The Accurate Distance - 2 Domination (Ad-2d) in Graphs

A. Lakshmi* ${ }^{*}$ P. Sudha **
Corresponding author:*Assistant Professor, Department of Mathematics, Vels Institute of Science, Technology \& Advanced Studies, Chennai, Tamilnadu, India.
e-mail: lprabha24@gmail.com,
**Research Scholar, Department of Mathematics, Vels Institute of Science, Technology \& Advanced Studies, Chennai, Tamilnadu, India.
e-mail: pandiayan244@gmail.com,

Article Info

Page Number: 2793-2805
Publication Issue:
Vol. 71 No. 4 (2022)

Article History
Article Received: $\mathbf{2 5}$ May 2022
Revised: 30 June2022
Accepted: 15 July 2022
Publication: 19 August 2022

Abstract

An AD-2D collection in G is constructed as V/D has no D-2D set with $|\mathrm{D}|$. The $\mathrm{AD}-2 \mathrm{D}$ number $\gamma_{\mathrm{a} \leq 2}(\mathrm{G})$ is the least cardinality in all AD2Dcollections. We received several bounds on AD-2D number. Precise values of $\gamma_{\mathrm{a} \leq 2}(G)$ are acquire for few named graph, also their relationship with other parameters were extended. Named result: Nordhaus - Gaddum bounds were founded for this $\gamma_{\mathrm{a} \leq 2}(\mathrm{G})$ parameter. AMC subject classification: 05C12: 05C38: 05C69

Keywords: Domination number, AD set, ATD number, D-2D set, AD-2D set.

1. INTRODUCTION

All diagrams concentrated here are without loops , parallel edges, finite, there exists path across all vertices and without directin. We used the terminology of [4].

The following notions are utilized:
n : Number of vertices
m :Cardinality of edges
$\Delta(\mathrm{G}) \quad$: Maximum degree of G
$\delta(\mathrm{G}) \quad:$ Minimum degree in vertices
$\lceil\mathrm{x}\rceil$: The smallest integer greater than or equivalent to x
[x] : The greatest integer less than or same x
$\beta_{0}(\mathrm{G})$: Maximum cardinality among the independent set
$\alpha_{0}(\mathrm{G})$: Minimum cardinality of vertex cover
$\mathrm{g}(\mathrm{G})$: length of the shortest cycle in G (girth)
$\mathrm{c}(\mathrm{G}) \quad:($ circumference $)$ distance of the longest cycle

A collection of nodes D is named as dominating set it hold the constrain, each points in V/D is adjacent to at least one node of $\mathrm{D}(\mathrm{G})$. The notion $\gamma(\mathrm{G})$ contains the cardinality of smallest minimal dominating collection of G .

Kulli,V.R., et al. Contributed accurate domination (AD) in G (2000) [6].
An AD set D holds the condition that, if V/D does not contains dominating collection with $|\mathrm{D}|$.The AD number $\gamma_{\mathrm{a}}(\mathrm{G})$ selected from least cardinality of minimal AD set [6]. The upper $A D$ value $\Gamma_{\mathrm{a}}(\mathrm{G})$ is highest cardinality of an AD set in G.

A D-2D sub-collection D contains the property, every points in V/D having at most length 2 at least 1 point in D. The smallest value of minimal $D-2 D$ set marked as $\gamma \leq 2$ (G) [4].

Cockayne, Dawes, and Hedetniemi, initialized the concept total domination (TD) in graphs (1980) [4].

A TD set $\mathrm{D}(\mathrm{G})$ holds the property such that $\langle\mathrm{D}\rangle$ has no isolated points. Smallest collection in minimal TD set, denoted by $\gamma_{\mathrm{t}}(\mathrm{G})$.

Accurate total domination (ATD), concept was contributed by Kattimani. M.B. et al. in 2012 [7].

An ATD collection with the property V/D has no TD set of $|\mathrm{D}|$. An ATD number $\gamma_{\mathrm{at}}(\mathrm{G})$ represent the least numerical value of minimal ATD set [7].

