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Abstract 

A nonlinear system of two couple partial differential equations models for 

two dimensional incompressible immiscible displacement fluid in a porous 

medium is discussed. A sequential implicit time-stepping procedure is 

defined, in which the pressure and Darcy velocity of the mixture are 

approximated by a weak Galerkin mixed finite element method and the 

saturation is approximated by a weak Galerkin finite element method. 

Error estimate in ( 𝐿2  and 𝐻1 ) - norms, the stability and energy 

conservation are proved. Finally, a numerical experiment are presented to 

demonstrate the theoretical results. 

 

 Keywords: incompressible, immiscible displacement, porous media, 

mixed finite element method, weak Galerkin finite element method, 

stability, error estimate. 

 

 

1  Introduction 

  The discontinuity of capillary pressure fields at interfaces that separate subdomains with varied rock 

characteristics complicates the numerical simulation of two-phase immiscible incompressible flows 
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over heterogeneous porous media. When both phases are present on both sides of the interface, the 

saturation is forced to be discontinuous at the interface to ensure capillary pressure continuity; when 

one of the phases is absent, the capillary pressure can also be discontinuous due to the difference in 

entry pressures of the different rocks. Due to significant (up to several orders) permeability changes 

and rapid variations in capillary forces, the global pressure and saturation might exhibit strong 

discontinuities in such applications [1]. The development of numerical methods for two-phase flows in 

heterogeneous porous media that are compatible with the non-linearity and degeneracy of the pressure 

and saturation equations, as well as dealing satisfactorily with the discontinuity of the saturation and 

global pressure, is a relevant and challenging problem. 

 

Numerical simulations and analysis for the system (3.1,3.2 and 3.3) were investigated extensively in 

the last several decades, applied mixed finite element method of the pressure and the Darcy velocity 

and upwind Galerkin finite element method of the saturation equation for immiscible displacement of 

one incompressible fluid in porous media[2]. Evolved discontinuous Galerkin methods for the 

numerical computation of incompressible two-phase flow in porous media[3]. Used a finite volume 

method with the modified implicit pressure explicit saturation approach to model the 3D 

incompressible and immiscible two-phase flow in porous media[4]. Designed and investigated the 

sequential discontinuous Galerkin finite element method to approximate two-phase immiscible 

incompressible flows in heterogeneous porous media with discontinuous capillary pressures [5]. 

Introduced a finite element level set method for simulation of immiscible fluid flows [6]. Considered 

the system of equations governing an incompressible immiscible two-phase flow within the 

heterogeneous porous medium made of two different rock types [7], considered the immiscible 

incompressible two-phase flow in a porous medium composed of the two different rocks [8]. Presented 

the sequential discontinuous Galerkin method for two-phase immiscible incompressible flows in 

heterogeneous porous media[1], described the competitive motion of (𝑁 + 1)  incompressible 

immiscible phases within a porous medium [9]. Developed a high-order hybridisable discontinuous 

Galerkin formulation of the solution the immiscible and incompressible problems [10], considered a 

new efficient implicit pressure explicit saturation scheme for the simulation of incompressible and 

immiscible two-phase flow in heterogeneous porous media [11], used the multiphase Lattice 
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Boltzmann method for the numerical simulation of immiscible fluid displacement through a 2D porous 

medium [12]. 

 

The weak Galerkin method is a new finite element framework for the solution partial differential 

equations. Wang and Ye [13] introduced the weak Galerkin finite element method by using weakly 

defined gradient operator over discontinuous functions with heterogeneous properties and the solution 

of a model second order elliptic equations. The use of weak gradients, weak divergent and their 

approximations results called discrete weak gradients and discrete weak divergent which to play 

important roles in numerical methods for partial differential equations. Mu et al [14] conducted is to 

conducted a computational for the weak Galerkin method for various model second elliptic problem. 

Mu et al [15] introduced and analyzed the weak Galerkin mixed finite element method of the solution 

the biharmonic equation. Li and Wang [16] proposed developed weak Galerkin method of the solution 

parabolic equations. Zhu et al [17] combined weak Galerkin finite element method and characteristics 

method of treat the convection-diffusion problems. Gao et al [18] presented numerical weak Galerkin 

finite element schemes for Sobolev problem. Li et al [19] introduced and analyzed the weak Galerkin 

finite element method for the numerically solution the coupling of fluid flow with porous media flow. 

Li et al [19] introduced and analyzed weak Galerkin finite element method for numerically of the 

solution the coupled Stokes-Darcy problem. Liu et al [20] presented a lowest-order weak Galerkin 

finite element method of the solution the Darcy equation on general convex polygonal meshes. 

