The Accurate Distance - 2 Domination (Ad-2d) in Graphs

A. Lakshmi*, P. Sudha **

Corresponding author:*Assistant Professor, Department of Mathematics, Vels Institute of Science, Technology & Advanced Studies, Chennai, Tamilnadu, India.

e-mail: lprabha24@gmail.com,

**Research Scholar, Department of Mathematics, Vels Institute of Science, Technology & Advanced Studies, Chennai, Tamilnadu, India.

e-mail: pandiayan244@gmail.com,

Article Info	ABSTRACT
Page Number: 2793-2805	An AD-2D collection in G is constructed as V/D has no D-2D set with
Publication Issue:	D . The AD-2D number $\gamma_{a\leq 2}(G)$ is the least cardinality in all AD-
Vol. 71 No. 4 (2022)	2D collections. We received several bounds on AD-2D number. Precise values of $\gamma_{a\leq 2}(G)$ are acquire for few named graph, also their relationship
Article History	with other parameters were extended. Named result: Nordhaus - Gaddum
Article Received: 25 May 2022	bounds were founded for this $\gamma_{a\leq 2}(G)$ parameter.
Revised: 30 June2022	AMC subject classification: 05C12: 05C38: 05C69
Accepted: 15 July 2022	Keywords: Domination number, AD set, ATD number, D-2D set, AD-2D
Publication: 19 August 2022	set.

1. INTRODUCTION

All diagrams concentrated here are without loops ,parallel edges, finite, there exists path across all vertices and without directin. We used the terminology of [4].

The following notions are utilized:

- n : Number of vertices
- m :Cardinality of edges
- $\Delta(G)$: Maximum degree of G
- $\delta(G)$: Minimum degree in vertices
 - [x] : The smallest integer greater than or equivalent to x
 - [x] : The greatest integer less than or same x
 - $\beta_0(G)$: Maximum cardinality among the independent set
 - $\alpha_0(G)$: Minimum cardinality of vertex cover
 - g(G) : length of the shortest cycle in G (girth)
- c(G) :(circumference) distance of the longest cycle

A collection of nodes D is named as dominating set it hold the constrain, each points in V/D is adjacent to at least one node of D(G). The notion γ (G) contains the cardinality of smallest minimal dominating collection of G.

Kulli,V.R., et al. Contributed accurate domination (AD) in G (2000) [6].

An AD set D holds the condition that, if V/D does not contains dominating collection with |D|. The AD number $\gamma_a(G)$ selected from least cardinality of minimal AD set [6]. The upper AD value $\Gamma_a(G)$ is highest cardinality of an AD set in G.

A D-2D sub-collection D contains the property, every points in V/D having at most length 2 at least 1 point in D. The smallest value of minimal D-2D set marked as $\gamma \leq 2(G)$ [4].

Cockayne, Dawes, and Hedetniemi, initialized the concept total domination (TD) in graphs (1980) [4].

A TD set D(G) holds the property such that $\langle D \rangle$ has no isolated points. Smallest collection in minimal TD set, denoted by $\gamma_t(G)$.

Accurate total domination (ATD), concept was contributed by Kattimani. M.B. et al. in 2012 [7].

An ATD collection with the property V/D has no TD set of |D|. An ATD number $\gamma_{at}(G)$ represent the least numerical value of minimal ATD set [7].

Definition 1.1

An AD-2D set D holds following properties,

(i). D is D-2D set

(ii). V/ D has no D-2D set of |D|

The AD-2D number $\gamma_{a\leq 2}(G)$ formed by selecting, numerically smallest value from minimal AD-2D in G. The upper AD-2D number written by $\Gamma_{a\leq 2}(G)$ is the highest value of an AD-2D collection.

Example 1

Figure 1.

Here AD-2D collections are {4, 12}, {1, 7, 10,12}, {1,7,10,11,14,17,20}, {4,13,16,19}. Thus, $\gamma_{a\leq 2}(G) = 2$, $\Gamma_{a\leq 2}(G) = 7$.