Definition 1.1

An AD-2D set D holds following properties,
(i). D is $\mathrm{D}-2 \mathrm{D}$ set
(ii). V/ D has no D-2D set of |D|

The AD-2D number $\gamma_{\mathrm{a} \leq 2}(\mathrm{G})$ formed by selecting, numerically smallest value from minimal AD-2D in G. The upper AD-2D number written by $\Gamma_{a \leq 2}(G)$ is the highest value of an AD-2D collection.

Example 1

Figure 1.
Here AD-2D collections are $\{4,12\},\{1,7,10,12\},\{1,7,10,11,14,17,20\},\{4,13,16,19\}$. Thus, $\gamma_{\mathrm{a} \leq 2}(\mathrm{G})=2, \Gamma_{\mathrm{a} \leq 2}(\mathrm{G})=7$.
2. Few named graphs with their values of $\mathrm{y}_{\mathrm{a} \leq 2}(\mathbf{G})$

2.1. Observation:

1. For P_{n},

$$
\gamma_{\mathrm{a} \leq 2}\left(\mathrm{P}_{\mathrm{n}}\right)=\left\{\begin{array}{c}
\mathrm{p}, \quad \text { for } \mathrm{n}=5 \mathrm{p}, \mathrm{p}=1,2,3 \ldots \\
\left\lfloor_{\overline{2}}^{\mathrm{n}}\right\rfloor+1, \text { for } \mathrm{n} \neq 5 \mathrm{p}, \mathrm{p}=1,2,3 \ldots
\end{array}\right\}
$$

2. In C_{n},

$$
\gamma_{\mathrm{a} \leq 2}\left(C_{n}\right)={\underset{2}{-1}}_{2}^{n}+1
$$

3. For W_{n},

$$
\gamma_{a \leq 2}\left(W_{n}\right)=\left\lceil_{2}^{n}+1\right.
$$

4. $\operatorname{In} \mathrm{F}_{\mathrm{n}}$,

$$
\gamma_{\mathrm{a} \leq 2}\left(\mathrm{Fn}_{\mathrm{n}}\right)=\mathrm{n}+1
$$

5. For K_{n},

$$
\gamma_{\mathrm{a} \leq 2}\left(\mathrm{~K}_{\mathrm{n}}\right)=\stackrel{\mathrm{n}}{\frac{1}{2}}+1
$$

6. $\operatorname{In} \mathrm{K}_{1, \mathrm{~m}}$,

$$
\gamma_{\mathrm{a} \leq 2}\left(\mathrm{~K}_{1, \mathrm{~m}}\right)=\left\lfloor\frac{1+\mathrm{m}}{2}\right\rfloor+1
$$

7. For $K_{n, m}$, for $m, n \geq 1$

$$
\gamma_{\mathrm{a} \leq 2}\left(\mathrm{~K}_{\mathrm{n}, \mathrm{~m}}\right)=\left\lfloor\frac{\mathrm{n}+\mathrm{m}}{2}\right\rfloor+1
$$

8. $\operatorname{In} \mathrm{B}_{\mathrm{n}}$,

$$
\gamma_{\mathrm{a}} \leq 2\left(\mathrm{Bn}_{\mathrm{n}}\right)=\mathrm{n}+2
$$

9. For H_{n},

$$
\gamma_{\mathrm{a} \leq 2}\left(\mathrm{H}_{\mathrm{n}}\right)=\mathrm{n}+1
$$

10. For Grid graph $P_{i} X P_{j}$, for $\mathrm{i}, \mathrm{j} \geq 2$

$$
\gamma_{\mathrm{a} \leq 2}\left(\mathrm{P}_{\mathrm{i}} \mathrm{XP} \mathrm{P}_{\mathrm{j}}\right)=\frac{\mathrm{l}_{\frac{\mathrm{iXj}}{2}} \mathrm{~J}}{\mathrm{~L}}+1
$$

