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Abstract 

A well-known method for consolidating and placing virtual machines 

(VMs) is server virtualization, which has been thoroughly investigated by a 

number of researchers. This article describes a revolutionary strategy known 

as an iCloud that promotes categorizing hosts or physical machines (PMs) 

into four distinct classes to make it easier to pick PMs quickly and decrease 

the amount of time needed to search host machines (also known as host 

search time) (HST). In addition, the framework adds VM Acceptance State, 

a condition that prevents host overloading and significantly lowers SLA 

time per active host (SLATAH), which in turn lowers the risk of SLA 

violation (SLAV). Using typical workload traces, the performance of iCloud 

has been compared to that of alternative methods. An appealing solution for 

effective management of cloud resources is shown by the empirical 

assessment that iCloud has the lowest HST and outperforms other ways in 

terms of SLA violations and ESV (Energy and SLA Violation). 

Keywords: Heuristic algorithms, host search time, server virtualization, 

service level agreements, virtual machines, and virtualized resources are 

terms used to describe cloud computing, cloud data centers, and cloud 

resource management. 

 

1. INTRODUCTION 

The term "cloud" refers to a broad category of virtualized resources, including hardware 

(processing power, memory, storage, and bandwidth), platforms for software development, 

and services, that may be accessed by users across a network on demand. With the aid of 

scalability and load balancing, these virtualized resources are dynamically adjusted in 

accordance with varying demands. Large cloud data centers with thousands of servers, such as  

those operated by Amazon, Google, Microsoft, IBM, and others to mention a few, have been 

created throughout the world to meet the rising demand for computing resources from clients. 

Every data center uses a significant quantity of electricity for its cooling systems, network 

equipment, and servers. According to research issued by Digital Power Group, power 

consumption increased continuously from 2010 to 2015 by at least 100%, and from 2015 to 
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2020, it is expected to increase by at least 80%. (Mills, 2013). Large data centers emit carbon 

dioxide (CO2), which has an impact on the environment. The ineffective utilization of 

computer resources in data centers may be the cause of this excessive energy usage. However, 

since applications often face unpredictable workloads that call for dynamic resource 

utilization, resource management poses the biggest problem for data centers. Applications may 

have issues with longer response times or crashes if resource demands are not met. 

 

Figure 1. VM placement 

In order to guarantee customers' Quality of Service (QoS), data centers must implement Service 

Level Agreements (SLA). Therefore, data centers need effective resource management 

strategies that address the trade-off between energy performance and lowest energy usage and 

SLA violation. Server virtualization is the foundation for resource management solutions, 

which must handle the resource management issue from two angles. placement of virtual 

machines (VM) and consolidation of virtual machines (VM). By addressing SLA issues 

between clients and cloud service providers, VM Placement is the process of mapping virtual 

machines (VMs) to the appropriate PM (Physical Machine) or host depending on the current 

resource needs of the VMs, as illustrated in Figure 1. Let m be the number of VMs to be put 

and let n be the number of PMs in the data center. There are nm many ways that m VMs might 

be mapped to n PMs (He & Guo, 2011). Therefore, it is very difficult, if not impossible, to 

manually investigate every potential mapping and choose the optimal one for a big number of n 

and m. Therefore, automation of VM deployment is greatly desired. The process of 

consolidating virtual machines (VMs) involves moving them to other PMs in order to meet 

their rising runtime resource demands, which are otherwise incompatible with those of their 

underlying PMs. Making the right choices about VM placements and consolidations over their 

life cycles might help with data center resource efficiency. Different VM placement and 

consolidation techniques have been created by researchers, with trade-offs made between many 

competing performance factors including power use, SLA violation, number of VM migrations, 

Host Search Time, etc. The unique method described in this research, known iCloud, enables 

sensible VM placement and consolidation choices. 
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2. LITERATURE REVIEW 

1. By using virtualization to map a collection of applications onto a set of host servers, 

resource allocation during application deployment in the data center is modeled. Numerous 

academics have investigated this issue and offered numerous solutions in an effort to improve 

performance metrics like energy usage, SLA violation, cost, etc. Researchers have suggested 

techniques for effective resource management, including cost reduction, performance, 

availability, traffic patterns, and energy conservation. 

2. For some academics, cost savings is the main consideration for more effective use of 

computer resources. In order to save money and improve the usage of computer resources, 

Hyser et al. (2007) offered a high-level overview of VM placement and suggested a system 

architectural design of an autonomous VM placement. A policy for resource management is, 

however, lacking. The best virtual machine placement technique put out by Chaisiri et al. 

(2009) might reduce the amount of money spent on resource provisioning in on-demand and 

reservation-based schemes. The goal of this study is to employ as few servers or nodes as 

possible. An autonomous resource manager was created by Nguyen et al. (2009) and includes 

a preset set of virtual machine classes depending on resource capacity. Each VM class has a 

specified set of CPU and memory specifications. Among a list of preset VM classes, a 

suitable VM has been chosen for applications based on the present workload. It seeks to 

maximize a global utility function that incorporates the level of SLA fulfillment and 

operational expenses. 

