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Abstract 
Utilizing the idea of bipolar fuzzy sets, the ideas of limited condition for 
device that perform bipolar fuzzy (LCDBF), bipolar successor, bipolar 
subsystems, bipolar submachines, bipolar q-twins also, bipolar retrievable 
LCDBF are presented, and related properties are examined. Relations 
between bipolar q-twins and bipolar q-related LCDBF are given. A 
portrayal of a bipolar retrievable LCDBF is given. 
Keywords- bipolar successor, bipolar exchange property, strongly bipolar 
connected, bipolar retrievable, bipolar q-related, bipolar q-twins. 

1. Introduction 
Bipolar fuzzy sets (BFS) are extension of fuzzy sets whose membership degree ranges from 
[−1, 1] [6]. It is worth mentioning that BFS and vague sets look to be comparable, however 
they are totally various sets. Despite the fact that the two sets handle with fragmented 
information, they won't adjust the vague or conflicting data which shows up in numerous areas. 
Distance measure is a significant tool which depicts difference among two items and 
deliberated as a double idea of similarity measure [3]. Bipolar fuzzy qualities or BFS in the 
system of penta-esteemed portrayal [1]. Malik et al. [4] presented the thoughts of limited 
condition device and subdevice of fuzzy, isolated and associated and talked about their 
fundamental properties. Kumbhojkar and Chaudhari [2] gave multiple approaches to building 
results of limited condition for device of fuzzy and their common relationship, through 
isomorphism and covers. Vasile Patrascu [5] introduced the concept of entropy and cardinality 
of bipolar fuzzy set and their similarity. In this paper, utilizing the idea of bipolar fuzzy sets, 
we present the ideas of limited condition for device that perform bipolar fuzzy (LCDBF), 
bipolar replacements, bipolar subsystems, bipolar submachines, bipolar q-twins, and bipolar 
retrievable LCDBF, and concentrate on correlated properties. We give relations between 
bipolar q-twins and a bipolar q-related LCDBF. We give a portrayal of a bipolar retrievable 
LCDBF. 

2. Condition for device that perform bipolar fuzzy 

Definition 2.1. Let  N
T

P
TT  ,  be the BFS then  denotes limited condition for device that 

perform bipolar fuzzy (LCDBF) denoted as  TZR ,, , where R and Z are finite set, the 
state set and the input symbol set, respectively. 
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Allow *Z  to indicate the arrangement of all expressions of components of Z of limited length. 
Let   signify the vacant word in *Z  and Z  mean the length of Z for each *Zz . 

Definition 2.2. Let  TZR ,,  be LCDBF. Defined on  N
T

P
TT ** ,*   by  
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Lemma 2.3.  If  TZR ,,  be LCDBF. Then  
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Proof.  Through an induction on ng  , we prove the result. If n=0 then g  and 
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Therefore, n = 0 holds for this result. Assume that the result is true for all *Zv with the 
0,1  nnv . Let vdg  where *Zv and Zd , and 1 nv . Then 
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Definition 2.4. Let  TZR ,,  be LCDBF. If there is Zd   such that   1,, sdrP
T  and 

  1,, sdrN
T , then s is called an bipolar instant possible successor of r. s is referred to as an 

bipolar successor. If  s is an bipolar possible successor of r then their exists *Zz such that 
  1,,* sdrP

T
  and   1,,* sdrN

T
 . The bipolar possible successor of r is denoted by B(r). A 

subset of R is denoted by K, the set of all bipolar possible successor of K is denoted by B(K), 
is characterized to be 

the set     KrrBKB  | . 

Proposition 2.5. Let  TZR ,,  be LCDBF. The following holds for any Rasr ,,  

(i)  rBr  . 

(ii) If  rBs  and  sBa  then  rBa . 

Proof. (i) Since   11,,* rrP
T

  and   11,,* rrN
T

 , We have  rBr . 
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(ii) If  rBs  and  sBa  then their exist *, Zgz  such that 
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Therefore  rBa . 

Proposition 2.6. Let  TZR ,,  be LCDBF. The following holds for the subset of R, 

(i) If ,CT   then    .CBTB   

(ii)     .TBTBB   

(iii)      .CBTBCTB   

(iv)      .CBTBCTB   

Proof. The straightforward proof are (i),(iii) and (iv). 

