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Abstract 

The expansion of weibull exponentiated, exponential exponentiated, 

lognormal exponentiated, gumble exponentiated and exponentiated 

exponential were discussed. Weibull exponentiated embellishes to match 

unimodel, monotone and hazardous functions unlike the weibull model. 

Both the shape and the scale parameter of exponential exponentiated are 

similar to the gamma and weibull distribution. Specific lognormal (three 

parameters) and exponentiated gumble (two parameters) are unimodel 

distributions and can show better equilibrium. The exponential 

exponentiated distribution provides a highly flexible model for lifetime 

data. The parameter estimation were performed with the same probability 

and equal efficiency. The applications were defined by three data sets. 

Keywords- Exponentiated weibull, Exponentiated exponential, 

Exponentiated lognormal, Exponentiated gumble, Extended exponentiated 

exponential, Maximum likelihood estimators, Goodness of fit. 

INTRODUCTION 

Evaluation of lifetime data sets are usually done by gamma and weibull. The gamma 

distribution is not so much perceived as weibull distribution as in the case of gamma 

distribution the survival function cannot be detected in a closed way unless the shape 

parameter is a whole number. Data derived from the engineering and technical trainings often 

find a place in survival data. Mudhokar and Srivastava (1993) and Mudhokar et al (1995) 

confirmed in their study various sets of data time failures for the proposed weibull 

distribution. A Marshall and I. Olkin (1997) introduced a new way to add a parameter to a 

distribution family by utilizing descriptive and weibull families. The enhanced weibull 

distribution has a unique feature of the standard weibull class described by Gupta et al 

(1998). Gupta and Kundu (2001) presented a life-time data and noted that the distribution 

may be substituted. Nadarajah (2005) presented gumble distribution of survival work in 

clarifying rain data from Orland, Florida. Real-life data sets were also studied by Kakade and 

Shirke (2006) and found that enhanced lognormal distribution is well matched compared to 

weibull and descriptive distribution. Raja and Mir (2011) discussed the expansion of other 

distributions by distinct applications. Bagheri et al (2014) has been very active in the 

effective pdf estimation and cdf of gumble distribution s. Abu-Youssef et al (2015) 

introduced a descriptive extension that provides a comparatively flexible model for lifetime 

data sets in most cases. Suresh and Usha (2016) performed a reduced health trial on a 

descriptive dose. Raja and Maqbool (2019) also extended application of Poisson and Poisson 
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type distributions. Malik Mansoor and Kumar Devendra (2020) studied exponential weibull 

model. However the exponentiated gumble distribution is a well fit and can be used in place 

of weibull. Here exponentiated exponential distribution gives comparatively better fit than 

three parameter weibull and exponentiated gumble.  

Three data sets were utilized by exploiting these distributions together and comparisons were 

explained. 

1. Exponentiated Weibull Distribution    

Probability density function 

Probability density function (p.d.f) of exponentiated weibull(EW) distribution   as considered 

by Mudhokar et al(1995) with parameter  and,,   is given as 

........0,expexp(1),,;(
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Where α >0, θ>0 are shape parameters and σ >0 is a scale parameter. 

Specifies the weibull distribution when θ = 1 and the descriptive distribution when α = 1 and 

θ = 1. 

Survival work associated with random T variance and weibull exponentiated is provided as 
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Maximum Likelihood Estimators 

Maximum likelihood estimators for a three parameter EW are given  as. 

 Let nxxxx .......,, 321  be a random sample from EW  and the log likelihood can be worked out 

as 

L(  ,, )=n. log (αθ/σ)+ 
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Where   g(Ti)=g(Ti;α,θ)=1-exp(-T/σ)α  

       Differentiate (1.1) with respect to three parameters. 
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From (1.4), (1.5) and (1.6) we obtain the ML Estimates. 

2. Exponentiated Exponential 

Probability density function 

The Probability density function of exponentiated exponential is defined by   

Gupta and Kunda (2001) with parameters α and λ as 

( ) ( ) xx eexf  −−−−= .1,,
1

………………………….(2.1) 

Where 0,, x  

Here α is the shape parameter and λ is the scale parameter. For α=1 it signify   

the exponential family. 