2. Few named graphs with their values of $y_{a \le 2}(G)$

2.1. Observation:

1. For P_n ,

$$\gamma_{a \leq 2}(P_n) = \{ \underbrace{\substack{p, \\ \lfloor \frac{n}{2} \rfloor}_{i=1}^{n} + 1, \text{ for } n \neq 5p, p = 1, 2, 3 \dots}_{i=1, 2, 3} \}$$

2. In C_n,

$$\gamma_{a\leq 2}(C_n) = \lfloor \frac{n}{2} + 1$$

3. For W_n ,

$$\gamma_{a\leq 2}(W_n) = \lceil \frac{n}{2} + 1$$

4. In F_n,

$$\gamma_{a\leq 2}(F_n)=n+1$$

5. For K_n ,

$$\gamma_{a\leq 2}(K_n) = \lfloor \frac{n}{2} \rfloor + 1$$

6. In K_{1,m},

$$\gamma_{a \le 2}(K_{1,m}) = \lfloor \frac{1+m}{2} \rfloor + 1$$

7. For $K_{n,m}$, for $m, n \ge 1$

Mathematical Statistician and Engineering Applications ISSN: 2094-0343 2326-9865

$$\gamma_{a\leq 2}(K_{n,m}) = \lfloor \frac{n+m}{2} \rfloor + 1$$

$$\textbf{8. In } B_n, \qquad \qquad \gamma_{a \leq 2}(B_n) = n+2$$

9. For H_n ,

$$\gamma_{a\leq 2}(H_n)=n+1$$

10. For Grid graph $P_i X P_j$, for i, $j \ge 2$

$$\gamma_{a \le 2}(P_i X P_j) = \lfloor \frac{i^{iXj}}{2} \rfloor + 1$$

11. For n-Barbell graph,

$$\gamma_{a\leq 2}(n - barbell) = n + 1$$

12. For L_n , for $n \ge 1$

$$\gamma_{a\leq 2}(L_n)=n+1$$

13. For any Lollipop graph $I_{m,n}$, for $m \ge 1$, $n \ge 1$

$$\gamma_{a\leq 2}(I_{m,n}) = \lfloor \frac{m+n}{2} \rfloor + 1$$

3. Relationship between $y_{a \le 2}(G)$ with other parameters

Proposition 3.1

A Grid graph $P_{2X}P_{j}$, then $\gamma_{a\leq 2}(P_{2}XP_{j}) = \beta_{0}(G) + 1$.

Proposition 3.2

If $G = C_n$ or $K_n, \gamma_{a \le 2}(G) = \gamma_a(G)$.

Proposition 3.3

In Friendship graph F_n , (i). $\gamma_{a \le 2}(F_n) = \gamma_a(F_n) + n$, (ii) $\gamma_{a \le 2}(F_n) = \alpha_0$.

Proposition 3.4

For Helm graph $H_{n, \gamma_{a \leq 2}}(H_n) = \gamma_a(H_n) + 1$.

Proposition 3.5

For Book graph B_n , (i). $\gamma_{a \le 2}(B_n) = \gamma_a(B_n) + n$, (ii) $\gamma_{a \le 2}(B_n) = \alpha_0$.

Proposition 3.6

In Wheel graph W_{n} , $\gamma_{a \le 2}(W_n) + \beta_0 = n$,

Proposition 3.7

An AD – 2D number of H_n is same to AD– 2D value of F_n ,

Proof

From observation 2.1, we concluded $\gamma_{a \le 2}(H_n) = \gamma_{a \le 2}(F_n)$.

Proposition 3.8

For W_n , (or) H_n , $\gamma_{a \le 2}(W_n) = \alpha_0 = \gamma_{a \le 2}(H_n)$

Proposition 3.9

In connected graph, for $n \ge 3$, then $\gamma_{a \le 2}(G) + \gamma(G) \le n$,

Proposition 3.10

If $G = H_n$, then $\gamma_{a \le 2}(G) + \gamma_a(G) = n$.

Proposition 3.11

For fan graph $F_{n,m}$, then $\gamma_{a \le 2}(F_{n,m}) \le \lceil \frac{n+m}{2} \rceil + 1$

Proof

Based on the construction of $F_{n,m}$, maximum length between each node is one. So AD-2D set contains $\left[\frac{n+m}{2}\right] + 1$ vertices. Hence, $\gamma_{a \le 2}(F_{n,m}) \le \left[\frac{n+m}{2}\right] + 1$.

Proposition 3.12

If $G = C_n$, (or) K_n , $\gamma_{a \le 2}(G) = \gamma_t(G) = \gamma_{at}(G)$

Proposition 3.13

For $H_{n,\gamma_{a\leq 2}}(H_n) = \gamma_{at}(H_n) + 1$.

4. Upper and Lower bounds of $\gamma_{a\leq 2}(G)$

Theorem 4.1

In G, $\gamma_{\leq 2}(G) \leq \gamma_{a \leq 2}(G)$

Proof

Every AD- 2D set in G is D- 2D set for same G.

