Predicting the Behavior of Gold Price Using Markov Chains and Markov Chains of the Fuzzy States

[1] Saed Mallak, [2] Deema Abdoh
[1] Department of Applied Mathematics, Palestine Technical University-Kadoorie, P308 Tulkarm, [2] Department of Applied Mathematics, Palestine Technical University-Kadoorie, P308 Tulkarm
[1] s.mallak@ ptuk.edu.ps, [2] deema.abdo@hotmail.com

Article Info
Page Number: 2906-2920
Publication Issue:
Vol. 71 No. 4 (2022)
Article History
Article Received: 25 March 2022
Revised: 30 April 2022
Accepted: 15 June 2022
Publication: 19 August 2022

Abstract

In this work we consider gold prices as a case study. Closing retraction \mathbf{R}_{t} is studied as a fuzzy concept and several types of fuzzy numbers are applied to $\mathbf{R}_{\mathbf{t}}$: triangular, trapezoidal, parabolic and K-Trapezoidal-Triangular fuzzy numbers. We construct a Markov chain (MC) and a Markov chain with fuzzy states (MCFS) and compare between them. The two models MC and MCFS are used to predict the behavior of gold price. At the end, we estimate the expected return price in specific months. We reach that MCFS has more accuracy than the MC

Keywords- Markov Chain (MC), Markov Chain with Fuzzy States (MCFS), Fuzzy Numbers, Return Rate.

I. INTRODUCTION

Results based on probability theory do not always provide helpful information due to the restriction of being able to handle only quantitative information. Moreover, in real world applications, sometimes there is a lack of data to deal with the statistics of parameters precisely. To conquer these complications, methodologies based on fuzzy set theory have been used in the risk analysis for spreading the basic event uncertainty [1-2].

The idea of fuzzy logic was first advanced by Zadeh (1965) where he defined fuzzy sets in order to describe unclear situations mathematically [30]. Fuzzy matrices were introduced for the first time by Thomason (1977), who discussed the convergence of powers of fuzzy matrix [25]. Kruce et al. (1987) introduced the fuzzy Markov chain as a classical Markov chain based on fuzzy probabilities where he used a fuzzy set to denote the transition matrix with the uncertain data in the Markov chains [12]. A fuzzy Markov chain was demonstrated as the concept of fuzzy relation and its compositions [22]. It can be used while the decision maker prefers subjective probabilities to model the uncertainties [27]. Yoshida (1994) constructed a Markov fuzzy process, with a transition possibility measure [29]. Slowinski (1998) showed that we can use a fuzzy set representation in order to deal with uncertain data and flexible requirements [23].

Fuzzy Markov chains approaches were introduced by Avrachenkov and Sanchez (2000). They
analyzed fuzzy Markov chains and its properties in detail [28]. Kuranoa et al. (2006) used fuzzy states to show fuzzy transition probabilities [13]. Pardo and Fuente (2010) used Markovian decision processes with fuzzy states to calculate the best policy to be implemented regarding publicity decisions in a queueing system [21]. Zhou et al. (2013) used fuzzy probability-based Markov chain model to estimate regional long-term electric power demand [31]. Ky and Fuente (2016) used combination of Markov model and fuzzy time series model for forecasting stock market data [14]. Kiral and Uzun (2017) used Markov chain of the fuzzy states to estimate stock market index [10].

In this paper, we consider gold prices as case study. Closing retraction R_{t} is studied as a fuzzy concept and several types of fuzzy numbers are applied to R_{t} : triangular, trapezoidal, parabolic and K-Trapezoidal-Triangular fuzzy numbers. We construct a Markov chain (MC) and a Markov chain with fuzzy states (MCFS) and compare between them. The two models MC and MCFS are used to predict the behavior of gold price. At the end, we estimate the expected return price in specific months.

II. Fuzzy Sets and Fuzzy Numbers

A fuzzy set may be viewed as an extension and generalization of the basic concepts of crisp sets. An important property of a fuzzy set is that it allows partial membership, i.e. between 0 and 1 . Zadeh [30] extended the notion of valuation set $\{0,1\}$ (definitely in / definitely out) to the interval of real values (degree of membership) between 1 and $0,0.0$ represents absolutely false and 1.0 represents absolutely truth [7].

The fuzzy set \widetilde{A} in the universe of discourse Ω is defined as a set of ordered pairs $\left(x, \mu_{\tilde{A}(x)}\right)$, i.e. $\tilde{A}=\left\{\left(x, \mu_{\tilde{A}(x)}\right) \mid \mathrm{x} \in \Omega\right\}$ where $\mu_{\tilde{A}(x)}$ is the degree of membership of x in fuzzy \tilde{A} and it indicates the degree that x belongs to \tilde{A} [4].