3. Another factor that many researchers take into account for the VM placement issue is 

performance. By evenly dividing the application loadoveralll physical servers, this may be 

improved. Building a framework with a load balancing policy, in which data center load is 

distributed among all available physical servers by balancing resource usage as much as 

possible across all resource types such as processing power, memory, bandwidth, storage, 

etc., was the main goal of research work in (Hyser et al., 2007). Goudarzi et al. (2012) 

developed a similar load balancing strategy in which several VM instances are set up on 

various servers and incoming requests are divided among them. This method lowers the 

amount of resources needed for each VM instance and aids the cloud provider in making 

better use of servers. However, using such methods adds to the work required to keep many 

VM instances coordinated and consistent. This method may also result in resource 

fragmentation, which is the underutilization of resources at certain servers under mild 

demand. By suggesting a method that chooses virtual machines with the least amount of 

interference from one another and groups them on the same server, Roytman et al. (2013) 

focused on performance deterioration that happens as a result of resource competition among 

VMs. Local Decision Module (LDM) uses the performance model developed by Nguyen et 

al. (2009)'s autonomous resource manager to evaluate the level of service delivered with a 

certain resource capacity and the current application workload. The main disadvantage of this 

strategy is the potential for over-provisioning of resources allotted to a certain VM's 

application. Gupta et al. first described the original VM placement challenge for deploying 

high-performance Computing (HPC) applications (2012). The location of VMs for HPC 
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applications may be optimized using topology and hardware awareness approaches, 

according to this study. However, run time placement with live VM migration is not taken 

into account in their work as the resource requirements of the application grow. More 

frequent VM migrations might cause the system's performance to suffer. Sharma et al. (2017) 

suggested dynamic consolidation or resource management solutions that avoid needless VM 

migration while providing performance efficiency. Additionally, it cuts down on SLA 

breaches and the total length of the VM consolidation process. 

4. The availability of cloud applications is a crucial consideration in cloud data centers, in 

addition to cost savings and performance. According to Goudarzi et al., maintaining several 

copies of VMs on various PMs may preserve the availability of cloud applications (2012). It 

lowers the amount of resources needed for each copy and increases server efficiency. 

However, the problem of preserving consistency and coordination amongst several copies of 

VMs is not the major emphasis of this study. Jayasinghe et al. (2011) devised an approach 

that, by distributing VMs across various data center isolation levels, increases service 

availability while also enhancing performance. 

5. By taking into account the traffic patterns between them, VM placement may be 

maximized. The same physical host or nearby host machines are allocated to virtual machines 

with high mutual bandwidth utilization (Meng, Pappas, & Zhang, 2010). However, because 

virtual machine traffic load is essentially dynamic, it would be challenging to estimate the 

cost of communication or traffic between two VMs. Researchers have developed a dynamic 

virtual machine placement technique in (Dias & Costa, 2012; Vu & Hwang, 2014) to 

reallocate VMs across servers in a data center based on the current traffic matrix in the data 

center. Virtual machine migrations may result in dynamic changes to a data center's traffic 

matrix. A traffic matrix is built using the traffic that is transferred between each pair of 

virtual computers. 

6. One of the most important modern resource management characteristics is energy 

conservation (Beloglazov, Abawajy, & Buyya, 2012). Energy conservation is essential for 

reducing CO2 and greenhouse gas (GHG) emissions in addition to lowering electricity costs 

(Bilal, Khan, & Zomaya, 2013; Khosravi, Garg, & Buyya, 2013). Reducing the number of 

active (running) physical servers in data centers might easily reduce energy usage in such 

facilities (Beloglazov et al., 2011; Buyya et al., 2009; Li et al., 2013; Wang et al., 2012). 

Applications are loaded onto virtual machines, therefore several types of resources are 

needed, including CPU cores, memory, bandwidth, and storage space. A VM is only hosted 

on a certain host server or PM when there are enough resources for all dimensions. As a 

result, certain PM can have resource pieces, which are unused resources. A method termed 

EAGLE, developed by Li et al. (2013), decreases the quantity of PMs and the sizes of 

resource pieces. However, apps could use more resources under high load, hence this study 

has not taken into account their potential future resource demands. Beloglazov and Buyya 

(2012) introduced unique adaptive heuristics for VM consolidation that are both energy and 

performance efficient. These heuristics anticipate future resource use based on a study of 

previous data. The majority of these studies used the assumption that all physical servers in 
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data centers are uniform, although server configurations in data centers vary widely, which 

may affect how much energy they consume. In order to build a VM placement strategy that 

reduces energy consumption and enhances QoS by taking into account diverse servers 

available in National Cloud Data Centers, Wang et al. (2016) investigated the Particle Swarm 

Optimization (PSO) method (NCDC). 

7. The virtualized architecture present in the data center is used to meet the resource 

needs of cloud applications. Due to the dynamic nature of application demand, allotted 

resources must be scaled up or down. To meet these needs of web applications, the widely 

utilized technology of VM-based dynamic scaling is used. The implementation of VM-based 

scaling may be done in one of two ways: by increasing the number of VM instances on 

servers or by altering how resources (such as processing power, memory, and storage) are 

divided within a VM (Wang et al., 2012). Both of these scaling methods are known as 

horizontal scaling and vertical scaling, respectively. Vertical scaling increases computing 

power by providing more resources for virtual machines, while horizontal scaling increases 

computing power by adding more virtual machines (Liu, Shie, Lee, Lin, & Lai, 2014). The 

effects of vertical and horizontal scaling approaches on resource management have been 

contrasted by Wang et al. (2012). While horizontal scaling increases application availability 

generally, vertical scaling provides the benefit of performance. Vertical scaling was used in 

the Jadhav et al. (2015) built eNlight cloud to prevent over-provisioning of resources for 

applications and significantly lower costs for clients. A list of notable studies that have been 

published in the literature is included in Table 1. As is evident, every described piece of work 

focuses on a certain performance metric (s). 