Kashkool and Hussein [21] used the weak Galerkin finite element method for the solution of 

two-Dimensional Burgers’ equations. Zhu and Xie [22] presented and analyzed weak Galerkin method 

for the quasi-linear elliptic problem of non-monotone type. Hussein and Kashkool [23] presented the 

continuous time and discrete time weak Galerkin finite element method of the solution nonlinear 

two-dimensional coupled Burgers’ problem. 

 

In this paper, we will adopt the weak Galerkin finite element [13] and weak Galerkin mixed finite 

element [15] methods of the solution (3.1, 3.2 and 3.4). However, a direct application of the algorithms 

will lead to a non-linear algebraic system, in which the velocity and the saturation are coupled, since 

the diffusion-dispersion tensor in transport equation depends on velocity in flow equation. We set up 
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weak Galerkin mixed finite element method for the pressure and the velocity for dual equations (3.1) 

and (3.2), and weak Galerkin finite element method for the saturation equation. 

 

The paper is organized as follows. 

In Sect. 2, we present some assumptions on the problem, the weak Galerkin finite element space, basic 

notations and some useful projections. In Sect. 3, properties for the weak Galerkin finite element 

method are presented. In Sect. 4, we are proved energy convection mass of weak Galerkin finite (3.4) 

and the stability for each of velocity, pressure and saturation, respectively. In Sect. 5, we are proved 

lemmas for the error equations and lemmas and theorems for error estimate for 𝐿2-norm and 𝐻1 -norm 

for each velocity, pressure, saturation and both, respectively. In Sect. 6, numerical results are given to 

demonstrate the accuracy of the proposed method. Finally, the conclusions in Sect. 7. 

 

2  The Preliminaries Definitions 

  A weak Galerkin finite element methods were first introduced in [13],a weakly defined gradient 

operator over discontinuous functions is used. The concept of weak gradient, weak divergent and its 

approximations result in discrete weak gradients and discrete weak divergent, which will play an 

important role in the weak Galerkin finite element methods for porous media. 

Let 𝜏𝑕  be a shape regular and body-fitted partition of Ω  (see [24]). Denote by 𝑃𝑘(𝑇)  the set of 

polynomials on 𝑇 with degree on more than 𝑘, and 𝑃𝑘(𝑒) the set of polynomials on boundary of 𝑇(𝑒) 

with degree no 𝑒 ∈ ℰ with degree on more than 𝑘, where ℰ by a set of all edges in 𝜏𝑕 , in particular.  

On this partition of 𝜏𝑕 , we are introduced the following Sobolev space  

 𝐻𝑚 (𝜏𝑕): = {𝑣 ∈ 𝐿2(Ω): 𝑣|𝐾 ∈ 𝐻1(𝐾); ∀𝐾 ∈ 𝜏𝑕} 

 for any integer 𝑚 ≤ 0. 

For any weak function 𝜔 = {𝜔0, 𝜔𝑏}  on a polygon 𝐾  with boundary 𝜕𝐾  satisfying 𝜔0 ∈

𝐿2(𝐾), 𝜔𝑏 ∈ 𝐻
1

2(𝜕𝐾), we define its weak gradient [13] denote by ∇𝑑𝜔, in the dual space of 𝐻(𝑑𝑖𝑣, 𝐾) 

and weak divergent [25] denote by ∇𝑑 ⋅ 𝜔 in the dual space of 𝐻1(𝐾) , respectively  

 (∇𝑑𝜔, 𝑞): = −(𝜔0∇ ⋅ 𝑞)𝐾 + 〈𝜔𝑏𝑞 ⋅ 𝑛〉𝜕𝐾 , ∀𝑞 ∈ 𝐻(𝑑𝑖𝑣, 𝐾) 

 (∇𝑑 ⋅ 𝜔, 𝜓): = −(𝜔0, ∇𝜓)𝐾 + 〈𝜔𝑏 ⋅ 𝑛, 𝜓〉𝜕𝐾 , ∀𝜓 ∈ 𝐻1(𝐾) 

 where 𝑛 is the outward normal direction to 𝜕𝐾. Basing on a weak function, the weak Galerkin finite 
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element space is defined by  

 𝕊𝑕 : = {𝜔 = {𝜔0, 𝜔𝑏}: 𝜔0 ∈ 𝑃𝑘(𝑇), 𝜔𝑏 ∈ 𝑃𝑘(𝑒), ∀  𝑒 ∈ ℰ ∀  𝑇 ∈ 𝜏𝑕}, 

 furthermore  

 𝕊𝑕
0 = {{𝜔0, 𝜔𝑏} ∈ 𝑉𝑕 , 𝜔𝑏 |𝜕𝑇∩𝜕Ω = 0, ∀  𝑇 ∈ 𝜏𝑕}. 