Let \tilde{A} be a fuzzy subset of Ω. An α - level of \tilde{A}, written $[\tilde{A}]_{\alpha}$, is defined as $\{x \in \Omega: \tilde{A}(x) \geq \alpha\}$ for $0<\alpha \leq 1$. $[\tilde{A}]_{0}$, the support of \tilde{A} is defined as the closure of the union of all the $[\tilde{A}]_{\alpha}$, for $0<\alpha \leq 1$. The core of \tilde{A} is the set of all elements in Ω with membership degree in \tilde{A} equal to 1 .

A fuzzy number N is a fuzzy subset of the real numbers satisfying:
(1) $\exists x: N(x)=1$ (2) $[N]_{\alpha}$ is a closed and bounded interval for $0 \leq \alpha \leq 1$.

The family of all fuzzy numbers are denoted by R_{F}.
Triangle Fuzzy Numbers, Trapezoidal Fuzzy Numbers, Parabolic Fuzzy Numbers and K-Trapezoidal-Triangular Fuzzy Numbers are special types of fuzzy numbers ([1], [3], [15-20]).

III. Return Price R $_{\mathrm{t}}$ AS Fuzzy Concept

Return prices for Gold closing prices are transformed into 21 states, from the high loss S_{-10} to the positive high return S_{10} such that each state has the same length k ; that is, all of them have the same chance of occurrence.

Suppose that the return price for a month of a certain year $\mathrm{R}_{\mathrm{t}}=0.765$. Therefore, the position of that R_{t} is tried to be obtained from 21 states by using the relation:
$\mathrm{i}=\frac{\mathrm{R}_{\mathrm{t}}}{\mathrm{k}} \quad$ (1), where i is the position.
If we consider $k=0.225$, then: $\mathrm{i}=\frac{0.765}{0.225}=3.4$.
According to the previous result, the position of R_{t} is difficult to be determined certainly and clearly. However, we can conclude that R_{t} is lying between the third and the forth state, which moves away from the third state to be closer to the forth state by 0.4. (i.e. it gets closer to the third state by 0.6).

So, the membership degree of R_{t} in $\tilde{\mathrm{S}}_{3}=4-3.4=0.6$ and the membership degree of R_{t} in $\tilde{S}_{4}=1-0.6=0.4$.

In general, $\mathrm{i}=\left\lfloor\frac{\mathrm{R}_{\mathrm{t}}}{\mathrm{k}}\right\rfloor$
$\tilde{\mathrm{S}}_{\mathrm{i}}=(\mathrm{i}+1)-\frac{\mathrm{R}_{\mathrm{t}}}{\mathrm{k}}$ (3)And $\tilde{\mathrm{S}}_{\mathrm{i}+1}=1-\tilde{\mathrm{S}}_{\mathrm{i}}$
Let, $k=0.225$ as a special case. Then, \tilde{S}_{i} will be:
$\tilde{S}_{i}=(i+1)-\frac{R_{t}}{0.225}$
$\tilde{\mathrm{S}}_{\mathrm{i}}=\frac{0.225(\mathrm{i}+1)-\mathrm{R}_{\mathrm{t}}}{0.225}$
Thus the monthly percentage changes of the market price are transformed into 21 fuzzy states from the high loss S_{-10} to high return S_{10}. Next, we will apply different types of fuzzy numbers to the return price R_{t} :

Case 1: Triangle Fuzzy Numbers $\left(a_{1}, a_{2}, a_{3}\right)$:
By using the equation of a straight line passing through two points
$\frac{y-y_{1}}{x-x_{1}}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$
Where the points are :
$\left(x_{1}, y_{1}\right)=((i+1)(0.225), 0)$
$\left(x_{2}, y_{2}\right)=((i)(0.225), 1)$
$\frac{y-0}{x-(i+1)(0.225)}=\frac{1}{-0.225}$
$y=\frac{x-(i+1)(0.225)}{-0.225}=\frac{(i+1)(0.225)-R_{t}}{0.225}$,
which is similar to eq. (5).
Case 2: Trapezoidal Fuzzy Numbers $\left(a_{1}, a_{2}, a_{3}, a_{4}\right)$:
If $R_{t} \in\left(a_{2}, a_{3}\right)$, then $\tilde{S}_{i}=1, i=\left\lfloor\frac{R_{t}}{0.15}\right\rfloor$.
We deal with single value of $\left(a_{2}, a_{3}\right)$, we take the midpoint $\frac{a_{2}+a_{3}}{2}$ [9]:
$\frac{\left(i-\frac{1}{3}\right)(0.225)+\left(i+\frac{1}{3}\right)(0.225)}{2}$
$=(0.225) i$
$=a_{2}$ in the triangle fuzzy number case.