8. A technique that balances several competing performance metrics, such as energy 

consumption, SLA violation, and cost, is both a fascinating and difficult challenge, according 

to the literature review that was done. The following research concerns are addressed in the 

work presented here: 

9. A plan for consolidating and placing VMs that will shorten the time needed to find the 

right PM or host; 

10. To prevent the issue of overloading, a system for the deployment of VM into PM must 

be established; 

11. The creation of a plan to quicken the deployment of VMs; 

12. To minimize performance deterioration brought on by migration, a method must be 

designed to delay VM migration as long as feasible throughout the VM consolidation 

process. 

Table 1. Survey on cloud resource management 

Publication Year Resource Management Characteristics 

CA PA AA TA EA SA 

Chase et al. 2009 √ √   √  
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Hyser et al. 2009 √      

Chaisiri et al. 2009 √ √     

Nguyen et al. 2010       

Li et al. 2011     √  

Meng et al. 2011  √  √   

Jayasinghe et al. 2011   √    

Buyya et al. 2011  √   √  

Marston et al 2012     √  

Shen et al. 2012      √ 

Goudarzi et al. 2012  √ √  √ √ 

Gupta et al. 2012  √   √ √ 

Dias et al. 2012     √  

Wang et al. 2013  √   √  

Beloglazov et al. 2013  √     

Roytman et al. 2013     √  

Bilal et al. 2013     √  

Khosravi et al. 2013     √  

Li et al. 2013     √  

Mastroianni et al. 2014  √     

Zhuang et al. 2014 √    √ √ 

Hieu et al. 2014    √   

Liu et al. 2015      √ 

Teyeb et al. 2016    √   

Jadhav et al. 2017  √   √  

Wang et al. 2018  √     

Sharma et al. 2018       

CA – Cost Aware, PA-Performance Aware, AA-Availability Aware, TA- Traffic Aware, EA-Energy Aware, SA- 

Scalability Aware 

13. Due to the unpredictable nature of demand patterns in applications, an algorithm should 

be devised to scale up or scale down the resources given to VMs. 

3. SUGGESTIVE SYSTEM 

The proposed method known as iCloud takes into account a data center with several 

heterogeneous PMs or hosts with varying resource capabilities. In a data center, PMs or hosts 

are divided into four distinct types or states: "Offline," "Target," "Greedy," and "Contented" 

(Shelar, Sane, Kharat & Jadhav, 2014, 2017). All PMs start out in the "Offline" class and go 

on to the subsequent classes as described below: 
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1. Offline class: This class includes all PMs that are in a power-saving mode of operation. 

Since idle PMs that are in an online state use at least 50% of their peak power, it is preferable 

to maintain idle hosts or PMs in a data center in power-saving (offline) states to guarantee 

energy efficiency (Beloglazov, Buyya, Lee, & Zomaya, 2011); 

2. Specified class: During initial setup, virtual machines need extra resources in order to 

install the guest operating system and client applications. As a result, certain hosts or PMs 

claim that they may always be kept available just for setup and installation purposes, and 

these PMs fall within the target class. To expedite setup and installation, every VM is first 

deployed on one of the PMs from the Target class; 

3. Greedy class: This class only includes PMs whose resource allocation falls short of a 

predetermined resource cap (RCAP), also known as an upper threshold. RCAP sets a limit on 

how much of a resource PMs may use. Equation 1 below states that the total amount of 

resources of each kind Rk allotted to the m virtual machines running on PM Pi should be less 

than the resource cap: 

(TOTALik * RCAPk) = (PLACEij VALLOCjk) 

j =1 k =1 

(1) with d denoting the number of resource dimensions. Similar to the research 

described in (Beloglazov et al., 2012), this study simply takes into account the CPU as 

a resource dimension. 

The terms VALLOCjk and TOTALik in Equation 2 provide the resource requirements 

of VM Vj of resource type Rk, the total resource capacity of PM Pi of resource Rk, 

and whether VM Vj is deployed on PM Pi or not.  

ACEij ∈ {0,1} 

(2) Greedy class makes it easier for PMs to do a restricted search for VM migration.  

1. Contented class: Members of this class have received resources up to their selected 

resource maximum. Even if just a small amount of resources have yet been allocated 

to enable dynamic scaling, PMs of this type are regarded to be complete or full and no 

further VMs will be deployed on such PMs. 

3.1. AI Cloud algorithm 

Algorithm 1 depicts how iCloud works generally. As shown, iCloud establishes a 

unique thread for every new VM. When necessary, newly created threads carry out 

VM placements on the proper PM (algorithm 2), which in turn triggers VM 

consolidation (algorithm 3). 

Algorithm for VM Placement, Section 3. 