11. For n-Barbell graph,

$$
\gamma_{\mathrm{a} \leq 2}(\mathrm{n}-\text { barbell })=\mathrm{n}+1
$$

12. For L_{n}, for $n \geq 1$

$$
\gamma_{\mathrm{a} \leq 2}\left(\mathrm{Ln}_{\mathrm{n}}\right)=\mathrm{n}+1
$$

13. For any Lollipop graph $I_{m, n}$, for $m \geq 1, n \geq 1$

$$
\gamma_{\mathrm{a} \leq 2}\left(\mathrm{I}_{\mathrm{m}, \mathrm{n}}\right)=\left\lfloor\frac{\mathrm{m}+\mathrm{n}}{2}\right\rfloor+1
$$

3. Relationship between $\mathrm{y}_{\mathrm{a} \leq 2}$ (\mathbf{G}) with other parameters

Proposition 3.1

A Grid graph $\mathrm{P}_{2}{ }_{\mathrm{X}} \mathrm{P}_{\mathrm{j}}$, then $\gamma_{\mathrm{a} \leq 2}\left(\mathrm{P}_{2} \mathrm{XP}_{\mathrm{j}}\right)=\beta_{0}(\mathrm{G})+1$.

Proposition 3.2

If $G=C_{n}$ or $K_{n}, \gamma_{a \leq 2}(G)=\gamma_{a}(G)$.

Proposition 3.3

In Friendship graph F_{n}, (i). $\gamma_{\mathrm{a}} \leq 2\left(\mathrm{~F}_{\mathrm{n}}\right)=\gamma_{\mathrm{a}}\left(\mathrm{F}_{\mathrm{n}}\right)+\mathrm{n}$, (ii) $\gamma_{\mathrm{a}} \leq 2\left(\mathrm{~F}_{\mathrm{n}}\right)=\alpha_{0}$.

Proposition 3.4

For Helm graph $H_{n,} \gamma_{a \leq 2}\left(H_{n}\right)=\gamma_{a}\left(H_{n}\right)+1$.

Proposition 3.5

For Book graph B_{n}, (i). $\gamma_{a \leq 2}\left(B_{n}\right)=\gamma_{a}\left(B_{n}\right)+n$, (ii) $\gamma_{a \leq 2}\left(B_{n}\right)=\alpha_{0}$.

Proposition 3.6

In Wheel graph $W_{n,} \gamma_{\mathrm{a} \leq 2}\left(\mathrm{~W}_{\mathrm{n}}\right)+\beta_{0}=\mathrm{n}$,

Proposition 3.7

An AD-2D number of H_{n} is same to $\mathrm{AD}-2 \mathrm{D}$ value of F_{n},

Proof

From observation2.1, we concluded $\gamma_{a \leq 2}\left(H_{n}\right)=\gamma_{a \leq 2}\left(F_{n}\right)$.

Proposition 3.8

For $\mathrm{W}_{\mathrm{n}},($ or $) \mathrm{H}_{\mathrm{n}}, \gamma_{\mathrm{a} \leq 2}\left(\mathrm{~W}_{\mathrm{n}}\right)=\alpha_{0}=\gamma_{\mathrm{a} \leq 2}\left(\mathrm{H}_{\mathrm{n}}\right)$

Proposition 3.9

In connected graph, for $n \geq 3$, then $\gamma_{a \leq 2}(G)+\gamma(G) \leq n$,

Proposition 3.10

If $\mathrm{G}=\mathrm{H}_{\mathrm{n}}$, then $\gamma_{\mathrm{a} \leq 2}(\mathrm{G})+\gamma_{\mathrm{a}}(\mathrm{G})=\mathrm{n}$.