We conclude, $\gamma \leq_2(G) \leq \gamma_{a \leq 2}(G)$.

Theorem 4.2

For G, $\gamma(G) \leq \gamma_{a \leq 2}(G)$

Proof

Each AD- 2D collection of graph satisfies domination condition.

Hence, $\gamma(G) \leq \gamma_{a \leq 2}(G)$.

Theorem 4.3

Except a path with points 5n, for $n \ge 1$, then $\gamma_a(G) \le \gamma_{a \le 2}(G)$.

Proof

From the observation 2.1 (1), all AD- 2D selection of G is an AD set in G.

We have, $\gamma_a(G) \leq \gamma_{a \leq 2}(G)$.

Theorem 4.4

If G contains an isolated point, then minimal D - 2D collection of G is an AD- 2D set.

Proof

Every isolated nodes are in D-2D collection D in G. Then V-/D has no D-2D set with |D|. Hence the desired result follows.

Corollary 4.5

If $\gamma \leq 2(G) = \gamma_a \leq 2(G)$, where G has isolates.

Theorem 4.6

In G, an AD-2D set has $\lfloor \frac{n}{2} \rfloor + 1$.

Proof

Suppose D contained in Vis a D- 2D set with $\lfloor \frac{n}{2} \rfloor + 1$ vertices. So D contains more than half of points in V. Hence D treated as AD- 2D set.

Theorem 4.7

In non disconnected graph, $\gamma_{a \le 2}(G) \le n - \gamma_{\le 2}(G) + 1$, this bound is sharp.

Proof

Consider a minimum D–2D collection, then take $v \in D$, (V/D) U {v} forms an AD-2D collection in graph.

Hence, $\gamma_{a \le 2}(G) \le |(V/D) \cup \{v\}| = n - \gamma_{\le 2}(G) + 1.$

Corollary 4.8

In G, $\gamma_{a \le 2}(P_4) = n - \gamma(P_4) + 1$ if G = P₄.

Theorem 4.9

If $\gamma_{a \le 2}(G) \le \gamma_{a \le 2}(H)$ where H is spanning connected sub-graph.

Theorem 4.10

The maximum limit and minimum limit of $\gamma_{a\leq 2}(G)$,

$$\frac{n}{\Delta+1} \le \gamma_{a \le 2}(G) \le \frac{n\Delta}{\Delta+1} + 1.$$

Proof

By the reference [4], we have $\frac{n}{\Delta+1} \le \gamma(G)$ also from reference [6] $\gamma(G) \le \gamma_a(G)$

By Theorem 4.3 we obtained, $\gamma_a(G) \le \gamma_{a \le 2}(G)$. Using this $\frac{n}{\Delta + 1} \le \gamma_{a \le 2}(G)$.

From Theorem 4.7 , $\gamma_{a\leq 2}(G)\leq n-\gamma_{\leq 2}(G)+1$

$$\leq n - \frac{n}{\Delta + 1} + 1$$
$$\leq \frac{n\Delta}{\Delta + 1} + 1.$$

Hence, $\frac{n}{\Delta+1} \leq \gamma_{a \leq 2}(G) \leq \frac{n\Delta}{\Delta+1} + 1.$

Theorem 4.11

If G, not a complete bipartite graph, then $\gamma_{a\leq 2}(G) \leq \alpha_0 + 1$. Furthermore, equality obtained if $G = H_n$ or P_{4} .

Theorem 4.12

For T_n with m cut nodes, $\gamma_{a \le 2}(T_n) \le m + 1$.

Proof

Choose D, collection of all cut points with |D|=m. Then any pendent point $v \in T_n$, D U $\{v\}$ makes an AD-2D set in T_n . Here, each dominating collections form D-2D, hence that collection defines an AD-2D. $\therefore \gamma_{a \le 2}(G) \le m + 1$.

Corollary 4.13

In tree, $\gamma_{a \le 2}(T_n) \le n - k + 1$, where pendent node |k|

Theorem 4.14

For G, not $K_{n,m}$, then $\gamma_{a \le 2}(G) \le n - \beta_0 + 1$. Furthermore, same values obtains when $G = H_n$.

Corollary 4.15

In $K_{n,m}$, $\gamma_{a \leq 2}(G) \leq \beta_0(G)$.

Theorem 4.16

If $2 \le \gamma_{a \le 2}(G) \le n + 2$, when G without isolates.

Proof

From observation 2.1, we reach the bounds.