 

And introduce two finite element space which are necessary for formulating the numerical schemes. 

The first corresponds to the scalar (or pressure ) variable and the second one corresponds to 

vector-valued functions, defined as  

 𝔾𝑕 = {𝑤 ∈ 𝐿2(Ω): 𝑤|𝑇 ∈ 𝑃𝐾+1(𝑇)}, 

 

 ℚ𝑕 = {𝑢 = {𝑢0, 𝑢𝑏}: 𝑢0|𝑇 ∈ [𝑃𝐾(𝑇)]𝑑 , 𝑢𝑏 |𝑒 = 𝑢𝑏𝑛𝑒 , 𝑢𝑏 ∈ 𝑃𝐾(𝑒), 𝑒 ∈ ℰ}. 

 where 𝑘 ≥ 0 is a non-negative integer. The following 𝐿2 projections are introduced  

 𝑄𝑕 : 𝐿2(𝑇) → 𝑃𝑘(𝑇); ∀𝑇 ∈ 𝜏𝑕 ; 

 𝑅𝑕 : [𝐿2(𝑇)]2 → [𝑃𝑘−1(𝑇)]2; ∀𝑇 ∈ 𝜏𝑕 . 

 

3  The Weak Galerkin Finite Element Methods 

  In many engineering applications, incompressible immiscible flow in porous media can be described 

by immiscible displacement system, let Ω be a bounded domain (oil field ) in the plan 𝑅2 with smooth 

boundary Γ and 𝑇 > 0. The classical system in two-dimensional space are given as follows [2] 

 

 ∇ ⋅ 𝑣 = 𝑞(𝑥, 𝑡), (𝑥, 𝑡) ∈ Ω × (0, 𝑇] (3.1) 

 𝑣 = −𝛼(𝑠) ⋅ ∇𝑝, (𝑥, 𝑡) ∈ Ω × (0, 𝑇] (3.2) 

 𝜙
𝜕𝑠

𝜕𝑡
+ ∇ ⋅ (𝑓(𝑠)𝑣) − ∇ ⋅ (𝑎(𝑠)∇𝑠) = 𝑔(𝑥, 𝑡, 𝑠), (𝑥, 𝑡) ∈ Ω × (0, 𝑇], (3.3) 

 where  

 𝑔(𝑥, 𝑡, 𝑠) =  
𝑞+(𝑥, 𝑡)𝑠 (𝑥, 𝑡) ,        𝑎𝑡 𝑖𝑛𝑗𝑒𝑐𝑡𝑖𝑜𝑛 𝑤𝑒𝑙𝑙𝑠
−𝑞−(𝑥, 𝑡)  𝑠(𝑥, 𝑡) ,          𝑎𝑡 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑤𝑒𝑙𝑙𝑠

0 ,        𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒

  

 where 𝜙 is the porosity of the medium of the rock (𝜙 ∈ (0,1) in the domain Ω),𝑠, 𝑣 and 𝑝 are the 

saturation, Darcy’s velocity and pressure, respectively, 𝑓(𝑠) is the fractional flow function, 𝑔(𝑥, 𝑡, 𝑠) 
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is acceleration caused by gravity, 𝛼(𝑠) =
𝑘

𝜇
 is a smooth function, 𝑘 = 𝑘(𝑥) is the permeability of the 

porous rock, 𝜇 = 𝜇(𝑠) is the viscosity of the fluid , 𝑞 is the source and sink terms. 

If 𝑠 = 𝑠𝑜𝑖𝑙 , then 𝑠 = 0 and we can denote 𝑔(𝑥, 𝑡, 𝑠) = −𝑞−(𝑥, 𝑡)  𝑠(𝑥, 𝑡) , where −𝑞−(𝑥, 𝑡) ≥ 0, so 

the above equation (3.3) becomes  

 𝜙
𝜕𝑠

𝜕𝑡
+ ∇ ⋅ (𝑓(𝑠)𝑣) − ∇ ⋅ (𝑎(𝑠)∇𝑠) + 𝑞−(𝑥, 𝑡)  𝑠(𝑥, 𝑡) = 0, (𝑥, 𝑡) ∈ Ω × (0, 𝑇]. (3.4) 

 The boundary conditions are  

 
𝜕𝑝

𝜕𝑛
= 0,

𝜕𝑠

𝜕𝑛
= 0, (𝑥, 𝑡) ∈ Γ × (0, 𝑇], (3.5) 

 and the initial condition  

 𝑠(𝑥, 0) = 𝑠0(𝑥), 𝑥 ∈ Ω. (3.6) 

 