Proposition 3.11

For fan graph $\mathrm{F}_{\mathrm{n}, \mathrm{m}}$, then $\gamma_{\mathrm{a} \leq 2}\left(\mathrm{~F}_{\mathrm{n}, \mathrm{m}}\right) \leq\left\lceil\frac{\mathrm{n}+\mathrm{m}}{2}\right\rceil+1$

Proof

Based on the construction of $\mathrm{F}_{\mathrm{n}, \mathrm{m}}$, maximum length between each node is one. So AD-2D set contains $\left\lceil\frac{\mathrm{n}+\mathrm{m}}{2}\right\rceil+1$ vertices. Hence, $\gamma_{\mathrm{a} \leq 2}\left(\mathrm{~F}_{\mathrm{n}, \mathrm{m}}\right) \leq\left\lceil\frac{\mathrm{n}+\mathrm{m}}{2}\right\rceil+1$.

Proposition 3.12

If $G=C_{n}$, (or) $K_{n}, \gamma_{a \leq 2}(G)=\gamma_{t}(G)=\gamma_{\mathrm{at}}(G)$

Proposition 3.13

For $H_{n,} \gamma_{\mathrm{a} \leq 2}\left(\mathrm{H}_{\mathrm{n}}\right)=\gamma_{\mathrm{at}}\left(\mathrm{H}_{\mathrm{n}}\right)+1$.
4. Upper and Lower bounds of $\gamma_{\mathrm{a} \leq 2}(\mathrm{G})$

Theorem 4.1
In G, $\gamma_{\leq 2}(\mathrm{G}) \leq \gamma_{\mathrm{a} \leq 2}(\mathrm{G})$

Proof

Every AD-2D set in G is $\mathrm{D}-2 \mathrm{D}$ set for same G .
We conclude, $\gamma \leq 2$ (G) $\leq \gamma_{\mathrm{a} \leq 2}$ (G).

Theorem 4.2

For G, $\gamma(\mathrm{G}) \leq \gamma_{\mathrm{a} \leq 2}(\mathrm{G})$

Proof

Each AD- 2D collection of graph satisfies domination condition.
Hence, $\gamma(\mathrm{G}) \leq \gamma_{\mathrm{a} \leq 2}(\mathrm{G})$.

Theorem 4.3

Except a path with points 5 n , for $\mathrm{n} \geq 1$, then $\gamma_{\mathrm{a}}(\mathrm{G}) \leq \gamma_{\mathrm{a} \leq 2}(\mathrm{G})$.

Proof

From the observation 2.1 (1), all AD- 2D selection of G is an AD set in G .
We have, $\gamma_{\mathrm{a}}(\mathrm{G}) \leq \gamma_{\mathrm{a} \leq 2}(\mathrm{G})$.

Theorem 4.4

If G contains an isolated point, then minimal $D-2 D$ collection of G is an $A D-2 D$ set.

Proof

Every isolated nodes are in D-2D collection D in G. Then V-/D has no D-2D set with |D|. Hence the desired result follows.

Corollary 4.5

If $\gamma_{\leq 2}(G)=\gamma_{a \leq 2}(G)$, where G has isolates.

Theorem 4.6

In G, an AD-2D set has $\left\lfloor\frac{n}{2}\right\rfloor+1$.

Proof

Suppose D contained in Vis a D- 2D set with $\left\lfloor\frac{n}{2}\right\rfloor+1$ vertices. So D contains more than half of points inV. Hence D treated as AD- 2D set.

Theorem 4.7

In non disconnected graph, $\gamma_{\mathrm{a} \leq 2}(\mathrm{G}) \leq \mathrm{n}-\gamma \leq 2(\mathrm{G})+1$, this bound is sharp.

Proof

Consider a minimum $D-2 D$ collection, then take $v \in D,(V / D) U\{v\}$ forms an $A D-2 D$ collection in graph.

Hence, $\gamma_{\mathrm{a} \leq 2}(\mathrm{G}) \leq|(\mathrm{V} / \mathrm{D}) \cup\{\mathrm{v}\}|=\mathrm{n}-\gamma_{\leq 2}(\mathrm{G})+1$.