Case 3: Parabola "Triangle Shape" Fuzzy Numbers $\left(a_{1}, a_{2}, a_{3}\right)$:

By referring to the parabolic membership function, we note that the relationship is the square of the triangle membership function
$\tilde{S}_{i}=\left[\frac{(i+1)(0.225)-R_{t}}{0.225}\right]^{2}$
As concluded above, the principle of the fuzziness in the estimation of the states for the return in prices is identical to the relationship of the triangle; this means that the use of this type of fuzzy numbers gives less accurate results. For example:

Take $R_{t}=0.5175, i=\frac{0.5175}{0.225}=2.3$, this $i=\lfloor 2.3\rfloor=2$.
In general, by $E q$ (6):
$\tilde{S}_{i}=(i+1)-\frac{R_{t}}{0.225}$
$R_{t}=0.5175, \tilde{S}_{2}=3-\frac{0.5175}{0.225}=0.7$.
In parabola case: $S_{2}=(0.7)^{2}=0.49$
error $=0.7-0.49=0.21$.
Case 4: K-Triangle-Trapezoidal Fuzzy Numbers

Figure 1: Coordinates K-triangle-trapezoidal fuzzy state
For line L_{1} :
$\tilde{S}_{i}=(0.501)\left(\frac{(i+1)(0.225)-R_{t}}{0.1125}\right)$
For line L_{2} :
$\tilde{S}_{i}=1-(0.499) .\left(\frac{R_{t}-i(0.225)}{0.1125}\right)$
the closer the C_{1} value to 0.5 , the more accurate the result (Figure 3).
The best result when $C_{1}=0.5$ (triangle fuzzy number case).

IV. Important Remark

In [9-10] and [26], it was mentioned that:
$\tilde{\mathrm{S}}_{\mathrm{i}}=\frac{(i+1)\left(0.225-R_{t}\right)}{0.225}$
Actually this is not true as we reached in eq. 5. However, in [11] they mentioned the correct equation:

$$
\tilde{\mathrm{S}}_{\mathrm{i}}=\frac{(i+1)(0.225)-R_{t}}{0.225}
$$

V. The Sample

The study includes monthly data between January 2010 and July 2020. The monthly weighted average of the gold price received from Istanbul.

The return R_{t} were calculated as monthly percentage of the gold price $R_{t}=$ $\left(\left(P_{t}-P_{t-1}\right) / P_{t-1}\right) * 100 \%$, ([5], [26]), where t denotes the sessions $(t=2,3, \ldots, 127)$.

The average return μ_{R} is approximately 0.46%, where the standard deviation is 3.69%, for the given period which is 8 times higher than expected return.

VI. THE MODELS

A) The Markov Chain Model

Closing returns of the gold price are transformed into 21discrete categorical states from high loss S_{-10} to the positive high return S_{10} according to functions below. For this aim, we define k integer numbers which are based on R_{t} as $\mathrm{k}-1<\frac{\mathrm{R}_{\mathrm{t}}+0.12 \%}{0.24 \%} \leq \mathrm{k}$ where: $-2.28 \%<\mathrm{R}_{\mathrm{t}} \leq$ 2.28\%

The k -th state for $\mathrm{k} \in\{-9, \ldots, 9\}$ is as follows [10]:

$$
\begin{aligned}
& \mathrm{S}_{10}= \begin{cases}1, & \mathrm{R}_{\mathrm{t}}>2.28 \% \\
0, & \text { Otherwise }\end{cases} \\
& S_{k}= \begin{cases}1, & (2 \mathrm{k}-1) 0.12 \%<\mathrm{R}_{\mathrm{t}} \leq(2 \mathrm{k}+1) 0.12 \% \\
0, & \text { Otherwise }\end{cases} \\
& \qquad \mathrm{S}_{-10}= \begin{cases}1, & \mathrm{R}_{\mathrm{t}} \leq 2.28 \% \\
0, & \text { Otherwise }\end{cases}
\end{aligned}
$$

As shown in Table (1) and figure (2), we transform126 closing returns of Gold price to the defined 21 discrete states. Then, we calculate all transitions numbers of states from the present session to the next session for the considered period. We also use conditional probabilities of the Markov chain to obtain one-step.

The transition probability matrix P is shown in Table (2) in the appendix, which is the one step transition probability matrix estimated by Maximum Likelihood Method (M.L.E) [6]:
$\widehat{P_{\imath \jmath}}=n_{i j} / \sum_{j} n_{i j} \geq 0$

B) The Markov Chain with Fuzzy States Model

Closing returns of the Gold price are transformed into 21 fuzzy states from the high loss \widetilde{S}_{-10} to high return \widetilde{S}_{10} shown in Figure 3.We use triangular fuzzy numbers to obtain the membership degree of R_{t} to the fuzzy states.

We define fuzzy state components of the returns \tilde{S}_{i} and \tilde{S}_{i+1} as follows:
If $-2.25 \%<R_{t}<2.25 \%$ then $i=\llbracket \frac{R_{t}}{0.225} \rrbracket$ and $\tilde{S}_{i}=\frac{(i+1)(0.225)-R_{t}}{0.225}$,

$$
\tilde{S}_{i+1}=1-\tilde{S}_{i}
$$

If $R_{t} \leq-2.25 \%$ or $R_{t} \geq 2.25 \%$ then $\tilde{S}_{-10}=1$ or $\tilde{S}_{10}=1$ respectively [11].
Therefore, R_{t} numbers are transformed to the triangular fuzzy numbers for the considered time.
Within this framework, MCFS that depends on the fuzzy set theory gives more precision and realistic description to the problems than the MC.