The variational formulation for the above system. The pair 𝐻0(𝑑𝑖𝑣, Ω) × 𝐿0
2 (Ω) × 𝐻1(Ω) forms the 

finite element approximation space for the unknown. Find 𝑣 ∈ 𝐻0(𝑑𝑖𝑣, Ω)  , 𝑝 ∈ 𝐿0
2 (Ω)  and 𝑠 ∈

𝐻1(Ω) such that  

 (∇ ⋅ 𝑣, 𝑤) = (𝑞, 𝑤);    ∀ 𝑤 ∈ 𝐿0
2 (Ω), (3.7) 

 (𝑣, 𝑢) = (𝛼(𝑠)𝑝, ∇ ⋅ 𝑢);    ∀ 𝑢 ∈ 𝐻0(𝑑𝑖𝑣, Ω) (3.8) 

 

  𝜙
𝜕𝑠

𝜕𝑡
, 𝜑 + (𝑎(𝑠)∇ ⋅ 𝑠, ∇ ⋅ 𝜑) + (∇ ⋅ (𝑓(𝑠)𝑣, 𝜑) + (𝑞−𝑠, 𝜑) = 0; ∀ 𝜑 ∈ 𝐻0

1(Ω),(3.9) 

 

The weak Galerkin mixed finite element method for the Darcy velocity and pressure. Find 𝑣𝑕 =

{𝑣𝑕
0, 𝑣𝑕

𝑏} ∈ ℚ𝑕  and 𝑝𝑕 = {𝑝𝑕
0, 𝑝𝑕

𝑏} ∈ 𝔾𝑕  such that 

 

 (∇𝑑,𝑟 ⋅ 𝑣𝑕 , 𝑤0) = (𝑞, 𝑤0);    ∀ 𝑤 = {𝑤0, 𝑤𝑏} ∈ 𝔾𝑕 , (3.10) 

 (𝑣𝑕
0, 𝑢0) = (𝛼(𝑠𝑕

0)𝑝𝑕
0, ∇𝑑,𝑟 ⋅ 𝑢);    ∀ 𝑢 = {𝑢0, 𝑢𝑏} ∈ ℚ𝑕  (3.11) 

 

The weak Galerkin finite element method for the saturation. Find 𝑠𝑕 = {𝑠𝑕
0, 𝑠𝑕

𝑏} ∈ 𝕊𝑕
0 (𝑗, 𝑙) such that  

  𝜙
𝜕𝑠𝑕

0

𝜕𝑡
, 𝜑0 + (𝑎(𝑠𝑕

0)∇𝑑,𝑟 ⋅ 𝑠𝑕 , ∇𝑑,𝑟 ⋅ 𝜑) + (∇𝑑,𝑟 ⋅ (𝑓(𝑠𝑕)𝑣𝑕), 𝜑0) + 

 (𝑞−𝑠𝑕
0, 𝜑0) = 0; ∀ 𝜑 = {𝜑0, 𝜑𝑏} ∈ 𝕊𝑕

0 (𝑗, 𝑙), (3.12) 
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 𝑠𝑕(𝑥, 0) = 𝑠𝑕
0(𝑥). 

Although the weak Galerkin scheme (3.12) is defined for arbitrary indices 𝑗, 𝑙, and 𝑟, the method can 

be shown to produce good numerical approximations for the solution of the original partial differential 

equation only with a certain combination of their values. For one thing, there are at least two prominent 

properties that the discrete gradient operator ∇𝑑,𝑟  should possess in order for the weak Galerkin finite 

element method to work well. These two properties are:   

    • A1: For any 𝜑 ∈ 𝕊(𝑗, 𝑙) , if ∇𝑑,𝑟𝜑 = 0 on 𝑇 , then one must have 𝜑 ≡ 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡  on 𝑇 . In 

other words, 𝜑0 = 𝜑𝑏 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 on 𝑇 ;  

    • A2: Let 𝑠 ∈ 𝐻𝑚 (Ω)(𝑚 ≥ 1) be a smooth function on Ω, and 𝑄𝑕
∗𝑠 be a certain projection of 𝑠 

on the finite element space 𝕊𝑕(𝑗, 𝑙) . Then, the discrete weak gradient of 𝑄𝑕
∗𝑠  should be a good 

approximation of ∇𝑑 ⋅ 𝑠.  

 

To verify property A2, let 𝑠 ∈ 𝐻1(𝑇) be a smooth function on 𝑇 . Denote by 𝑄𝑕
∗𝑠 = {𝑄∗𝑠0, 𝑄∗𝑠𝑏} the 

𝐿2 projection onto 𝑃𝑗 (𝑇0) × 𝑃𝑙(𝜕𝑇). In other words, on each element 𝑇 , the function 𝑄∗𝑠0 is defined 

as the 𝐿2  projection of 𝑠  in 𝑃𝑗 (𝑇)  and on 𝑇  , 𝑄∗𝑠𝑏  is the 𝐿2  projection on 𝑃𝑙(𝜕𝑇)  and on 𝜕𝑇 . 