Corollary 4.8

In G, $\gamma_{\mathrm{a} \leq 2}\left(\mathrm{P}_{4}\right)=\mathrm{n}-\gamma\left(\mathrm{P}_{4}\right)+1$ if $\mathrm{G}=\mathrm{P}_{4}$.

Theorem 4.9

If $\gamma_{a \leq 2}(G) \leq \gamma_{a \leq 2}(H)$ where H is spanning connected sub-graph.

Theorem 4.10

The maximum limit and minimum limit of $\gamma_{a \leq 2}(\mathrm{G})$,
$\frac{\mathrm{n}}{\Delta+1} \leq \gamma_{\mathrm{a} \leq 2}(\mathrm{G}) \leq \frac{\mathrm{n} \Delta}{\Delta+1}+1$,
Proof
By the reference [4], we have $\frac{\mathrm{n}}{\Delta+1} \leq \gamma(\mathrm{G})$ also from reference [6] $\gamma(\mathrm{G}) \leq \gamma_{\mathrm{a}}(\mathrm{G})$
By Theorem 4.3 we obtained, $\gamma_{\mathrm{a}}(\mathrm{G}) \leq \gamma_{\mathrm{a} \leq 2}(\mathrm{G})$. Using this $\frac{\mathrm{n}}{\Delta+1} \leq \gamma_{\mathrm{a} \leq 2}(\mathrm{G})$.
From Theorem 4.7, $\gamma_{\mathrm{a} \leq 2}(\mathrm{G}) \leq \mathrm{n}-\gamma_{\leq 2}(\mathrm{G})+1$

$$
\begin{aligned}
& \leq \mathrm{n}-\frac{\mathrm{n}}{\Delta+1}+1 \\
& \leq \frac{\mathrm{n} \Delta}{\Delta+1}+1
\end{aligned}
$$

Hence, $\frac{\mathrm{n}}{\Delta+1} \leq \gamma_{\mathrm{a} \leq 2}(\mathrm{G}) \leq \frac{\mathrm{n} \Delta}{\Delta+1}+1$.

Theorem 4.11

If G, not a complete bipartite graph, then $\gamma_{\mathrm{a} \leq 2}(\mathrm{G}) \leq \alpha_{0}+1$. Furthermore, equality obtained if $G=H_{n}$ or P_{4}.

Theorem 4.12

For T_{n} with m cut nodes, $\gamma_{a \leq 2}\left(T_{n}\right) \leq m+1$.

Proof

Choose D, collection of all cut points with $|D|=m$. Then any pendent point $v \in T_{n}, D U\{v\}$ makes an AD-2D set in T_{n}. Here, each dominating collections form D-2D, hence that collection defines an AD-2D. $\therefore \gamma_{\mathrm{a} \leq 2}(G) \leq m+1$.

Corollary 4.13

In tree, $\gamma_{\mathrm{a} \leq 2}\left(\mathrm{~T}_{\mathrm{n}}\right) \leq \mathrm{n}-\mathrm{k}+1$, where pendent node $|\mathrm{k}|$

Theorem 4.14

For G, not $K_{n, m}$, then $\gamma_{a \leq 2}(G) \leq n-\beta_{0}+1$. Furthermore, same values obtains when $G=H_{n}$.

Corollary 4.15

In $K_{n, m}, \gamma_{\mathrm{a} \leq 2}(G) \leq \beta_{0}(G)$.

Theorem 4.16

If $2 \leq \gamma_{a \leq 2}(G) \leq n+2$, when G without isolates.

Proof

From observation 2.1, we reach the bounds.

Nordhas - Gaddum Type results

Theorem 4.17

If G and ${ }^{-}$Ghas no isolated nodes,
(i). $4 \leq \gamma_{\mathrm{a} \leq 2}(\mathrm{G})+\gamma_{\mathrm{a} \leq 2} \overline{(} \mathrm{F}_{\mathrm{r}} \leq 2(\mathrm{n}+2)$
(ii). $4 \leq \gamma_{a \leq 2}$ (G). $\gamma_{a \leq 2} \overline{(} F_{H} \leq(n+2)^{2}$

Theorem 4.18

If $\gamma_{\mathrm{a} \leq 2}(\mathrm{G})+\chi(\mathrm{G}) \leq 2 \mathrm{n}+2$, where $\chi(\mathrm{G})$, chromatic cardinality in G .