This approach uses a notion known as "VM acceptance state" to put the VM on the 

proper PM. 
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• VM Acceptance State: This is a prerequisite (described in Equation 3) that has to be 

met before VM Vj is put on PM. Pi: iCloud, algorithm 1. () 

(TOTALik RCAPk) = (PALLOCik + REQUESTjk) (3) where:  

• TOTALik is the total resource capacity of PM Pi for resource Rk; • PALLOCik is the 

resources of type Rk that are already assigned from PM Pi; • REQUESTjk is  the 

request of VM Vj for resource type Rk; • RCAPk is the resource-cap specified for 

resource type Rk for all PMs like 0.5, 0.6, 0.7, etc.  Only when the resource Rk's total 

resource allocation on PM Pi (PALLOCik + REQUESTjk) does not exceed its 

resource cap (TOTALik RCAPk) will the condition "VM Acceptance State" be true. 

This idea makes it easier to choose the best PM without overtaxing the host.  Virtual 

machine allocation using iCloud is shown in algorithm 2. The target class's first new 

VM is generated in the proper PM Pi when it reaches the "VM acceptance state." A 

PM from the Offline class is chosen and switched on to make the transition to the 

Target class if there are no such PMs in the Target class. The chosen PM allows lots 

the necessary resources to the chosen VM, which then configures the operating system 

and applications. After completing the setup process, the VM in PM Pi from the 

Target class is migrated to the suitable PM Pg of the Greedy class in accordance with 

the PM selection policy, such as first fit, best fit, round robin, etc. The chosen PM Pg 

stays in the Greedy class and is used to host one or more VMs until the total resources 

allocated fall below the set resource limit. Thus, it is conceivable to encounter a 

circumstance in which none of the PMs in the Greedy class fulfill the "VM acceptance 

state." In this case, the PM from the Target class is moved to the Greedy class.  One of 

the Offline PMs will be chosen and switched on to make the transition to the Target 

class if there are any available when the number of PMs in the Target class is less than 

the threshold value t. A PM is moved to the Contented class if it has received 

resources up to the resource limit while in the Greedy class. Due to its spare resources 

being preserved for dynamic resource scaling in response to the peak demand of 

applications, such a PM is considered to be "full." 

3.3. VM Consolidation Algorithm 

Computing resources from PMs, such as processing power and memory, are assigned 

in accordance with their requirements during the first deployment of applications in 

VMs. However, since the resource demands of applications are dynamic in nature, 

VMs must scale up the resources they have been allotted to handle rising application 

loads. On the other side, resources allotted to VMs must scale down as application 

demand falls. Because application workload patterns might be unexpected, VM 

consolidation is crucial. 
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Algorithm 2. Virtual_Machine_placement () 

Assumptions: 

n – Number of Physical Machines in a data center with varied configurations 

d – Number of resource dimensions 

t – Target class threshold value (number of PMs to be always in Target class) 

SP – Selected Scheduling Policy for Greedy Class 

1 Find PM Pi from the Target class that satisfies ‘Acceptance State’ 

2 If no such PM found then 

3 If there is PM in offline class then 

4 Select and turn on offline PM and shift into Target class 

5 Else 

6 Display Error ….No PM in Offline class 

7 End If 

8 Else 

9 Place VM at PM Pi 

10 Setup of OS and applications. 

11 End If 

12 If VM is ready then 

13 Find Greedy PM Pg as per sched policy(SP) satisfies ‘Acceptance State’ 

14 If PM Pg found then 

15 Migrate VM from Target PM Pi into Greedy PM Pg 

16 Else 

17 Shift Target PM Pi into Greedy class 

18 End If 

19 If number of PMs in Target class < t then 

20 If there is PM in Offline class then 

21 Select and turn on Offline PM and Shift it to Target class 

22 Else 

23 Display Error …. No PM in Offline class 

24 End If 

25 End If 

26 End If 

27 While True Do 

28 Call Virtual_Machine_Consolidation () //Algorithm 3 

29 End While 
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The basics of VM consolidation employing dynamic scalability for resource allocation at 

runtime are shown in Algorithm 3. When VM Vj is deployed in PM Pi and its current 

resource needs for resource types Rk exceed the resources allotted, further resources (which 

are kept available owing to resource caps) are allotted from PM Pi using the vertical scaling 

approach. However, live VM Migration is started if there are not enough free resources on 

PM Pi to meet this increased demand for resources. Then, VM Vj is moved to another PM Pg 

in the Greedy class to meet the "VM acceptance" requirement. 

state' as previously stated. If the Greedy class lacks a PM Pg that meets the "VM acceptance 

state," a PM from the Target class is moved into the Greedy class, and the VM Vj is migrated 

on this PM. As the algorithm must maintain the target-threshold value 't' in this case, a PM 

from the Offline class is activated and added to the Target class if the number of PMs in the 

Target class drops below the threshold 't'. The VM Vj is then migrated to the newly selected 

PM if no PM from the Target class that satisfies the "VM Acceptance state" is available. 

Instead, a PM from the Offline class is chosen and switched on to make the transition to the 

Target class. The resources on VM Vj are then scaled up by assigning more resources after 

the transfer of VM Vj into PM Pg. 

When VM Vj's current resource demand falls below its allotted resources, it scales down by 

releasing resources from PM Pi, which may result in PM Pi's allotted resources falling below 

their resource limit. If this happens, the PM will return to the Greedy class. 

Any PM in the Greedy class who has received more resources than allowed due to scale-up 

will be moved to the Contented class by aiCloud. In the event that none of its resources are 

used due to scale down, aiCloud additionally makes sure that any PM from the Greedy or 

Contented classes switches to the Offline class. 