Then we obtain the probabilistic transition matrix of the fuzzy states by using $\widetilde{\mathrm{P}}=\mathrm{S} \overline{\mathrm{P}}=\mathrm{SPQ}$
[21].
Firstly, monthly percentage changes of the gold price are transformed into 21 fuzzy states from the high loss S_{-10} to high return S_{10} (see table 3).

We classify the states as triangular fuzzy numbers.
If $-2.25<R_{t}<2.25 \%$ then $i=\left\lfloor\frac{R_{t}}{0.225}\right\rfloor$
$\tilde{S}_{i}=\frac{(i+1)(0.225)-R_{t}}{0.225}, \quad \tilde{S}_{i+1}=1-\tilde{S}_{i}$
If $R_{t} \leq-2.25$ or $R_{t} \geq 2.25$ then: $\tilde{S}_{-10}=1, \tilde{S}_{10}=1$
To obtain the Markov chain of the fuzzy states:

$$
\tilde{P}=S P Q
$$

$\mathrm{P}=$ the transition probability matrix

$$
\boldsymbol{Q}=\left[\begin{array}{cccc}
\mu_{\tilde{S}_{-10}}(-10) & \mu_{\tilde{S}_{-9}}(-10) & \cdots & \mu_{\tilde{S}_{10}}(-10) \\
\mu_{\tilde{S}_{-10}}(-9) & \mu_{\tilde{S}_{-9}}(-9) & \cdots & \mu_{\tilde{S}_{10}}(-9) \\
\vdots & \vdots & \ddots & \vdots \\
\mu_{\tilde{S}_{-10}}(10) & \mu_{\tilde{S}_{-9}}(10) & \cdots & \mu_{\tilde{S}_{10}}(10)
\end{array}\right]
$$

Where $\mu_{\tilde{S}_{-10}}, \mu_{\tilde{S}_{-9}}, \ldots, \mu_{\tilde{S}_{10}}$ denote the membership functions of fuzzy states of $\left\{\tilde{S}_{-10}, \tilde{S}_{-9}, \ldots \tilde{S}_{10}\right\}$ so, $\mu_{\tilde{S}_{-10}}(-10)$ is the degree of possibility that the $\mathrm{i}^{\text {th }}$ position of closing return price R_{t} with $i=-10$ belongs to the fuzzy state \tilde{S}_{-10}. If there are values of R_{t} having the same position i, then we have a group of finite numbers (n) for the same $\mu_{\tilde{S}_{i}}(i)$, where $\mu_{\tilde{S}_{i}}(i)$ is a fuzzy number defined as:
$h t(\bar{A})=\bar{A}_{i}$
$h t\left(\bar{A}_{i}\right)=\operatorname{Max}\left\{\mu_{\tilde{S}_{i 1}}(i), \mu_{\tilde{S}_{i 2}}(i), \ldots, \mu_{\tilde{S}_{i n}}(i)\right\}=\mu_{\tilde{S}_{i}}(i)[3]$.
Since, $\tilde{S}_{i+1}=1-\tilde{S}_{i}$ so, $\mu_{\tilde{S}_{i+1}}(i)=1-\mu_{\tilde{S}_{i}}(i)$
$\boldsymbol{S}=\left[\begin{array}{cccc}\frac{P_{-10}}{} \mu_{\widetilde{S}_{-10}}(-10) \\ P\left(\tilde{S}_{-10}\right) & \frac{P_{-9} \mu_{\widetilde{S}_{-10}}(-9)}{P\left(\tilde{S}_{-10}\right)} & \cdots & \frac{P_{10} \mu_{\widetilde{S}_{-10}}(10)}{P\left(\tilde{S}_{-10}\right)} \\ \frac{P_{-10} \mu_{\widetilde{S}_{-9}}(-10)}{P\left(\tilde{S}_{-9}\right)} & \frac{P_{-9} \mu_{\widetilde{S}_{-9}}(-9)}{P\left(\tilde{S}_{-9}\right)} & \cdots & \frac{P_{10} \mu_{\widetilde{S}_{-9}}(10)}{P\left(\tilde{S}_{-9}\right)} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{P_{-10} \mu_{\widetilde{S}_{10}}(-10)}{P\left(\tilde{S}_{10}\right)} & \frac{P_{-9} \mu_{\widetilde{S}_{10}}(-9)}{P\left(\tilde{S}_{10}\right)} & \cdots & \frac{P_{10} \mu_{\widetilde{S}_{10}}(10)}{P\left(\tilde{S}_{10}\right)}\end{array}\right]$
We assume that the initial probabilities P_{i} are equal, so $P_{i}=1 / 21$. With P_{i} we calculate the fuzzy initial state probabilities using:
$P\left(\tilde{S}_{i}\right)=\sum_{s=-10}^{10} P_{s} \mu_{\tilde{S}_{i}}(s)$.
$P_{i}=$ The probability of beginning in state (i).
The transition probability matrix corresponding to the fuzzy states $\left\{\tilde{S}_{-10}, \tilde{S}_{-9}, \ldots \tilde{S}_{10}\right\}, \tilde{P}=$ [$\left.P\left(\tilde{A}_{j} / \tilde{A}_{i}\right)\right]$, obtained with: $\tilde{P}=\mathrm{SPQ}[21]$ which is Table (4), where the closing returns of gold price are considered as a stochastic process with 21 fuzzy state $\left\{\tilde{S}_{-10}, \tilde{S}_{-9}, \ldots \tilde{S}_{10}\right\}$ space with Markov chain structure.