The survival function corresponding with exponentiated-exponential density is given as 

( ) ( ) xexS −−−= 11,, ………………………………..(2.2) 

The exponentiated exponential represents a parallel system. 

Maximum Likelihood Estimators:- 

Let nxxxx .......,, 321  be a random sample from EE the log likelihood can be as 

L(α, λ)=n In α + n In λ+( α-1) ......)1(
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From (2.4), we obtain the MLE of α as a function of λ, say α ),( ^ as 

α ),( ^ =-
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For a known scale parameter, MLE of the standard parameter ^ , can be obtained directly 

from (2.6) .If both parameters are unknown, first the scale parameter measurement can be 

obtained by directly increasing L(α ),( ^  λ) in relation to λ. Once ^ is detected ^  can be 

obtained from (2.6) as α^ ),( ^ . 

3. Exponentiated Lognormal Distribution 

Probability density function 

Probability density function (P.d.f) of exponential Lognormal distribution  is   

defined by  three parameters ),,(   as  

f(x; ),,(  )= ( ) ( ) ,.,);(.),);(( 11 −−
xxInxIn 


………(3.1)            

      x, α >0,  - −    

where ),);((  xIn  and );(( xIn  are the c.d.f and p.d.f of the normal distribution with 

mean and standard deviation as µ and σ. 

The survival function corresponding with exponentiated lognormal distribution density is 

given as 

S(x, µ σ. α) =1- ( ),);((  xIn )α     where x>0 

Maximum Likelihood Estimators 

Let nxxxx .......,, 321  be a random sample from EL distribution the log likelihood function can 

be as 

L  
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To find the values of the parameters  ,,  that maximize L(  ,, /x) we can solve the 

equations  which are as follows:- 

………. (3.3) 
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From (3.3), (3.4) and (3.5) MLE of α, µand σ is obtained. 

4. Exponential Gumble Distribution 

 Probability density function 

The Probability density function (Pd.f) of exponential gumble distribution was led by 

Nadarajah(2005) with parameters α and σ as 
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Where α and σ>0 and -  x  

Where α is a shape parameter and σ is scale parameter. 

Here when α=1 it reduces to standard gumble distribution.  

The survival function corresponding with exponentiated-gumble density is given as 

S(x, , )=1- ( )
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The survival function of the exponentiated gumble distribution is the α th power of the 

survival function of the gumble distribution. 

Maximum Likelihood Estimators 

Let nxxxx .......,, 321  be a random sample from EG distribution the log likelihood function can 

be as 

L (α, σ)=n lnα- nlnσ- ...........
1

1


−

=

− 


xin

i

i ex ……………..(4.3) 

Therefore to obtain the MLE’s of α and σ we can directly maximize (4.3) with respect to α 

and  σ or we can solve the non-linear normal equations  which are as follows:- 
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From (4.4) and (4.5) MLE of α, and σ is obtained. 

5. Extended Exponentiated Exponential Distribution:- 

Assume that X is a random variable with a given survival function F¯ (x), the Marshall-Olkin 

extension of the real family is defined as a distribution family with survival function as: 

 G¯(x) = λF¯(x) /(1 − λ¯F¯(x)) ,                   −∞ < x < ∞,  λ > 0,  λ¯ = 1−λ.    (5.1) 

 Abu-Youssef et al (2015) 

 Presented a new alternative of the Marshall-Olkin extended family of distributions by 

selecting in (5.1) the exponentiated exponential distribution with survival function 1 which 

shows 

G¯(x) = λ − λ(1 − e −βx) α λ + λ¯(1 − e −βx) α ,  x > 0,  α > 0, λ > 0,  β > 0…(5.2) 

Maximum Likelihood Estimators:- 

Suppose x1, x2, ..., xn is a random sample size n from Marshall Olkin extended descriptive 

distribution and the function of likelihood  will be 

Ln (α, β, λ) =  ∏  𝑔𝑛
𝑖=1 (xi , α, β, λ) = ∏

αβλ(1 − e −βxi ).α−1.e −βxi  

(λ¯(1 − e −βxi )α + λ) 2
 ………..(5.3) 

and the log- likelihood function is 

Ln = ∑ (α −  1)(log(1 −  e − βxi )𝑛
𝑖=1 ) − βxi − 2 log((λ¯(1 − e −βxi ) α + λ)) 

