimani, Modeling and bifurcation analysis of a viral infection 

model with time delay and immune impairment, Japan J. Indust. Appl. Math., 34(1) (2017), 99-

139. 

[4] P. Krishnapriya and M. Pitchaimani, Optimal control of mixed immunotherapy and 

chemotherapy of tumours with discrete delay, Int. J. Dynam. Cont., 𝟓(3)(2017),872 −892 . 

[5] M. C. Maheswari, P. Krishnapriya, K. Krishnan and M. Pitchaimani, A mathematical model of 

𝐻𝐼𝑉-1 infection within host cell to cell viral transmissions with RTI and discrete delays, J. 

Appl. Math. Comput., 𝟓𝟔(1) (2018), 151-178. 

[6] M. Pitchaimani, P. Krishnapriya and C. Monica Mathematical modeling of intravenous glucose 

tolerance test model with two discrete delays, J. Bio. Syst., 23(4) (2015),631 − 660. 

[7] N.S. Ravindran, M. Mohamed Sheriff and P. Krishnapriya Analysis of tumourimmune evasion 

with chemo-immuno therapeutic treatment with quadratic optimal control, J. Bio. Dyna., 11(1) 

(2017), 480-503. [8] JunyuanYanga, Maia Martcheva, Lin Wanga, Global threshold dynamics 



Mathematical Statistician and Engineering Applications 

ISSN: 2094-0343 

2326-9865 

 

 
2382 

 
 

Vol. 71 No. 4 (2022) 

http://philstat.org.ph 

 
 

 

of an SIVS model with waning vaccine-induced immunity and nonlinear incidence, Math. 

Biosci., 268: 18, (2015) 

[9] B.D. Hassard, N.D. Kazarinoff, Y.H. Wan, Theory and Applications of Hopf Bifurcation, 

Cambridge University, Cambridge, (1981). 

[10] M.E. Alexander, C. Bowman, S.M. Moghadas, R. Summors, A.B. Gumel, B.M. Sahai, A 

vaccination model for transmission dynamics of influenza, SIAM. Appl.Dyn. Syst. 3: 503 −

524, (2004). 

[11] A. Korobeinikov, G.C. Wake, Lyapunov functions and global stability for SIR,SIRS & SIS 

epidemiological models, Appl. Math. Lett. 15 : 955-960, (2002). 

[12] Z. Ma & J. Li, Dynamical modeling and analysis of epidemics World scientific, (2009). 

[13] T. Zhang, Z. Teng, Global behaviour and permenance of SIRS epidemic models with time 

delay, Nonlinear Anal. Real World Appliations, 9 : 1409-1424, (2008). 

[14] Jinhui Li, ZhidongTeng, Guangqing Wang, Long Zhang, Cheng Hu, Stability and bifurcation 

analysis of an SIR epidemic model with logistic growth and saturated treatment, Chaos Solitons 

Fractals 99 (2017) 63?71. 

[15] O. Diekmann, J.A.P. Heesterbeek, J.A.P. Metz, On the definition and the computation of teh 

basic reproduction ration 𝑅0 in models for infectious diseases in heterogeneous populations, J. 

Math. Biol., 28: 365, (1990). 

[16] P. Van den Driessche, J. Watmough, Reproduction numbers and sub-threshold endemic 

equilibria for compartmental models of disease transmission, Math. Biosci. 180 : 29-48, (2002). 

[17] Y. Kuang, Delay differential equations with applications in population dynamics, Math. Sci. 

Eng., Academic Press, Boston, (1993). 

[18] N. MacDonald, Biological Delay Systems: Linear Stability Theory, Cambridge University, 

Cambridge, (1989). 

[19] J. Hale, Theory of Functional differential equations, Springer, New York, (1997). 

[20] L.H. Erbe, H.I. Freedman, V. SreeHariRao, Three-species food-chain models with mutual 

interference and time delays, Math. Biosci., 80(1), (1986) 57-80. 

[21] H.I. Freedman, V.S.H. Rao, The trade-off between mutual interference and time lags in 

predator? prey systems, Bull. Math. Biol., 45(6): 991?1004, (1983). 