Furthermore, let 𝑅𝑕
∗  be the local 𝐿2 projection onto 𝑉(𝑇, 𝑙). According to the definition of ∇𝑑,𝑟  , the 

discrete weak gradient function ∇𝑑,𝑟𝑄𝑕
∗𝑠 is given by the following equation:  

  ‍
𝑇

∇𝑑,𝑟𝑄𝑕
∗𝑠 ⋅ 𝜐 𝑑𝑇 = −  ‍

𝑇
(𝑄∗𝑠0)∇ ⋅ 𝜐 𝑑𝑇 +  ‍

𝜕𝑇
(𝑄∗𝑠𝑏)𝜐 ⋅ 𝑛𝑑𝑧,    ∀𝜐 ∈  𝑉(𝐾, 𝑟).(3.13) 

 Since 𝑄0
∗ and 𝑄𝑏

∗ are𝐿2-projection operators, then the right-hand side of (3.13) is given by  

 −  ‍
𝑇

(𝑄∗𝜑0)∇ ⋅ 𝜐𝑑𝑇 +  ‍
𝜕𝑇

(𝑄∗𝑠𝑏)𝜐 ⋅ 𝑛𝑑𝑧 = −  ‍
𝑇

𝑠∇ ⋅ 𝜐𝑑𝑇 +  ‍
𝜕𝑇

𝑠 𝜐 ⋅ 𝑛 𝑑𝑧 

 = −  ‍
𝑇

(∇𝑠) ⋅ 𝜐𝑑𝑇 

 =  ‍
𝑇

(𝑅𝑕
∗∇𝑠) ⋅ 𝜐𝑑𝑇. 

 Thus, we have derived the following useful identity:  

 ∇𝑑,𝑟(𝑄𝑕
∗𝑠) = 𝑅𝑕

∗(∇𝑠),    ∀𝑠 ∈ 𝐻1(𝑇). (3.14) 

  The above identity clearly indicates that ∇𝑑,𝑟(𝑄𝑕
∗𝑠) is an excellent approximation of the classical 

gradient of 𝑠 for any 𝑠 ∈ 𝐻1(𝑇). For simplicity of notation, we shall drop the subscript 𝑟  in the 

discrete weak gradient operator ∇𝑑,𝑟  from now on. Readers should bear in mind that ∇𝑑  refers to a 

discrete weak gradient operator defined. One may also define a projection Π𝑕
∗  such that Π𝑕

∗𝜐 ∈
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𝐻(𝑑𝑖𝑣, Ω) , and on each 𝑇 ∈ 𝒯𝑕 , one has Π𝑕
∗ 𝜐 ∈ 𝑉(𝑇, 𝑟 = 𝑙) and the following identity  

 (∇ ⋅ 𝜐, 𝜑0)𝑇 = (∇ ⋅ Π𝑕
∗𝜐, 𝜑0)𝑇,    ∀𝜑0 ∈ 𝑃𝑗 (𝑇0). 

 The following result is based on the above property of Π𝑕
∗ .  

Lemma 3.1 [13] For any 𝜐 ∈ 𝐻(𝑑𝑖𝑣, 𝛺), we have  

  ‍𝑇∈𝒯𝑕
(−∇ ⋅ 𝜐, 𝜑0)𝑇 =  ‍𝑇∈𝒯𝑕

(Π∗𝜐, ∇𝑑,𝑟𝜑)𝑇,    ∀  𝜑 = {𝜑0, 𝜑𝑏} ∈ 𝕊𝑕
0 (𝑗, 𝑙). (3.15) 

 

4  The Energy Conservation and Stability of Weak Galerkin  

  The increase in interval energy in a small spatial region of the material, control volume, over the time 

period [𝑡 − Δ𝑡, 𝑡 + Δ𝑡] is given by  

  ‍
𝑡+Δ𝑡

𝑡−Δ𝑡  ‍
𝐾

𝑤𝑡𝑑𝑥𝑑𝑡 =  ‍
𝐾

𝑤(𝑥, 𝑡 + Δ𝑡)𝑑𝑥 −  ‍
𝐾

𝑤(𝑥, 𝑡 − Δ𝑡)𝑑𝑥 

 since equation (3.12), let  

 𝜙 
𝜕𝑠

𝜕𝑡
+ ∇ ⋅ 𝜒 + 𝑞−𝑠 = 0, 

 𝜒 = 𝑓(𝑠)𝑣 − 𝑎(𝑠)∇𝑠, 

 suppose that a body obeys the heat equation and, in addition generates its own heat per unit volume at 