When compared to host overloading detection methods like Static Threshold (THR), Inter 

Quartile Range (IQR), Median Absolute Deviation (MAD), Local Regression (LR), and 

Local Regression Robust (LRR) suggested in, it is anticipated that proposed algorithms 

would result in minimum and lesser energy consumption (Beloglazov, & Buyya, 2012). To 

reduce power usage, PABFD assigns each virtual machine (VM) individually to PMs after 

sorting them in decreasing order of CPU use. The PABFD method for placing VMs scans a 

list of hosts and determines whether or not each one is overcrowded. When a host's usage 

goes over the upper threshold, it is recognized as being overloaded. Although the THR 

approach, which is based on set utilization thresholds, is straightforward to apply, the data 

center's unpredictable and dynamic workload patterns make fixed upper threshold values for 

hosts inappropriate. Hence Adaptive utilization-based algorithms, such MAD and IQR, that 

are based on statistical analysis of past VM data were suggested by Beloglazov et al. in 2012. 

Using the intensity of the divergence in CPU use during the course of the VM, MAD and 

IQR carry out automatic changes of the upper threshold. If the divergence is greater, the 

upper threshold value is lowered and the CPU usage may go to 100%, violating the SLA. 

Additionally, these algorithms do a poor job of anticipating host overloading (Abdelsamea, 
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El-Moursy, Hemayed, & Eldeeb, 2017). Since regression-based techniques like LR and LRR 

are based on estimates of future CPU consumption, they may provide more accurate 

predictions of host overloading. The complexity of these algorithms, however, is higher than 

that of adaptive utilization-based algorithms (Abdelsamea et al., 2017). By achieving the 

"VM acceptance state," aiCloud installs virtual machines (VMs) onto hosts, preventing host 

overloading both at initial placement and after VM consolidation. 

When a host is found to be overloaded, it migrates the virtual machines to another host. The 

VMs that need to be moved from overloaded hosts are chosen by aiCloud using one of the 

VM selection rules, including Minimum Migration Time (MMT), Random Choice (RC), and 

Maximum Correlation (MC). In comparison to other VMs on the same host, MMT policy 

migrates a VM that requires the least amount of time to perform a migration. RC policy uses 

a uniformly distributed discrete random variable to choose one of the VMs at random for 

migration from an overloaded host. The MC policy chooses the VMs with the strongest 

correlation between their CPU consumption and that of other VMs. AiCloud checks for host 

overloading after migrating a chosen VM. If the host is discovered to be overloaded once 

again, the VM selection policy is once more used to choose another VM. Until the host is 

determined to not be overburdened, this procedure is repeated. As a result, aiCloud may 

provide an efficient technique for managing resources by balancing numerous opposing 

factors. 

Algorithm 3. Virtual_Machine_Consolidation() 

Assumptions: 

n – Number of Physical Machines in a data centre 

d – Number of resource dimensions 

t – Target class threshold value (number of PMs to be always in Target class) 

Vj - VMs deployed on PM Pi 

TOTALik – Total capacity of PM Pi of resource type Rk where 1<=i<=n & 

1<=k<=d NEEDjk - Current need of VM Vj of resource type Rk where 1<=j<=m 

& 1<=k<=d PALLOCik – Allocated resources in PM Pi of type Rk where 

1<=i<=n & 1<=k<=d 

VALLOCjk – Allocated resources to VM Vj of type Rk where 1<=k<=d 

1 If (NEEDjk > VALLOCjk) 

2 If (TOTALik - PALLOCik) > NEEDjk) then //Vertical Scaling 

 //Allocate additional resources for Vj from PM Pi 

3 PALLOCik ← PALLOCik + NEEDjk 

4 VALLOCjk ← NEEDjk 

5 Else //Insufficient free resources on PM Pi - Do VM Migration 

6 Find PM Pg in Greedy class that satisfy Acceptance State 

7 If no such PM in Greedy class found then 
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8 Find PM Pg from Target class that satisfy Acceptance state 

9 If not such PM in Target class found then 

10 If there is PM in Offline class then 

11 Turn on Offline PM and shift into Target class 

12 Else 

13 Display Error …. No PM in Offline class 

14 End If 

15 Else 

16 Shift Target PM Pg into Greedy class 

17 If number of PMs in Target class < target-threshold t then 

18 If there is PM in Offline class then 

19 Turn on Offline PM and Shift it to Target class 

20 Else 

21 Display Error ….No PM in Offline class 

22 End If 

23 End If 

24 End If 

25 End If 

26 Migrate VM Vj from PM Pi into PM Pg. 

27 PALLOCgk ← PALLOCgk + NEEDjk 

28 VALLOCjk ← NEEDjk 

29 End If 

30 Else 

31 If (NEEDjk < VALLOCjk) //To Scale down resources 

32 PALLOCik ← PALLOCik – NEEDik 

33 VALLOCik ← NEEDik 

34 If (PALLOCik < TOTALik * RCAPk) then //Below RCAP 

35 Shift PM Pi to Greedy Class 

36 End If 

37 End If 

38 End If 

39 If (PALLOCik >= TOTALik * RCAPk) then //PM Pi Full 

40 Shift Greedy PM Pi to Contented Class 

41 End If 

42 If (TOTALik - PALLOCik == NULL) //PM Pi Empty 

43 Shift PM Pi to Offline Class 

44 End If 
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Table 2. Workload traces of 10 days from PlanetLab 

Dates 03/03/

2011 

06/03/

2011 

09/03/

2011 

22/03/

2011 

25/03/

2011 

03/04/2

011 

09/04/

2011 

11/04/

2011 

12/04/

2011 

20/04/

2011 

Numbe

r of 

VMs 

1052 898 1061 1516 1078 1463 1358 1233 1054 1033 

 