Proof

We know $\chi(\mathrm{G}) \leq \mathrm{n}$, and by Theorem 4.12. $\gamma_{\mathrm{a} \leq 2}(\mathrm{G}) \leq \mathrm{n}+2$.

$$
\therefore \gamma_{\mathrm{a} \leq 2}(\mathrm{G})+\chi(\mathrm{G}) \leq 2 \mathrm{n}+2 .
$$

Theorem 4.19

In cubic connected graph,$\gamma_{a \leq 2}(G)=1 \frac{1}{2}+1$.

Theorem 4.20

If $\gamma_{\mathrm{a} \leq 2}(\mathrm{G}) \leq \gamma_{\mathrm{t}}(\mathrm{G})+1$, where G contains pendent points. Furthermore, if $G=H_{n}$.we arrive equality.

Proof

Consider v , end point and D total dominating collection of graph. Then we found u which is at most length two to v .

Case 1. Suppose $v \in D$. Then $u \in D$, Hence D becomes an AD-2D collection.
We have, $\gamma_{\mathrm{a} \leq 2}(\mathrm{G})=|\mathrm{D}| \leq \gamma_{\mathrm{t}}(\mathrm{G})$.
Case 2. Suppose $v \notin D$. And $u \in D$. Then $D \cup\{v\}$ changed as AD-2D set. Thus $\gamma_{\mathrm{a} \leq 2}(G) \leq$ $|\mathrm{D} \cup\{\mathrm{v}\}| \leq \gamma_{\mathrm{t}}(\mathrm{G})+1$.

In Helm graph $H_{n}, \gamma_{\mathrm{a}} \leq 2\left(\mathrm{H}_{\mathrm{n}}\right)=\gamma_{\mathrm{t}}\left(\mathrm{H}_{\mathrm{n}}\right)+1$.
5. AD-2D number for few special graph families

Theorem 5.1

For path, $\gamma_{a \leq 2}\left(C\left(P_{n}\right)\right)=\Gamma_{2}^{n}$.

Proof

Method of constructing central graph follows these steps:
(i).join all non ad joint points
(ii).add new points in each edge of original graph

Apply the above steps in P_{n}, we received $2 n-1$ vertices. Choose $\left\lceil\frac{\mathrm{n}}{2}\right]$ nodes its forms $A D-2 D$ set. Hence, $\gamma_{a \leq 2}\left(C\left(P_{n}\right)\right)=\left\lceil\frac{n}{2}\right\rceil$

Figure 2: The graph $C_{5}, C\left(C_{5}\right)$ and $y_{a \leq 2}\left(C\left(P_{5}\right)\right)=5$.

Theorem 5.2

In $C_{n}, \gamma_{a \leq 2}\left(C\left(C_{n}\right)\right)=n+1$.

Proof

Assume that $V\left(C_{n}\right)=\left\{v_{1}, v_{2}, v_{3}, \ldots v_{n}\right\}, \quad E\left(C_{n}\right)=\left\{e_{1}, e_{2}, e_{3}, \ldots e_{n}\right\} \quad$ with $e_{n}=v_{n} V_{1}$ and $e_{i}=v_{i} V_{i+1},(1 \leq i \leq n-1)$.

In $C\left(C_{n}\right)$ contains the nodes $\left\{v_{i}\right\} \cup\left\{u_{i}\right\}$ where u_{i} is points produced by sub-dividing all lines.
Select all $\left\{v_{i}\right\}$ together one of $\left\{u_{i}\right\}$ its becomes AD-2D set.

$$
\therefore \gamma_{\mathrm{a} \leq 2}\left(\mathrm{C}\left(\mathrm{C}_{\mathrm{n}}\right)\right)=\mathrm{n}+1 .
$$

Figure 3: The graph $C_{5}, C\left(C_{5}\right)$ and $y_{a \leq 2}\left(C\left(C_{5}\right)\right)=6$.