(ii) Clearly     .TBBTB    sBr follows from   TBBr  for some  TBs . Since 
 TBs , there exists Ta  such that  aBs . As a result of the preceding proposition 
   TBaBr   so that     .TBTBB   (ii) holds true. 

Definition 2.7.  Let  TZR ,,  be LCDBF.   is said to satisfy the bipolar exchange 
property altogether Rrs ,  and RK  , Whenever   rKBs   and  KBs  then 

  .sKBr   

Theorem 2.8.  Let  TZR ,,  be LCDBF. Then the following holds. 

(i)   satisfy bipolar exchange property. 

(ii)       ., sBrrBsRrs   

Proof. Suppose   satisfy bipolar exchange property. If     rBrBs   ,Where Rrs ,
.Try to be aware that  Bs  thus     sBsBr   .  Correspondingly,  sBr  then 

 rBs . On the other hand (ii) is substantial. Let Rrs , and RK  . On the off chance that 
  rKBs   and  KBs , then  .rBs  From (ii) it follows that     sKBsBr  . 
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Therefore   satisfy bipolar exchange property. 

Definition 2.9.  Let  TZR ,,  be LCDBF. Let  N
R

P
RR  ,  be an BFS in R. Then 

 TZRR ,,,  is called an bipolar subsystem of   if for all Rrs , furthermore Zd  , 
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If  TZRR ,,,  is an bipolar subsystem of  , we essentially compose R for  TZRR ,,, . 

Theorem 2.10. Let  TZR ,,  be LCDBF. Let  N
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for all Rrs , furthermore *Zz  . 

Proof. Assume that R  is an bipolar subsystem of  and Rrs , furthermore *Zz  . By 

induction method the proof on nz  . z  is necessary for 0n . Presently if rs  , then 
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A sufficient condition for  

     
     rrzss

rrzss
N
R

N
T

N
R

P
R

P
T

P
R









1,,

1,,

*

*

 

is sr  . 

Hence the outcome is valid for n = 0. Assume the outcome is valid for all *Zg   with 

.0,1  nng  

|y| = n − 1, n >0. For the g above, let gdz  where Zd  .Then, at that point, 

       
       

      
      rrdaa

rdaagss

rdaagss

rgdssrzss

P
R

P
T

P
RRa

P
T

P
T

P
RRa

P
T

P
TRa

P
R

P
T

P
R

P
T

P
R























,,

,,,,

,,,,

,,,,

*

*

**

 

and 



Vol. 71 No. 4 (2022) 
http://philstat.org.ph 

Mathematical Statistician and Engineering Applications 
  ISSN: 2094-0343 

2326-9865 

3039 

       
       

      
      rrdaa

rdaagss

rdaagss

rgdssrzss

N
R

N
T

N
RRa

N
T

N
T

N
RRa

N
T

N
TRa

N
R

N
T

N
R

N
T

N
R























,,

,,,,

,,,,

,,,,

*

*

**

 

The converse is trivial, concluding the proof. 

Definition 2.11. Let  TZR ,,  be LCDBF. Let RK  . Let  N
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 b

bKZK UT
b

b
b

b
| . Now 

  
 










b
b

b
b

b
b KKBKB .  

Hence 



b

b is an bipolar submachine of  . 

(ii)As   














b
b

b
b

b
b

b
b KKBKB , is an bipolar submachine of  . 

Theorem 2.14.  Let  TZR ,,  be LCDBF. If   has no accurate bipolar submachines if and 
only if   is strongly bipolar. 

Proof. Assume  TZR ,,  has a strong bipolar connection. Allow  UZK ,,  to be an 
bipolar submachine of   with .K  After that, there is Kr  . Because   is strongly 
bipolar,  rBs whenever Rs . As a result     KKBrBs   so that RK  . Therefore 

 ,  indicating that   has no appropriate bipolar submachines. Assume  , on the other 
hand, does not have any bipolar submachines. Let Rrs ,  and   UZrB ,, where 

 N
U

P
UU  ,  is given by 

   rBzrB
P
T

P
U  |  and    rBzrB

N
T

N
U  | . 

Then   is an bipolar submachine of   and   rB , thus   RrB  . Subsequently  rBs , 
and thusly   is strong bipolar connected. 