+ n log (αβλ)……………………………………………………..(5.4) 

The Maximum Likelihood Estimation (MLE) of α, β and λ are attained as the result of       

∂L/ ∂α = 0,  

  ∂Ln (α, β, λ)/ ∂α = ∂/∂α ∏  𝑔𝑛
𝑖=1 (xi , α, β, λ) = ∏

αβλ(1 − e −βxi ).α−1.e −βxi  

(λ¯(1 − e −βxi )α + λ) 2
...(5.5) 

                    ∂L/ ∂β = 0,  

∂Ln (α, β, λ)/ ∂ β = ∂/∂ β ∏  𝑔𝑛
𝑖=1 (xi , α, β, λ) = ∏

αβλ(1 − e −βxi ).α−1.e −βxi  

(λ¯(1 − e −βxi )α + λ) 2
...(5.6) 

and 

                    ∂L/ ∂λ = 0. 

  ∂Ln (α, β, λ)/ ∂ λ = ∂/∂ λ ∏  𝑔𝑛
𝑖=1 (xi , α, β, λ) = ∏

αβλ(1 − e −βxi ).α−1.e −βxi  

(λ¯(1 − e −βxi )α + λ) 2
...(5.7) 

From (5.1),(5.6) and (5.7) we can have MLE. 
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Goodness of Fit 

Nine models namely gamma, weibull, lognormal, gumble, exponentiated weibull, 

exponentiated exponential, exponentiated lognormal, exponentiated  gumble and extended 

exponentiated exponential have been fitted to three real  data sets. The distributions along 

with Probability density function are given as under:- 

Distribution  P.d. f 

Gamma  f(x, α, λ)  = ;. .1 xex 




 −−
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Extended Exponentiated exponential       f(x) = αβλ(1 − e −βx) α−1 e −βx (λ¯(1 − e −βx) α + 

λ) 2 , x > 0. 

Data Set1:-The data pertaining to failure times of the conditioning system of an aero plane. 

  23,261,87,7,120,14,62,47,225,71,246,21,42,20,5, 

12,120,11,3,  14, 71,11,14,11,16, 90,  1,16,52,95. 
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Table1:-  Distribution  with MLE’S, Log-likelihood and Anderson’s value.  

Distribution               MLE’S Log likelihood Anderson’s Value 

Gamma α^
=0.8119,  λˆ=0.0136 -152.167 0.078 

Weibull α^
=0.8536,  λˆ=0.0183 -151.9.70 0.069 

Lognormal μˆ=3.358, λˆ=1.3190 -151.621 0.065 

Gumble α^
=27.792,  λˆ=55.106 -151.256 0.062 

Exponentiated weibull        α^
= 3.824,θˆ= 

0.1732    σˆ=82.235 

-149.567 0.057 

Exponentiated exponential   α^
=0.8093,  λˆ=0.0145 -152.206 0.079 

Exponentiated lognormal     α^
= 0.1543 μˆ=  

3.1353   σˆ=0.3648 

-148.659 0.055 

Exponentiated gumble α^
=1.9881,  λˆ=49.0638 -148.537 0.054 

Extended exponentiated 

exponential        

α^
=0.8119, β= 1.46 

λˆ=0.0136 

1381.572 0.051 

Data Set 2:-The data pertains to runs scored by a cricketer in 27 innings at national level:- 

  28,20,6,4,23,127,25,45,41,67,68,3,17,2, 

105,98,55,68,15,3,42,45,7,20, 34,9 ,6, 

Table2:-  Distribution  with MLE’S, Log-likelihood and Anderson’s value.  