4. EXPERIMENTAL SETUP AND RESULTS 

Since iCloud is built on the Architecture as a Service (IaaS) concept, it is important to assess 

how well it performs when used with virtualized data center infrastructure. To assess the 

effectiveness of the suggested algorithm, a simulation platform is selected, where tests may 

be carried out in a controlled environment. A platform for simulating and testing new cloud 

computing infrastructures and application services is provided by the CloudSim toolkit 

(Calheiros, Ranjan, Beloglazov, De Rose, &Buyya, 2011). It was created at the CLOUDS lab 

at the University of Melbourne's Computer Science and Software Engineering Department in 

Australia. Data centers, computational resources, virtual machines, users, applications, 

resource schedulers, and provisioning rules are all described using Java classes.  

On CloudSim, 800 servers of two different types of the HP ProLiant ML110 G4 (Intel Xeon 

3040, 2 cores at 1860 MHz, 4 GB) and HP ProLiant ML110 G5 (Intel Xeon 3075, 2 cores at 

2660 MHz, 4 GB) are used to mimic a data center (Beloglazov et al., 2012). Results of the 

SPECpower benchmark (n.d.) were used to determine the power consumption characteristics 

of a subset of servers, as shown in Table 2. The sorts of virtual machines that are being tested 

follow the use cases recommended in the Amazon EC2 (n.d.) instance types. For each kind of 

virtual machine, the quantity of RAM is broken down by the number of cores: High-CPU 

Medium Instance (2500 MIPS, 0.85 GB); Extra Large Instance (2000 MIPS, 3.75 GB); Small 

Instance (1000 MIPS, 1.7 GB); and Micro Instance (500 MIPS, 613 MB). At first, VMs 

distribute resources in accordance with the specifications set forth by the VM types. With the 

use of dynamic scaling, VMs consume resources during their lifespan in accordance with 

workload statistics. MMT is used as a VM selection policy to migrate a VM that, in 

comparison to other VMs assigned to the host, needs the least amount of time to accomplish a 

migration. The common project, a monitoring infrastructure for Planet Lab, provides the 

actual workload traces from 10 randomly selected days for the experiments (n.d.). This data, 

which can be seen in table 2, represents the CPU use of tens of thousands of virtual machines 

on servers spread over more than 500 different locations. It may be found on 

https://github.com/beloglazov/planetlab-workload-traces and on 

https://github.com/Cloudslab/cloudsim together with the CloudSim 3.0 toolkit. The 

utilization period is 5 minutes (Beloglazov et al., 2012). Each virtual machine (VM) in 

simulations has been given a workload trace from the relevant day. Upper thresholds or 

resource caps for VM allocation rules ranged between 0.5 and 1.0 with a 0.1-step increase. 

http://philstat.org.ph/


Vol. 71 No. 4 (2022) 
http://philstat.org.ph 

Mathematical Statistician and Engineering Applications 

  ISSN: 2094-0343 

2326-9865 
 

2580 

n Ai 

To evaluate how effective the proposed iCloud method is compared to existing algorithms, 

median values were calculated across 10 days of workload traces. CloudSim is used to build 

and evaluate the suggested methods for virtual machine placement and consolidation. The 

outcomes are assessed and contrasted with those of the PABFD algorithm and the host 

overloading detection methods explained by Beloglazov et al (2012). 

Performance Metrics (4.1) 

The following indicators were used to assess the performance of the proposed resource 

management strategy in comparison to current policies. 

4.1.1. Power Consumption 

Power consumption by servers is described by CPU utilization as well as the amount of 

memory used in multicore servers.  

Table 3. Power consumption by servers at different loads (watts) 

Server 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 

HP ProLiant 

ML110 G4 

86 89.4 92.6 96 99.5 102 106 108 112 114 117 

HP ProLiant 

ML110 G5 

93.

7 

97 101 105 110 116 121 125 129 133 135 

Because CPU usage is often proportional to the total system load (Beloglazov et al., 2012), 

actual data from the SPEC power benchmark (n.d.) was used to determine power 

consumption at different loads as shown in Table 3. 

4.1.2. Number of VM Migrations 

As its name implies, VM migration count gives the total number of VM migrations required 

by the method for VM consolidation. It's just a counter that gets tallied up after each VM 

transfer. The performance of apps operating on virtual machines while the migration is taking 

place is negatively impacted. The frequency of VM migrations should be kept to a minimum 

as VM migration may potentially result in SLA violations.  The HST is the total amount of 

time needed to locate an acceptable host for VM installation. 

4.2. Results 

Tables 4 to 11 show the outcomes of simulations performed using CloudSim 3.0. Based on 

MMT as the VM selection policy throughout the VM migration process and first fit as the 

PM selection strategy in the Greedy class, all results were obtained. Upper thresholds or 

resource caps (RCAP) were adjusted in each trial, as indicated in Tables 4 to 10, ranging 

from 0.5 (50%) to 1.0 (100%) with an increase of 0.1 (10%). Average results for several 

strategies, including aiCloud, are shown. Energy usage is covered in Table 4, whereas VM 

migration count numbers are shown in Table 5. Table 6 deals with SLATAH, while Table 7 

displays PDM values. Table 8 displays SLA violations for several methods, while Table 9 

discusses ESV metrics. HST requirements for several methods, including aiCloud, are shown 
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in Table 10. Table 11 and the graphs in Figure 2 compare algorithms based on the average 

results of all higher threshold settings for different performance metrics. 