Theorem 2.15.  Let  TZR ,,  be LCDBF and R  stands for  bipolar subsystem of  . At 
that point 

(i)   UZRSupp ,,  is bipolar submachine of ,  where  N
U

P
UU  ,  is given by 

   RSuppzRSupp
P
T

P
U  |  and    RSuppzRSupp

N
T

N
U  | . 

(ii)  kkk UZR ,,  where     zkzRzR N
R

P
Rk   |  where  N

U
P
U kk

U  ,  is given by 

kkk RzR
P

T
P

U  |  and 
kkk RzR

N
T

N
U  | ,  1,1k . If k  is bipolar submachine of   for all 

 1,1k , then R  is an bipolar subsystem of  . 

Proof. (i) Let   RSuppBs . Then, at that point,  rBs  for some  RSuppr  . 

Accordingly   1rP
R  and   1rN

R . Then  rBs , their exists *Zz  such that 
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  1,,* szrP
T

  and   1,,* szrN
T

 . Because R  is an bipolar subsystem, theorem 2.11 states 

that 

            1,,,1,, **  szrrsszrrs N
T

N
R

N
R

P
T

P
R

P
R  . 

Hence     RSuppRSuppB  , and therefore   is an bipolar submachine of  . 

(ii) Let Rsr , and *Zz . If   1rP
R or   1,,* szrP

T then 

     .,,1 * szrrs P
T

P
R

P
R    

If   1rN
R or   1,,* szrN

T then      .,,1 * szrrs N
T

N
R

N
R   Suppose   1rP

R , 

  1,,* szrP
T

 ,   1rN
R  and   1,,* szrN

T
 . Let 

       .,,,, ** szrrkszrr N
T

N
R

P
T

P
R    

Formerly kRs . Then k  is an bipolar submachine of  , we have   kk RRB  . Hence 

    kk RRBsBs  , and thus      szrrks P
T

P
R

P
R ,,*   and 

     .,,* szrrts N
T

N
R

N
R   Therefore R  is an bipolar subsystem of  . 

Definition 2.16.  Let  TZR ,,  be LCDBF then   is said to be bipolar retrievable if, 

         
      



















1,,,1,,

1,,,1,,

**

**

*
*

rzkrzkZz

kgrkgrRk
ZgRr

N
T

P
T

N
T

P
T




 

 
Definition 2.17.  Let  TZR ,,  be LCDBF then Rfar ,, . If *Zg  ,a and f are said to 

be bipolar q-related then       1,,,1,,,1,, ***  agrfgragr N
T

P
T

P
T

  and   1,,* fgrN
T

  

If a and f are bipolar q-related and B(a) = B(f) then a and f are bipolar q-twins. 

Lemma 2.18.  Let  TZR ,,  be LCDBF. Then the following statements are equivalent. 

(i)       
     



















aBssgzragr

sgzragr
ZgzRsar

N
T

N
T

P
T

P
T

1,,,1,,

,1,,,1,,
,,,

**

***




. 

(ii) Rfar ,, , is a and f are bipolar q- related, then a and f are bipolar q- twins. 

Proof. (i) implies (ii) Assume that (i) is valid. Rfar ,, be to such an extent that a and f are 

bipolar q- related. Then their exists *Zg  such that 

      1,,,1,,,1,, ***  agrfgragr N
T

P
T

P
T   and   1,,* fgrN

T .  fBs  is sufficient 

for   1,,* szfP
T and   1,,* szfN

T . Then 
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       1,,,,,, ***  


szkkgrsgzr P
T

P
T

Rk

P
T  and  

       1,,,,,, ***  


szkkgrsgzr N
T

N
T

Rk

N
T  . 

As a result,  aBs  by hypothesis. Likewise,  fBs  whenever   aBs . As a result, a 
and f are bipolar q-twins. 

(ii) implies (i)  Let Rsar ,,  and *, Zgz  be such that 

      1,,,1,,,1,, ***  agrsgzragr N
T

P
T

P
T   and   1,,* sgzrN

T . 

Then 

       1,,,,,, ***  


szffgrsgzr P
T

P
T

Rf

P
T  and  

       1,,,,,, ***  


szffgrsgzr N
T

N
T

Rf

N
T  .  

Thus a and f are bipolar q- related, then a and f are bipolar q- twins and B(a) = B(f). 
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