VII. Estimating Closing Return $\widehat{\boldsymbol{R}}_{\boldsymbol{t}}$

A) Using Markov Chain

$\hat{R}_{t}=\sum x_{i} P\left(x_{i}\right)$, where x_{i} denotes the middle point of the discrete categorical states for $i=-9, . ., 9$ and the boundaries of the states for $i=-10,10$.

We get $\hat{R}_{t}=-1.92 \%$.(see table 5).

B) Using Markov Chain with Fuzzy States

$\hat{R}_{t}=\sum x_{i} P\left(x_{i}\right)$ where x_{i} denotes the middle point of the fuzzy states for $i=-9, \ldots, 9$ and the boundaries of the states for $=-10, \ldots, 10$.

We get $\hat{R}_{t}=-0.9802 \%$ and the actual value of closing return $R_{t}=-1,259 \%$ on October, 2012.

In table (6) we have shown the predicted probability of closing return $\tilde{P}\left(x_{i}\right)$ on October, 2012 with MCFS model and the expected return $\left(\hat{R}_{t}\right)$. In Table 7, we have shown some estimation results for other months chosen randomly. We used the mean absolute error MAE to measure how our prediction is close to the eventual outcomes.

MAE $=\frac{1}{n} \sum_{i=1}^{n}\left|x_{i}-x\right|$ where e_{i} denotes the error. From Table 4-7, one can see that MCFS model is better than MC model for forecasting the gold return price.

VIII. The Long Run Behavior of MC \& MCFS

The MC and MCFS models can be used to predict for long run time using: $\pi P=\pi$, when the MC is Ergodic (satisfied since after a number of steps there are no zero entries in the matrix) where π is the limiting stationary distribution [8] and [24]. We find that: P^{12} (hence the limit of P^{n} as n goes to infinity) consists approximately of identical rows each of which is:
($0.2382,0.0030,0.0282,0.0391,0.0591,0.0309,0.0118,0.0080,0.0155,0.0394,0.0164$, $0.0213,0.0245,0.0335,0.0119,0.0291,0.0195,0.0249,0.0083,0.0350,0.2979)$.

We see that the highest ratio is for the highest return $\tilde{S}_{10} \approx 30 \%$ and then for the highest loss $\tilde{S}_{-10} \approx 24 \%$.

In the long run, no matter the state of gold price in a month, the number of gain months will be approximately equal to the number of loss. Categories of the states and the conditional transition probability matrices are calculated by MATLAB program. If we apply the law of expectation using equation:

$$
\hat{R}_{t \rightarrow \infty}=\sum_{i=1}^{21} \pi_{i} x_{i}
$$

We get, $\hat{R}_{t}=0.1104 \%$ and its present return state as in table 8 .

CONCLUSION

According to our results, one can minimize the steps of finding the degree of belonging to the return price and can only rely on the concept of Fuzzy to find the R_{t} site of the relationship $i=$ $\frac{\mathrm{R}_{\mathrm{t}}}{\mathrm{k}}$.

After applying several types of fuzzy number, we found that Triangle Fuzzy Number are the best fuzzy numbers to get the most accurate results.

We have predicted the behavior of the Gold return price for next month. Using the MC and MCFS models. The results gave sensitive and significant information to the investors about investment opportunities of the Gold return price for the monthly buying and selling strategies when the present return is known. In risky months, when a monthly return substantially increased or decreased, the next month's return also substantially increased or decreased for both models. The transition probabilities of monthly returns in non-risky months would be significantly lower than those in risky months for both models.

The MCFS model can be used to forecast the returns for smaller time (less than one month) intervals, which may give more investment opportunities. Investors can earn higher than the average return in risky months in a short run. Besides the MCFS model can be used to predict the returns for smaller time (one day) and also different classifications and fuzzy sets, which
may give more investment opportunities. The probability distribution of gold showed that, the investors can gain higher return in the long run.

Our results, by predicting the behavior of gold prices in the long term, indicate that the stability will be reached after 12 months. From the last reading, on July, 2020, prices were constantly increasing. According to our results, the market will witness a decline in gold prices until reaching the stage of stability, and this is what is mostly happening the last few months.

Acknowledgment: The authors would like to thank Palestine Technical University Kadoorie for the support the authors obtained from their respective university while executing the research.