Theorem 5.3.

For any star $K_{1, n}, \gamma_{\mathrm{a}} \leq 2\left[C\left(K_{1, n}\right)\right]=n+1$.

Proof

Consider $V\left(K_{1, n}\right)=\left\{v_{, ~} v_{1}, v_{2}, v_{3}, \ldots v_{n}\right\}$ where $\operatorname{deg} v^{\prime}=n$. Centralization of star, we mark the nodes of sub-division by $u_{1}, u_{2}, u_{3}, \ldots, u_{n}$. Naming the lines, $e_{i}=v_{i} u_{i}$ and $e_{i}^{\prime}=v u_{i}$. In $\mathrm{C}\left(\mathrm{K}_{1, \mathrm{n}}\right)$, the sub-graph made by the nodes $\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}, \ldots \mathrm{v}_{\mathrm{n}}\right\}$ is K_{n}.

Consider the nodes in K_{n} with $\{v\}$, totally $\mathrm{n}+1$ points makes an AD-2D collection. Finally, we have $\gamma_{\mathrm{a} \leq 2}\left[\mathrm{C}\left(\mathrm{K}_{1, \mathrm{n}}\right)\right]=\mathrm{n}+1$.

Figure 4: The graph $K_{1,5}, C\left(K_{1,5}\right)$ and $y_{a \leq 2}\left(C\left(K_{1,5}\right)\right)=6$.

Theorem 5.4

For $P_{n}, \gamma_{a \leq 2}\left(M\left(P_{n}\right)\right)=\left\lceil\frac{n}{2}\right.$.

Proof

Based on Middle graph construction apply the steps:
(i). In original graph include new nodes to every lines
(ii). Form a complete graph using new points

In $M\left(P_{n}\right)$, we found $2 n-1$ points. Now, take $\left\lceil\frac{n}{2}\right\rceil$ vertices, this forms AD-2D collection. Hence, $\gamma_{a \leq 2}\left(M\left(P_{n}\right)\right)=\left\lceil\frac{n}{2}\right\rceil$

Figure 5: The graph P_{5} and $M\left(P_{5}\right)$ and,$y_{a \leq 2}\left(M\left(P_{5}\right)\right)=3$

Theorem 5.5

For $C_{n}, \gamma_{\mathrm{a} \leq 2}\left(M\left(C_{n}\right)\right)=n+1$.

Proof

Consider, $\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{~V}_{3}, \ldots \mathrm{v}_{\mathrm{n}}\right\}$ and $\left\{\mathrm{e}_{1}, \mathrm{e}_{2}, \mathrm{e}_{3}, \ldots \mathrm{e}_{\mathrm{n}}\right\}$ are points, lines in C_{n}. In $\mathrm{M}\left(\mathrm{C}_{\mathrm{n}}\right), \mathrm{V}\left(\mathrm{C}_{\mathrm{n}}\right) \mathrm{U}$ $E\left(C_{n}\right)$ be node set. Each e_{i} adjoint with e_{i+1} for $i=1,2,3 \ldots, n-1$, e_{n} is adjoint with v_{1}.

In $M\left(C_{n}\right)$, we select $\left\{v_{i}\right\}$ and one node in $\left\{u_{i}\right\}$, here u_{i} is vertices produced by lines subdivision. This collection forms AD-2D set.

$$
\therefore \gamma_{\mathrm{a} \leq 2}\left(\mathrm{M}\left(\mathrm{C}_{\mathrm{n}}\right)\right)=\mathrm{n}+1 .
$$

Figure 6: The graph of $C_{n}, M\left(C_{n}\right)$ and $y_{a \leq 2}\left(M\left(C_{5}\right)\right)=6$.