Nordhas - Gaddum Type results

Theorem 4.17

If G and Ghas no isolated nodes,

(i). $4 \leq \gamma_{a \leq 2}(G) + \gamma_{a \leq 2}(G) \leq 2(n+2)$

(ii).
$$4 \le \gamma_{a \le 2}(G)$$
. $\gamma_{a \le 2}(G) \le (n+2)^2$

Theorem 4.18

If $\gamma_{a \le 2}(G) + \chi(G) \le 2n + 2$, where $\chi(G)$, chromatic cardinality in G.

Proof

We know $\chi(G) \le n$, and by Theorem 4.12. $\gamma_{a \le 2}(G) \le n + 2$.

$$\therefore \gamma_{a \le 2}(G) + \chi(G) \le 2n + 2.$$

Theorem 4.19

In cubic connected graph , $\gamma_{a \le 2}(G) = \lfloor \frac{n}{2} \rfloor + 1$.

Theorem 4.20

If $\gamma_{a \le 2}(G) \le \gamma_t(G) + 1$, where G contains pendent points. Furthermore, if $G = H_{n}$ we arrive equality.

Proof

Consider v, end point and D total dominating collection of graph. Then we found u which is at most length two to v.

Case 1. Suppose $v \in D$. Then $u \in D$, Hence D becomes an AD-2D collection.

We have, $\gamma_{a \leq 2}(G) = |D| \leq \gamma_t(G)$.

Case 2. Suppose $v \notin D$. And $u \in D$. Then $D \cup \{v\}$ changed as AD-2D set. Thus $\gamma_{a \leq 2}(G) \leq |D \cup \{v\}| \leq \gamma_t(G) + 1$.

In Helm graph H_n , $\gamma_{a \le 2}(H_n) = \gamma_t(H_n) + 1$.

5. AD-2D number for few special graph families

Theorem 5.1

For path, $\gamma_{a\leq 2}(C(P_n)) = \lceil \frac{n}{2} \rceil$.

Proof

Method of constructing central graph follows these steps:

(i).join all non ad joint points

(ii).add new points in each edge of original graph

Apply the above steps in P_n, we received 2n-1 vertices. Choose $\lceil \frac{n}{2} \rceil$ nodes its forms AD-2D set. Hence, $\gamma_{a \le 2}(C(P_n)) = \lceil \frac{n}{2} \rceil$

Figure 2: The graph C_5 , $C(C_5)$ and $y_{a \le 2}(C(P_5)) = 5$.

Theorem 5.2

In C_n , $\gamma_{a \le 2}(C(C_n)) = n + 1$.

Proof

Assume that $V(C_n) = \{v_1, v_2, v_3, ..., v_n\}$, $E(C_n) = \{e_1, e_2, e_3, ..., e_n\}$ with $e_n = v_n v_1$ and $e_i = v_i v_{i+1}$, $(1 \le i \le n-1)$.

In $C(C_n)$ contains the nodes $\{v_i\} \cup \{u_i\}$ where u_i is points produced by sub-dividing all lines.

Select all $\{v_i\}$ together one of $\{u_i\}$ its becomes AD-2D set .

$$\therefore \gamma_{a\leq 2}(C(C_n)) = n+1.$$

Mathematical Statistician and Engineering Applications ISSN: 2094-0343 2326-9865

Figure 3: The graph C₅, C(C₅) and $y_{a \le 2}(C(C_5)) = 6$.

Theorem 5.3.

For any star $K_{1,n}$, $\gamma_{a \leq 2}[C(K_{1,n})] = n + 1$.

Proof

Consider $V(K_{1,n}) = \{v, v_1, v_2, v_3, ..., v_n\}$ where deg v = n. Centralization of star, we mark the nodes of sub-division by $u_1, u_2, u_3, ..., u_n$. Naming the lines, $e_i = v_i u_i$ and $e'_i = v u_i$. In $C(K_{1,n})$, the sub-graph made by the nodes $\{v_1, v_2, v_3, ..., v_n\}$ is K_n .

Consider the nodes in K_n with $\{v\}$, totally n+1 points makes an AD-2D collection. Finally,we have $\gamma_{a\leq 2}[C(K_{1,n})] = n + 1$.

Figure 4: The graph $K_{1,5}$, $C(K_{1,5})$ and $y_{a \le 2}(C(K_{1,5})) = 6$.

Theorem 5.4

For P_n , $\gamma_{a \leq 2}(M(P_n)) = \lceil \frac{n}{2} \rceil$.