REFERENCES

[1] Ansha, "GENERALIZED PARABOLIC FUZZY NUMBERS AND ITS APPLICATIONS," Thapar University, India, 2014.
[2] J. Buckley, Fuzzy Probabilities new approach and application, Berlin-Heidelberg: SpringerVerlag, 2005.
[3] J. Buckley, An Introduction to Fuzzy Logic and Fuzzy Sets, New York: Esfan-Diar Eslami. Heidlberg, 2002.
[4] R. Case, Fuzzy Markov Chains and Experiments with FuzzyRank an Alternative to PageRank, Canada: Queen's University, 2016.
[5] A. Escribano and C. W. J. Granger, "Investigating The Relationship Between Gold and Silver Prices," Journal of Forecasting, vol. 17, pp. 81-107, 1998.
[6] C. Hurlin, Advanced Econometrics-HEC Lausanne, University of Orleans, 2013.
[7] R. Jyothi, E. Patnala and K. Vardahan, "A Breif Idea on Fuzzy and Crisp," IJMER, pp. 2249-6645, 2016.
[8] J. Kemeny, J. Snell and A. Knapp, "Properties of Markov Chanis," Denumerable Markov Chanis, vol. 40, 1976.
[9] E. Kiral, "Modeling Brent Oil Price with Markov Chain Process of the Fuzzy States," Journal of Economics, Finance and Accounting (JEFA), vol. 5(1), pp. 79-83, 2018.
[10] E. Kiral and B. Uzun, "Forecasting Closing Returns of Borsa Istanbul Index with Markov Chain Process of the Fuzzy States," Journal of Economics Finance and Accounting, vol. 896, pp. 386-391, 2019.
[11] E. Kiral and B. Uzun, "Evaluating US Dollar Index Movements Using Markov ChainsFuzzy Sates Approach," Journal of Economics, Finance and Accounting, vol. 896, pp. 386-391, 2019.
[12] R. Kruce, R. Buck- Emeden and R. Cordes, "Process of Power Considerations," An Application to Fuzzy Markov Chains, Fuzzy Sets and Systems, pp. 289-299, 1987.
[13] M. Kuranoa, M. Yasuda, J. Jakagami and Y. Yoshida, "A Fuzzy Approacch to Markov Desicion Processes with Uncertain Transition Probabilities," Fuzzy Sets and Systems, vol. 157, pp. 2674-2682, 2006.
[14] D. X. Ky and L. T. Tuyen, "A Markov- Fuzzy Combination Model for Stock Market Forecasting," International Journal of Applied Mathmatics and Statistics, vol. 55(3), pp. 110-121, 2016.
[15] S. Mallak, Particular Fuzzy Numbers and Their Application to Regular 2x2 Fuzzy Markov Chains: Uncertain Probabilities, Journal of Dynamical Systems and Geometric Theories, ISSN 1726-037X, Vol. 9, Number 2 (2011) 137-150.
[16] S. Mallak and D. Bedo, A Fuzzy Comparison Method For Particular Fuzzy Numbers, Journal of Mahani Mathematical Research Center (JMMRC), ISSN 2251-7952, Vol2, No1 (2013) pp.1-14
[17] S. Mallak and D. Bedo, Particular Fuzzy Numbers and a Fuzzy Comparison Method between Them, International Journal of Fuzzy Mathematics and Systems (IJFMS), ISSN 2248-9940, Vol 3, No 2 (2013) pp.113-123
[18] S. Mallak and D. Bedo, Ranking Particular Fuzzy Numbers Using Area, Mode, Spreads and Weights, Advances in Fuzzy Mathematics (AFM), ISSN No. 973-533X, Volume 9, Number 1 (2014), pp. 7-19.
[19] S. Mallak, Ranking Exponential k+1-Trapezoidal Fuzzy Numbers with Cardinality, Advances in Fuzzy Mathematics (AFM), ISSN No. 973-533X, Volume 9, Number 1 (2014), pp 55-62.
[20] S. Mallak, D. Bedo, O. Hamed, A new Approach For Ranking k+1-Trapezoidal Fuzzy Numbers, Advances in Fuzzy Mathematics (AFM), ISSN No. 973-533X, Volume 9, Number 1 (2014), pp 63-76.
[21] M. Pardo and D. Fuente, "Fuzzy Markovian Desicion Processes: Application to Queueing Systems," Computer and Mathmatics with Applications, vol. 60, pp. 2526-2535, 2010.
[22] E. Sanchez, "Resolution of Composite Fuzzy Relation Equations," Information and Control, vol. 30, pp. 38-48, 1976.
[23] R. Slowinski, Fuzzy Sets in Desicion Anaalysis, Operations Research, and Statics, Boston-Dordrecht-London: Kluwer Academic Publishers, 1998.
[24] H. Taylor and S. Karlin, An Introduction To Stochastic Modeling, 3rd ed., San Diego, California: Library of Congress Cataloging-in-Publication Data, 1900.
[25] M. Thomason, "Convergence of powers of a Fuzzy Matrix," Journal of Mathmatical Analysis and Applications, vol. 57, pp. 476-480, 1977.
[26] B. Uzun and E. Kiral, "Application of Markov Chains- Fuzzy States to Gold Price," Procedia Computer Science, vol. 120, pp. 365-371, 2017.
[27] B. F. Vajaragah and M. Gharehdaghi, "Ergodicity of Fuzzy Markov Chains Based on Simulation Using Halton Sequences," Journal of Mathmatics and Computer Science, vol. 11, pp. 159-165, 2014.
[28] K. E. Vrachenkov and E. Sanchez, "Fuzzy Markov Chains," IPMU, pp. 1851-1856.
[29] Y. Yoshida, "Markov Chains with a Transition Possibility Measure and Fuzzy Dynamic Programing," Mathmatics, Computer Science, 1994.
[30] L. A. Zadeh, "Fuzzy Sets," Information Control, vol. 8, pp. 338-353, 1965.
[31] X. Zhou, Y. Tang, Y. Xie, Y. Li and Y. Zhang, "A Fuzzy Probability- based Markov Chain Model for Electric Power Demand Forecasting," Energy and Power Engineering, 2013.