Theorem 5.6

For any star graph $\mathrm{K}_{1, \mathrm{n}}, \gamma_{\mathrm{a} \leq 2}\left[\mathrm{M}\left(\mathrm{K}_{1, \mathrm{n}}\right)\right]=\mathrm{n}+1$.

Proof

Let $V\left(K_{1, n}\right)=\left\{v_{v} v_{1}, v_{2}, v_{3}, \ldots v_{n}\right\}$ and $E\left(K_{1, n}\right)=\left\{e_{1}, e_{2}, e_{3}, \ldots e_{n}\right\}$. In $V\left[M\left(K_{1, n}\right)\right]=$ $\{v\} \cup\left\{e_{i}\right\} \cup\left\{v_{i}\right\}$ in which the vertices $e_{1}, e_{2}, e_{3}, \ldots e_{n}, v$ induces a clique of order $n+1$.

In $M\left(K_{1, n}\right)$, Consider , $\left\{\{v\} \cup\left\{v_{i}\right\}\right\}$ produces a AD-2D collection.
Hence we received, $\gamma_{\mathrm{a} \leq 2}\left[\mathrm{M}\left(\mathrm{K}_{1, \mathrm{n}}\right)\right]=\mathrm{n}+1$.

Figure 7: The graph of $K_{1,4}, M\left(K_{1,4}\right)$ and $y_{a \leq 2}\left[M\left(K_{1,4}\right)\right]=5$.

Theorem 5.7

For any closed helm graph $\mathrm{CH}_{\mathrm{n}}, \gamma_{\mathrm{a} \leq 2}\left[\mathrm{CH}_{\mathrm{n}}\right]=1$.

Proof

Let the set D has the apex vertex of the closed helm graph. The remaining vertices in <V-D> are all within the distance two from the apex vertex in D . Then D frms a distance - 2 dominating set of the closed helm graph. Thus $\gamma_{\leq 2}\left[\mathrm{CH}_{n}\right]=1$.

But in <V-D> we cannot able to find a distance -2 dominating set with the cardinality 1 . Hence $\gamma_{\mathrm{a} \leq 2}\left[\mathrm{CH}_{\mathrm{n}}\right]=1$.

Figure 8: Closed helm with $\mathrm{y}_{\mathrm{a} \leq 2}\left(\mathrm{CH}_{6}\right)=1$.

REFERENCES

1. Cockayne, E.J., Hedetniemi, S.T., Towards a Theory of Domination in Graphs, Networks, 7:247-261.
2. Fraisse, P., A note on distance dominating cycles. Discrete Math. 71 (1988), 89-92.
3. Haynes, T.W., Hedetniemi, .S.T., and Slater, P.J., 1998. Domination in Graphs: Advanced Topics, Marcel Dekker Inc. New York, U.S.A.
4. Haynes, T.W., Hedetniemi S.T., and Slater P.J., (1998). Fundamentals of domination in graphs, Marcel Dekker Inc. New York, U.S.A.
5. Kulli, V.R., (2012). Advances in domination theory I, Vishwa International Publications, Gulbarga, India.
6. V.R. Kulli, and M.B. Kattimani, Accurate Domination in Graphs, Advances in domination theory I, Vishwa International Publications, Gulbarga, India (2000), 1-8.
7. V.R. Kulli, and M.B. Kattimani, Accurate Total Domination in Graphs, Advances in domination theory I, Vishwa International Publications, Gulbarga, India (2012), 9-14.
8. Lakshmi, A., and Ameenal Bibi, K., (2015). The Inverse Accurate domination in Graphs - Secreat Heart Journal of Science and Humanities, special vol. 6 (2)-2015. pp. 144155.
9. Nordhaus, E.A., and Gaddam, J.W., (1956). On complementary graphs. Amer. Math. Monthly, Vol.63.pp.175-177.
10. Ore, O., 1962. Theory of Graphs. American Mathematical Society colloq. Publ., Providence, R1, 38.