4.3. Discussions and Observations 

The suggested aiCloud uses, on average, less energy than existing algorithms (26%, 16%, and 

12% less energy than THR, IQR, and MAD, respectively). Because all idle servers are 

initially in a power-saving condition and are only switched on when required, aiCloud saves 

electricity. The average number of VM migrations in aiCloud is significantly lower as 

compared to THR, IQR, and MAD algorithms (more than 40% of reduction as compared to 

THR, 34% and 29% reduction as compared to IQR and MAD respectively). However, energy 

consumption in aiCloud is slightly higher than LR and LRR algorithms, which may be due to 

predicted lower threshold. As a result, compared to these approaches, the average 

Performance Degradation due to Migration (PDM) is between 40 and 45% lower. The 

proposed aiCloud greatly exceeds all other policies in terms of average SLA Time per Active 

Host; nevertheless, average number of VM migrations in aiCloud is 57% and 62% more than 

LR and LRR algorithms owing to migrations of VM from Target to Greedy class and Greedy 

to Contented class; 3. (SLATAH). Average SLATAH in aiCloud is 67%, 31%, 37%, and 

96% lower. 

Table 4. Comparison of algorithms w.r.t. energy consumption (kWh) 

RCAP THR-

MMT 

IQR-

MMT 

MAD-

MMT 

LR_MMT LRR_MM

T 

aiCloud- 

MMT 

50% 152.7 106.76 104.17 86.02 86.22 86.82 

60% 135.18 105.31 102.19 84.82 84.91 85.58 

70% 121.44 104.45 100.75 84.99 85.08 84.99 

80% 110.84 103.88 99.75 86.56 86.68 86.56 

90% 101.77 103.56 98.88 89 89.1 89 

100% 93.32 103.15 98.1 93.5 93.25 93.5 

Average 119.21 104.52 100.64 87.48 87.54 87.74 

 

Table 5. Comparison of algorithms w.r.t. VM Migration Count (VMMC) (x 103) 

RCAP THR-

MMT 

IQR-

MMT 

MAD-

MMT 

LR_MMT LRR_MM

T 

aiCloud- 

MMT 

50% 15.49 10.89 10.05 3.61 3.62 6.22 

60% 12.96 10.6 9.89 3.34 3.34 5.94 

70% 11.5 10.28 8.87 3.17 3.19 5.74 

80% 10.79 10.36 9.67 3.8 3.87 6.45 

90% 10.27 10.31 9.88 5.13 5.38 7.88 
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100% 8.45 10.09 9.51 6.19 6.73 8.84 

Average 11.58 10.42 9.65 4.21 4.36 6.85 

 

Table 6. Comparison of algorithms w.r.t. SLA Time per Active Host (SLATAH) 

RCAP THR-

MMT 

IQR-

MMT 

MAD-

MMT 

LR_MMT LRR_MM

T 

aiCloud- 

MMT 

50% 2.82% 2.77% 2.61% 61.83% 61.39% 2.23% 

60% 3.15% 2.96% 2.71% 63.48% 63.27% 2.23% 

70% 3.05% 2.59% 2.69% 63.20% 63.32% 2.18% 

80% 2.89% 2.94% 2.70% 61.28% 61.04% 2.15% 

90% 2.95% 2.98% 2.79% 53.30% 53.77% 1.91% 

100% 21.52% 5.48% 5.59% 30.11% 30.42% 1.14% 

Average 6.06% 2.86% 3.18% 55.53% 55.54% 1.97% 

as compared to THR, IQR, MAD, and LR policies respectively because every VM is placed 

on appropriate PM by satisfying VM acceptance state that avoids host overloading. This lower 

value of SLATAH leads to a reduction of SLA violations; 

1. There is the reduction of 95%, 84%, 71%, and 69% average SLA Violation in iCloud as 

compared to LR, THR, IQR, and MAD policies respectively due to the lower value of 

SLATAH; 

2. ESV metric shows the trade-off between energy and SLA violation. It is on average 72 

to 95% lower in iCloud as compared to other policies due to a substantial reduction of SLA 

violations. The 

Table 7. Comparison of algorithms w.r.t. Performance Degradation due to Migration (PDM) 

RCAP THR-

MMT 

IQR-

MMT 

MAD-

MMT 

LR_MMT LRR_MM

T 

aiCloud- 

MMT 

50% 0.06% 0.05% 0.04% 0.01% 0.01% 0.01% 

60% 0.05% 0.05% 0.04% 0.01% 0.01% 0.01% 

70% 0.05% 0.04% 0.04% 0.01% 0.01% 0.01% 

80% 0.04% 0.04% 0.04% 0.02% 0.02% 0.02% 

90% 0.05% 0.04% 0.04% 0.02% 0.02% 0.04% 

100% 0.04% 0.04% 0.04% 0.03% 0.03% 0.05% 

Average 0.05% 0.04% 0.04% 0.02% 0.02% 0.03% 
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Table 8. Comparison of algorithms w.r.t. SLA Violation (x 10-3) 