Appendix

Figure 2: Discrete categorical state

Figure 3: Fuzzy State for Gold Return Price
Table 1: Transformed States of the monthly Closing Returns for Some months

Table 2: The One Step Probability Transition Matrix P

S	66	000	00	$\begin{aligned} & 0.0 \\ & 000 \end{aligned}$	$\begin{aligned} & 0.0 \\ & 000 \end{aligned}$	$\begin{aligned} & 0.0 \\ & 000 \end{aligned}$		000				000		000		333	000	000	000	000	$\begin{aligned} & 0.0 \\ & 000 \end{aligned}$
S	0.6	0.0	0.	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.2	0.	0.0	0.0	0.0	0.0	0.0		0.2
	000	000	000	000	000	00	000	000	00	000	000	000	000	000	000	000	000	000	000	000	00
S_{-}	0.5	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	71	000	000	000	000	42	000	000	000	000	000	000	857	000	000	000	000	000	000	000	0
S	0.3	0.0	0.0	0.3	0.0	0.0	0.0	0.0	0.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	. 0	0.0	0.0	0.0	0.0
	33	000	000	33	00	00	00	00	334	000	000	000	00	000	000	000	000	000	000	000	000
S	0.	0.	0.0	0.0	0.	0.0	0.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.5
	00	000	000	00	00	00	00	00	000	000	00	000	00	000	000	000	000	000	000	000	0
S	0.	0.	0.0	0.0	0.		0.0			0.0		0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	00	00	00	00	00	00	00	00	000	00	00	000	00	000	00	000	000	000	000	000	000
S	0.0	0.0	0.0	0.0	0.		0.0			0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0
	00	00	00	000	000	000	000	000	000	000	000	000	00	000	00	000	000	0	000	000	000
S	0.0	0.	0.0	0.0	0.4		0.0	0.0			0.0	0.0		0.0	0.0	. 2	0.0	. 0	0.0	0.2	0.2
	00	00	00	000	000	000	000	000	000	000	000	00	00	000	000	000	000	000	000	0	000
S_{0}	0.0	0.	0.0	0.3	0.0	0.0	0.0	0.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.3
	00	000	000	33	000	00	000	333	000	000	000	000	00	000	00	000	000	000	000	000	334
S_{1}	0.5	0.0	0.0	0.0	0.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0	0.0
	00	000	000	000	000	000	000	000	000	00	000	000	00	000	000	000	000	000	000	000	00
S_{2}	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.8
	00	000	00	000	000	000	000	000	000	000	00	000	00	000	000	000	000	000	000	000	000
S_{3}	0.3	0.0	0.0	0.0	0.0	0.3	0.0	0.0		0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
	33	000	00	00	000	33	00	00	000	00	00	000	00	000	00	000	000	000	000	00	334
S_{4}	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.	0.0	0.0	0.0	0.0	1.0
	00	00	00	00	000	00	000	00	000	00	00	000	00	000	00	000	000	000	000	000	000
S_{5}	0.	0.0	0.0	0.0	0.0		0.0	0.0		0.	0.0	. 0	0.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	66	0	000	000	000	000	000	000	000	00	000	000	333	000	000	000	000	000	000	000	000
S_{6}	0.	0.0	0.0	0.0	0.0		0.	0.0		0.6		0. 0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.3
	00	00	000	000	000	000	00	000	000	667	000	000	000	000	000	000	000	000	000	000	333
S_{7}	0.	0.0	0.0	0.0	0.0					0.0		0.0		0.0		0.0		0.0		0.0	0.5
	00	00	000	000	000	000	000	000	000	000	000	000	000	000	000	000	000	000	000	000	000
S_{8}	0.	0.0	0.	0.0	0.0		0.0			0.0		0.0	0.0	0. 0	0.0	0.0	0.0	0.0	0.0	0.0	1.0
	00	00	000	000	000	000	000	000	000	000	000	000	000	000	000	000	000	000	000	000	00
S_{9}	0.	0.0	0.0	0.0	0.2	0.0	0.0	0.0	0.0	0.0	. 0	0.0	0.0	0.0	0.2	0.0	0.0	0.2	0.0	0.	0.4
	000	000	000	000	000	000	000	000	00	000	000	000	000	000	000	000	000	000	000	000	000
	0.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	. 3
	00	000	286	571	286	000	000	000	286	286	286	571	000	286	286	286	000	000	000	857	713