a known function 𝑞 varying in space and time, the change in interval energy in 𝐾 is accounted for by 

the flux of heat across the boundaries together with the source energy. By Fourier’s law integral form 

of energy conservation  

  ‍
𝑡+Δ𝑡

𝑡−Δ𝑡  ‍
𝐾

𝜙 
𝜕𝑠0

𝜕𝑡
 𝑑𝑥𝑑𝑡 +  ‍

𝑡+Δ𝑡

𝑡−Δ𝑡  ‍
𝜕𝐾

𝜒 ⋅ 𝑛 𝑑𝛿𝑑𝑡 +  ‍
𝑡+Δ𝑡

𝑡−Δ𝑡  ‍
𝐾

𝑞−𝑠 𝑑𝑥𝑑𝑡 = 0, 

 where the Green’s formula was used. 

We chose a test function 𝜑 = {𝜑0, 𝜑𝑏 = 0}  so that 𝜑0 = 1  on 𝐾  and 𝜑0 = 0  elsewhere. After 

integrating over the time period, we have  

  ‍
𝑡+Δ𝑡

𝑡−Δ𝑡  ‍
𝐾

𝜙 
𝜕𝑠0

𝜕𝑡
 𝑑𝑥𝑑𝑡 +  ‍

𝑡+Δ𝑡

𝑡−Δ𝑡  ‍
𝐾

𝑎(𝑠0)∇𝑑 ⋅ 𝑠  ∇𝑑 ⋅ 𝜑 𝑑𝑥𝑑𝑡 

 +  ‍
𝑡+Δ𝑡

𝑡−Δ𝑡  ‍
𝐾

𝑓(𝑠0)𝑣0∇𝑑 ⋅ 𝜑 𝑑𝑥𝑑𝑡 

 +  ‍
𝑡+Δ𝑡

𝑡−Δ𝑡  ‍
𝐾

𝑞−𝑠0 𝑑𝑥𝑑𝑡 = 0, 

 using the definition of operator 𝑅𝑕
∗ , the divergence theorem and of the weak (∇𝑑,𝑟 ⋅), we arrive at  

  ‍
𝐾

𝑎(𝑠𝑕
0)∇𝑑,𝑟 ⋅ 𝑠𝑕∇𝑑,𝑟 ⋅ 𝜑 𝑑𝑥 =  ‍

𝐾
𝑅𝑕

∗(𝑎(𝑠0)∇𝑑,𝑟 ⋅ 𝑠)∇𝑑,𝑟 ⋅ 𝜑𝑑𝑥 

 = −  ‍
𝐾

∇𝑑,𝑟 ⋅ 𝑅𝑕
∗(𝑎(𝑠0)∇𝑑,𝑟 ⋅ 𝑠) 𝑑𝑥 
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 = −  ‍
𝜕𝐾

𝑅𝑕
∗ (𝑎(𝑠0)∇𝑑,𝑟 ⋅ 𝑠) ⋅ 𝑛 𝑑𝛿 

 

  ‍
𝐾

𝑓(𝑠𝑕
0)𝑣𝑕

0∇𝑑,𝑟 ⋅ 𝜑 𝑑𝑥 =  ‍
𝐾

𝑅𝑕
∗(𝑓(𝑠0)𝑣𝑕

0)∇𝑑,𝑟 ⋅ 𝜑 𝑑𝑥 

 = −  ‍
𝐾

∇𝑑,𝑟 ⋅ 𝑅𝑕
∗(𝑓(𝑠0)𝑣𝑕

0)𝑑𝑥 

 = −  ‍
𝜕𝐾

𝑅𝑕
∗ (𝑓(𝑠0)𝑣𝑕

0) ⋅ 𝑛 𝑑𝛿. 

 Now, we have  

  ‍
𝑡+Δ𝑡

𝑡−Δ𝑡  ‍
𝐾

𝜙
𝜕𝑠𝑕

0

𝜕𝑡
𝑑𝑥𝑑𝑡 −  ‍

𝑡+Δ𝑡

𝑡−Δ𝑡  ‍
𝜕𝐾

𝑅𝑕
∗(𝑎(𝑠0)∇𝑑,𝑟 ⋅ 𝑠) ⋅ 𝑛 𝑑𝛿𝑑𝑡 

 −  ‍
𝑡+Δ𝑡

𝑡−Δ𝑡  ‍
𝜕𝐾

𝑅𝑕
∗(𝑓(𝑠0)𝑣𝑕

0) ⋅ 𝑛 𝑑𝛿𝑑𝑡 

 +  ‍
𝑡+Δ𝑡

𝑡−Δ𝑡  ‍
𝐾

𝑞−𝑠𝑕
0 𝑑𝑥𝑑𝑡 = 0, 

 