Proof

Based on Middle graph construction apply the steps:

- (i). In original graph include new nodes to every lines
- (ii). Form a complete graph using new points

In M(P_n), we found 2n-1 points. Now, take $\lceil \frac{n}{2} \rceil$ vertices, this forms AD-2D collection. Hence, $\gamma_{a \le 2}(M(P_n)) = \lceil \frac{n}{2} \rceil$

Figure 5: The graph P_5 and $M(P_5)$ and , $y_{a\leq 2}(M(P_5))=3$

Theorem 5.5

For C_n , $\gamma_{a \leq 2}(M(C_n)) = n + 1$.

Proof

Consider, $\{v_1, v_2, v_3, ..., v_n\}$ and $\{e_1, e_2, e_3, ..., e_n\}$ are points, lines in C_n . In $M(C_n)$, $V(C_n) \cup E(C_n)$ be node set .Each e_i adjoint with e_{i+1} for i = 1,2,3 ..., n - 1, e_n is adjoint with v_1 .

In $M(C_n)$, we select $\{v_i\}$ and one node in $\{u_i\}$, here u_i is vertices produced by lines subdivision. This collection forms AD-2D set.

$$\therefore \gamma_{a \leq 2}(M(C_n)) = n + 1.$$

Figure 6: The graph of C_n , $M(C_n)$ and $y_{a \le 2}(M(C_5)) = 6$.

Theorem 5.6

For any star graph $K_{1,n}$, $\gamma_{a \leq 2}[M(K_{1,n})] = n + 1$.

Proof

Let $V(K_{1,n}) = \{v, v_1, v_2, v_3, ..., v_n\}$ and $E(K_{1,n}) = \{e_1, e_2, e_3, ..., e_n\}$. In $V[M(K_{1,n})] = \{v\} \cup \{e_i\} \cup \{v_i\}$ in which the vertices $e_1, e_2, e_3, ..., e_n, v$ induces a clique of order n + 1.

In M(K_{1,n}), Consider , $\{\{v\} \cup \{v_i\}\}$ produces a AD-2D collection.

Hence we received, $\gamma_{a \leq 2}[M(K_{1,n})] = n + 1$.

Figure 7: The graph of $K_{1,4}$, $M(K_{1,4})$ and $y_{a \le 2}[M(K_{1,4})] = 5$.

Theorem 5.7

For any closed helm graph CH_n , $\gamma_{a \le 2}[CH_n] = 1$.

Proof

Let the set D has the apex vertex of the closed helm graph. The remaining vertices in $\langle V-D \rangle$ are all within the distance two from the apex vertex in D. Then D frms a distance - 2 dominating set of the closed helm graph. Thus $\gamma_{\leq 2}[CH_n] = 1$.

But in <V-D> we cannot able to find a distance -2 dominating set with the cardinality 1. Hence $\gamma_{a\leq 2}[CH_n] = 1$.

Figure 8: Closed helm with $y_{a\leq 2}$ (CH₆) = 1.

REFERENCES

- 1. Cockayne, E.J., Hedetniemi, S.T., Towards a Theory of Domination in Graphs, Networks, 7:247-261.
- 2. Fraisse, P., A note on distance dominating cycles. Discrete Math. 71 (1988), 89-92.
- 3. Haynes, T.W., Hedetniemi, .S.T., and Slater, P.J., 1998. Domination in Graphs: Advanced Topics, Marcel Dekker Inc. New York, U.S.A.
- 4. Haynes, T.W., Hedetniemi S.T., and Slater P.J., (1998). Fundamentals of domination in graphs, Marcel Dekker Inc. New York, U.S.A.
- 5. Kulli, V.R., (2012). Advances in domination theory I, Vishwa International Publications, Gulbarga, India.
- 6. V.R. Kulli, and M.B. Kattimani, Accurate Domination in Graphs, Advances in domination theory I, Vishwa International Publications, Gulbarga, India (2000), 1-8.
- 7. V.R. Kulli, and M.B. Kattimani, Accurate Total Domination in Graphs, Advances in domination theory I, Vishwa International Publications, Gulbarga, India (2012), 9-14.
- Lakshmi, A., and Ameenal Bibi, K., (2015). The Inverse Accurate domination in Graphs

 Secreat Heart Journal of Science and Humanities, special vol. 6 (2)-2015. pp. 144-155.
- 9. Nordhaus, E.A., and Gaddam, J.W., (1956). On complementary graphs. Amer. Math. Monthly, Vol.63.pp.175-177.
- 10. Ore, O., 1962. Theory of Graphs. American Mathematical Society colloq. Publ., Providence, R1, 38.