Table 2: Transformed fuzzy states of the closing returns for some months

Table 3: Probabilistic transition matrix of the fuzzy states

	S_{-10}	S_{-9}	S_{-8}	S_{-7}	S_{-6}	S_{-5}	S_{-4}	S_{-3}	S_{-2}	S_{-1}	S_{0}	S_{1}	S_{2}	S_{3}	S_{4}	S_{5}	S_{6}	S_{7}	S_{8}	S_{9}	S_{10}
S_{-10}	0.2581	0.0644	0.0644	0.0323	0.0644	0.0323	0.0323	0.0000	0.0000	0.0323	0.0644	0.0000	0.0323	0.0323	0.0000	0.0000	0.0968	0.0323	0.0323	0.0323	0.0968
S_{-9}	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	1.0000
S_{-8}	0.6667	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.3333	0.0000	0.0000	0.0000	0.0000	0.0000
S_{-7}	0.6000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.2000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.2000
S_{-6}	0.5714	0.0000	0.0000	0.0000	0.0000	0.1429	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.2857	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
S_{-5}	0.3333	0.0000	0.0000	0.3333	0.0000	0.0000	0.0000	0.0000	0.3334	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
S_{-4}	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.5000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.5000
S_{-3}	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	1.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
S_{-2}	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	1.0000
S_{-1}	0.0000	0.0000	0.0000	0.0000	0.4000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.2000	0.0000	0.0000	0.0000	0.2000	0.2000
S_{0}	0.0000	0.0000	0.0000	0.3333	0.0000	0.0000	0.0000	0.3333	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.3334
S_{1}	0.5000	0.0000	0.0000	0.0000	0.5000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
S_{2}	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.2000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.8000
S_{3}	0.3333	0.0000	0.0000	0.0000	0.0000	0.3333	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.3334
S_{4}	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	1.0000
S_{5}	0.6667	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.3333	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
S_{6}	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.6667	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.3333
S_{7}	0.5000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.5000
S_{8}	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	1.0000
S_{9}	0.0000	0.0000	0.0000	0.0000	0.2000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.2000	0.0000	0.0000	0.2000	0.0000	0.0000	0.4000
S_{10}	0.2000	0.0000	0.0286	0.0571	0.0286	0.0000	0.0000	0.0000	0.0286	0.0286	0.0286	0.0571	0.0000	0.0286	0.0286	0.0286	0.0000	0.0000	0.0000	0.0857	0.3713

Table 4:Estimated closing return (\hat{R}_{t}) with MC model for October, 2012

Table 5: Estimated closing return with MCFS model for October 2012

Table 6: Estimated R_{t} for some months

Date	\widehat{R}_{t} with MC model	\widehat{R}_{t} with MCFS model	Actual $\left(\boldsymbol{R}_{\boldsymbol{t}}\right)$	$\left\|\boldsymbol{e}_{\boldsymbol{i}}\right\|$ with MC model	$\left\|\boldsymbol{e}_{\boldsymbol{i}}\right\|$ with MCFS model
October , 2012	-1.92\%	-0.98\%	-1.26\%	0.66\%	0.28\%
October, 2019	0.72\%	-0.52\%	-1.53\%	2.25\%	1.01\%
November,2010	1.20\%	0.88\%	1.58\%	0.38\%	0.70\%
May,2020	1.20\%	0.89\%	1.06\%	0.16\%	0.17\%
February,2018	0\%	-0.38\%	-0.62\%	0.62\%	0.24\%
MAE	0.81\%	0.48\%			

Table 8: Present state for long run $R^{\wedge}(t)$ with MCFS

$\quad R_{t}$	$\tilde{S}_{-10} \tilde{S}_{-9}$	\tilde{S}_{-8}	\tilde{S}_{-7}	\tilde{S}_{-6}	\tilde{S}_{-5}	\tilde{S}_{-4}	\tilde{S}_{-3}	\tilde{S}_{-2}	\tilde{S}_{-1}	\tilde{S}_{0}	\tilde{S}_{1}	\tilde{S}_{2}	\tilde{S}_{3}	\tilde{S}_{4}	\tilde{S}_{5}	\tilde{S}_{6}	\tilde{S}_{7}	\tilde{S}_{8}	\tilde{S}_{9}	\tilde{S}_{10}	
0.110	0	0	0	0	0	0	0	0	0	0	0.51	0.4	0	0	0	0	0	0	0	0	0
4											9										