  ‍
𝑡+Δ𝑡

𝑡−Δ𝑡  ‍
𝐾

𝜙
𝜕𝑠𝑕

0

𝜕𝑡
𝑑𝑥𝑑𝑡 −  ‍

𝑡+Δ𝑡

𝑡−Δ𝑡  ‍
𝜕𝐾

𝑅𝑕
∗(𝑎(𝑠0)∇𝑑,𝑟 ⋅ 𝑠 + 𝑓(𝑠0)𝑣𝑕

0) ⋅ 𝑛 𝑑𝛿𝑑𝑡 

 +  ‍
𝑡+Δ𝑡

𝑡−Δ𝑡  ‍
𝐾

𝑞−𝑠𝑕
0 𝑑𝑥𝑑𝑡 = 0, 

 which provides a numerical flux given for saturation by 𝜒𝑕 ⋅ 𝑛 = −𝑅𝑕
∗(𝑎(𝑠0)∇𝑑,𝑟 ⋅ 𝑠 + 𝑓(𝑠0)𝑣𝑕

0) ⋅ 𝑛. 

The numerical flux 𝜒𝑕 ⋅ 𝑛 + 𝑞−𝑠𝑕
0 is continuous a cross the edge of each element 𝐾, which can be 

verified by a selection of the test function 𝜑 = {𝜑0, 𝜑𝑏} so that 𝜑0 ≡ 0 and 𝜑𝑏  arbitrary. 

Now the arguments for stability and bound on the approximation error are useful for the analysis of the 

discrete formulations. 

 

Lemma 4.1 (The stability for the pressure) 

Let a solution 𝑝𝑕 ∈ 𝔾𝑕  and 𝐶1 is a constant and independent 𝑕, then  

 ∥ 𝑝𝑕 ∥2≤ 𝐶1 ∥ 𝑞 ∥2. (4.1) 

 

Proof. From equations (3.10 and 3.11) , and put 𝑤 = 𝑝𝑕 , we get  

 (𝛼(𝑠𝑕
0)∇𝑑,𝑟𝑝𝑕 , ∇𝑑,𝑟 ⋅ 𝑝𝑕 ) = (𝑞, 𝑝𝑕

0), 

 by using Young’s inequality and Cauchy inequality, we have  

 |(𝛼(𝑠𝑕
0)∇𝑑,𝑟 ⋅ 𝑝𝑕 , ∇𝑑,𝑟 ⋅ 𝑝𝑕)| ≤∥ (𝛼(𝑠𝑕

0) ∥∥ ∇𝑑,𝑟 ⋅ 𝑝𝑕 ∥2≤ 𝐶 ∥ (𝛼(𝑠𝑕
0) ∥∥ 𝑝𝑕 ∥2, 
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 |(𝑞, 𝑝𝑕
0)| ≤

1

4
∥ 𝑞 ∥2 +∥ 𝑝𝑕

0 ∥2, 

 then  

 𝐶 ∥ (𝛼(𝑠𝑕
0) ∥∥ 𝑝𝑕 ∥2≤

1

4
∥ 𝑞 ∥2 +∥ 𝑝𝑕

0 ∥2 

 

 ∥ 𝑝𝑕 ∥2≤ 𝐶1 ∥ 𝑞 ∥2, 

 where 𝐶1 = 1/𝑚𝑖𝑛{4𝐶 ∥ (𝛼(𝑠𝑕) ∥, −4 ∥ 𝑝𝑕
0 ∥2}. 

 

Lemma 4.2 (The stability for the velocity) 

Let a solution𝑣𝑕 ∈ ℚ𝑕  and 𝐶2 is a constant and independent 𝑕, then  

 ∥ 𝑣𝑕 ∥2≤ 𝐶2 ∥ 𝑣𝑕
0 ∥2 +∥ 𝑝𝑕

0 ∥2 . (4.2) 

 

 

Proof. Put 𝑢 = 𝑣𝑕  in equation (3.10), we have  

 (𝑣𝑕
0, 𝑣𝑕

0) = (𝛼(𝑠𝑕
0)𝑝𝑕

0, ∇𝑑,𝑟 ⋅ 𝑣𝑕), 

 then,  

 |(𝑣𝑕
0, 𝑣𝑕

0)| ≤ 𝛼1 ∥ 𝑣𝑕
0 ∥2, 

 |(𝛼(𝑠𝑕
0)𝑝𝑕

0, ∇𝑑,𝑟𝑣𝑕)| ≤ 2 ∥ 𝛼(𝑠𝑕
0) ∥2∥ 𝑝𝑕

0 ∥2+
1

2
∥ ∇𝑑,𝑟𝑣𝑕 ∥2 

 ≤ 2 ∥ 𝛼(𝑠𝑕
0) ∥2∥ 𝑝𝑕

0 ∥2+
𝐶

2
∥ 𝑣𝑕 ∥2, 

 then  

 2 ∥ 𝛼(𝑠𝑕
0) ∥2∥ 𝑝𝑕

0 ∥2+
𝐶

2
∥ 𝑣𝑕 ∥2≤ 𝛼1 ∥ 𝑣𝑕

0 ∥2, 

 