Distribution               MLE’S Log likelihood Anderson’s Value 

Gamma α^
=0.7235   ,  λˆ=0.0127 -125.654 0.956 

Weibull α^
=1.040,  λˆ=36.985 -124.021 0.716 

Lognormal μˆ=3.053, λˆ=1.174 -125.022 0.916 

Gumble α^
= 21.432    ,  λˆ=25.944 -124.059 0.702 

Exponentiated weibull        α^
= 3.521,θˆ= 

0.1452    σˆ=67.235 

-125.078 0.928 

Exponentiated exponential   α^
= 0.8126,   λˆ=0.0153 -125.945 0.959 

Exponentiated lognormal     α^
= 0.578, μˆ=3.836     

σˆ=0.7834 

-125.965 0.961 

Exponentiated gumble α^
= 1.873 ,     λˆ=45.264 -124.843 0.843 

Extended exponentiated 

exponential        

α^
=0.8119, β= 1.46 

λˆ=0.0136 

-121.784 0.827 

 

Data Set 3:- Nichols and Padgett data set consisting of 100 observations on breaking stress of 

carbon fibers (in gba):- 

3.7  2.74  2.73  2.5   3.6    3.11    3.27  2.87  1.47  3.11 

4.42 2.41 3.19  3.22 1.69  3.28    3.09   1.87  3.15  4.9 

3.75 2.43 2.95  2.97 3.39  2.96    2.53   2.67  2.93  3.22 
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3.15 2.35 2.55  2.59 2.38  2.81    4.2     3.33  2.55 3.39 

3.31 3.31 2.85 2.56  3.56  2.81    2.77   2.17  2.83 1.92 

1.41 3.68 2.97 1.36  0.98  2.76    4.91   3.68  1.84 1.59 

2.17 1.17 5.08 2.48  1.18   3.19   1.57   0.81  5.56 1.73 

1.59  2.0   1.22  1.12 1.71   1.84  3.65  2.05  0.39 3.68 

2.48  0.85 1.61  2.79  4.7    3.51  2.17   1.69 1.25 4.38 

2.03  1.8   1.57  1.08  2.03  1.61  2.12   1.89 2.88 2.82 

Table3:-  Distribution  with MLE’S, Log-likelihood and Anderson’s value.  

Distribution               MLE’S Log likelihood Anderson’s Value 

Gamma α^
=0.6754   ,  λˆ=0.1324 -134.976 0.743 

Weibull α^
=0.9678,  λˆ=5.678 -115.763 0.843 

Lognormal μˆ=2.609, λˆ=2.419 -117.046 0.744 

Gumble α^
= 17.435   ,  λˆ=19.865 -116.052 0.789 

Exponentiated weibull        α^
= 4.564,θˆ= 

0.1432    σˆ=67.235 

-117.078 0.710 

Exponentiated exponential   α^
= 0.984,   λˆ=0.0453 -117.956 0.783 

Exponentiated lognormal     α^
= 0.436, μˆ=2.342    

σˆ=0.6753 

-117.893 0.776 

Exponentiated gumble α^
= 1.345,     λˆ=34.876 -115.67 0.734 

Extended exponentiated 

exponential        

α^
=0.763, β= 1.45 λˆ=0.0125 -114.31 0.713 

The following table gives a comparison between the MLE’s Loglikelihood, and Anderson’s 

Value and can be interpreted as :- 

Conclusion 

The probability density function of exponentiated weibull, exponentiated exponential, 

exponentiated lognormal, exponentiated gumble and extended exponentiated exponential 

distributions and its applications for three data sets were discussed. It appears that the weibull 

defined by the two parameters is more suitable to fit the unimodel, monotone and risk 

functions. The exponential has a framework and scale similar to the gamma and weibull 

distribution and can be considered as an alternative and equally superior to the weibull and 

gamma in most cases. Three parameter extended exponentiated exponential distribution 

offers more flexible model for real time data sets. The initial set of data relates to the failure 

times of the flight status suspension system. The exponential exponentiated and gamma 

provides the best balance followed by Weibull. Thus the gamma weibull and the extended 

exponentiated exponential can be exchanged with each other in a particular case. In second 

data set regarding runs scored by a cricketer extended exponentiated exponential, 

exponentiated lognormal and exponentiated exponential gives better fit followed by gamma. 

Hence exponentiated lognormal, extended exponentiated exponential and gamma can be 
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replaced as an alternative with each other. In third data set extended exponentiated 

exponential followed by exponentiated weibull gives better fit. One can fit other distributions 

and can look for flexibility and advancement. 
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