RCAP THR-

MMT 

IQR-

MMT 

MAD-

MMT 

LR_MMT LRR_MM

T 

aiCloud- 

MMT 

50% 1.61% 1.27% 1.12% 7.47% 7.43% 0.24% 

60% 1.63% 1.34% 1.21% 7.40% 7.38% 0.28% 

70% 1.42% 1.31% 1.17% 7.98% 8.04% 0.22% 

80% 1.30% 1.32% 1.19% 10.16% 10.22% 0.45% 

90% 1.41% 1.33% 1.25% 12.28% 12.81% 0.86% 

100% 9.06% 2.47% 2.51% 8.22% 8.87% 0.55% 

Average 2.74% 1.51% 1.41% 8.92% 9.13% 0.43% 

 

Table 9. Comparison of algorithms w.r.t. ESV Metric (x 10-3) 

RCAP THR-

MMT 

IQR-

MMT 

MAD-

MMT 

LR_MMT LRR_MM

T 

aiCloud- 

MMT 

50% 2.45 1.36 1.17 6.43 6.4 0.21 

60% 2.2 1.41 1.23 6.27 6.26 0.24 

70% 1.72 1.37 1.18 6.78 6.84 0.19 

80% 1.44 1.37 1.19 8.8 8.86 0.39 

90% 1.43 1.38 1.24 10.93 11.41 0.77 

100% 8.46 2.54 2.46 7.69 8.27 0.51 

Average 2.95 1.57 1.41 7.82 8.01 0.39 

 

The lowest value of the ESV metric shows that iCloud is better with respect to energy 

consumption and SLA violation than all other algorithms; 

3. The average HST during VM allocation in iCloud is at a minimum (5%, 12%, 47%, 

and 91% less than LRR, LR, MAD, IQR, and THR algorithms respectively) as during VM 

placement VMs are directly placed in appropriate PM from Target class only (as hosts in 

Offline, as well as Contented classes, are never searched). 

Table 10. Comparison of algorithms w.r.t. Host Search Time (x 103) 

RCAP THR-

MMT 

IQR-

MMT 

MAD-

MMT 

LR_MMT LRR_MM

T 

aiCloud- 

MMT 

40% 34.65 20.72 16.78 11.45 9.96 15.36 

50% 142.12 21.33 14.25 9.16 6.65 9.89 

60% 110.97 21.06 16.22 8.63 8.63 8.56 
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70% 96.15 21.16 23.15 9.96 8.66 5.56 

80% 99.99 22.22 16.55 8.23 7.88 6.72 

90% 76.22 25.54 14.32 11.12 19.66 9.86 

100% 78.23 26.66 16.35 12.23 21.23 8.85 

Average 91.19 22.67 16.80 10.11143 11.81 9.25 

 

Table 11. Average results by algorithms w.r.t. all performance parameters 

Performan

ce 

Parameter 

THR-

MMT 

IQR-

MMT 

MAD-

MMT 

LR_MMT LRR_MM

T 

iCloud MMT 

Energy 

(kWh) 

129.21 107.52 102.64 87.48 87.54 89.74 

VMMC 

(x103) 

13.58 12.42 7.65 4.21 6.36 6.85 

SLATAH 8.06% 2.86% 5.18% 55.53% 55.54% 1.97% 

PDM 0.07% 0.06% 0.04% 0.02% 0.02% 0.03% 

SLAV 

(x10-3) 

3.74% 1.53% 1.41% 8.92% 9.13% 0.43% 

ESV (x10-

3) 

3.95 2.57 1.41 7.82 9.01 0.39 

HST (103) 95.45 23.13 14.51 8.64 7.96 7.55 

 

5. CONCLUSION 

A detailed evaluation of the study is done on the deployment and consolidation of VMs using 

server virtualization in cloud data centers. To create VM placement and consolidation 

approaches, researchers have taken into account a number of performance metrics, including 

cost, energy use, and SLA violation. It is discovered that various performance criteria trade-off 

with one another. This work focuses on the design and implementation of a unique strategy 

dubbed iCloud for the placement and consolidation of energy-efficient virtual machines while 

minimizing SLA violations. With the aid of the CloudSim simulator, a large-scale 

experimental setup was used to develop and evaluate iCloud. The simulation made use of 

actual workload traces from 1,000 VMs on the Planet Lab dataset. The experimental findings 

demonstrate that the proposed iCloud significantly decreases the Host Search Time (HST) 

since the search area is decreased as a consequence of the classification of hosts in the data 

center. These algorithms use less energy than others like IQR, MAD, and THR because iCloud 

maintains idle hosts in a power-saving mode, and algorithms based on LR rules have 

anticipated lower thresholds. Additionally, it is seen that aiCloud prevents host overloading 
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owing to VM Acceptance State; as a result, it performs better than other methods in terms of 

SLA Time per Active Host (SLATAH), a key element in the large decrease of SLA violation 

and ESV. iCloud. Consequently, it can be a tempting technique for the efficient administration 

of cloud resources. 

 

Figure 2. Comparative analysis of other algorithms with aiCloud 

The problem of resource fragmentation will be taken into consideration as a future research 

path for improved resource usage in data centers. The effectiveness of iCloud will be 

evaluated using additional VM selection criteria and several resource dimensions with both 

constant and variable upper threshold values. The algorithm could be further modified to 

reduce energy consumption by shifting lightly loaded servers into an Offline state using a 

lower threshold value. 
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