 
𝐶

2
∥ 𝑣𝑕 ∥2≤ 𝛼1 ∥ 𝑣𝑕

0 ∥2− 2 ∥ 𝛼(𝑠𝑕
0) ∥2∥ 𝑝𝑕

0 ∥2, 

 then  

 ∥ 𝑣𝑕 ∥2≤ 𝐶2 ∥ 𝑣𝑕
0 ∥2 +∥ 𝑝𝑕

0 ∥2 . 

 where 𝐶2 = max 2𝛼1/𝐶, −4 ∥ 𝛼(𝑠𝑕
0) ∥2/𝐶  
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Theorem 4.1 (The stability of velocity and the pressure) 

Let the dual solutions 𝑣𝑕 =  𝑣𝑕
0, 𝑣𝑕

𝑏 ∈ ℚ𝑕 , 𝑝𝑕 =  𝑝𝑕
0, 𝑝𝑕

𝑏 ∈ 𝔾𝑕 , and 𝛽 is a constant and independent 

𝑕. Then  

 ∥ 𝑝𝑕 ∥2 +∥ 𝑣𝑕 ∥2≤ 𝛽 ∥ 𝑞 ∥2 +∥ 𝑣𝑕
0 ∥2 . (4.3) 

 

 

Proof. From equations (3.10 and 3.11) and replacement test function with 𝑢 ∈ ℚ𝑕 , such that 𝑣𝑕 ∈ ℚ𝑕 , 

we have  

 (𝛼(𝑠𝑕
0)∇𝑑,𝑟𝑝𝑕 , ∇𝑑,𝑟 ⋅ 𝑢) = (𝑞, 𝑢0);   𝑢 ∈ ℚ𝑕 , 

 put 𝑢 = 𝑣𝑕  in the above equation, we have  

 (𝛼(𝑠𝑕
0)∇𝑑,𝑟𝑝𝑕 , ∇𝑑,𝑟 ⋅ 𝑣𝑕) = (𝑞, 𝑣𝑕

0), 

 then,  

 |(𝛼(𝑠𝑕
0)∇𝑑,𝑟𝑝𝑕 , ∇𝑑,𝑟 ⋅ 𝑣𝑕)| ≤

𝛼2∥𝛼(𝑠𝑕
0)∥2

2
∥ ∇𝑑,𝑟𝑝𝑕 ∥2+ 2𝛼2 ∥ ∇𝑑,𝑟𝑣𝑕 ∥2 

 ≤ 𝐶 ∥ 𝑝𝑕 ∥2+ 𝐶 ∥ 𝑣𝑕 ∥2, 

 

 |(𝑞, 𝑣𝑕
0)| ≤

1

4
∥ 𝑞 ∥2 +∥ 𝑣𝑕

0 ∥2, 

 then  

 𝐶 ∥ 𝑝𝑕 ∥2+ 𝐶 ∥ 𝑣𝑕 ∥2≤
1

4
∥ 𝑞 ∥2 +∥ 𝑣𝑕

0 ∥2, 

 we get,  

 ∥ 𝑝𝑕 ∥2 +∥ 𝑣𝑕 ∥2≤ 𝛽 ∥ 𝑞 ∥2 +∥ 𝑣𝑕
0 ∥2 . 

 where 𝛽 = 1/𝐶  𝑚𝑎𝑥{1/4,1}. 

 

 

 

Lemma 4.3 (The stability for Saturation) 

Let a solution 𝑠𝑕 ∈ 𝕊𝑕
0  and 𝛼4 is a constant and independent 𝑕, then  
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 ∥ 𝑠𝑕
0(𝑡) ∥2≤∥ 𝑠𝑕

0(0) ∥2 𝑒𝑥𝑝(−𝛼1𝑡) + 𝛼4𝑒𝑥𝑝(−𝛼1𝑡)  ‍
𝑡

0
𝑒𝑥𝑝(𝛼1𝑧){∥ 𝑠𝑕(𝑧) ∥2 +∥

𝑣𝑕(𝑧) ∥2}𝑑𝑧. (4.4) 

 

 

Proof. Rewrite (3.12), and put 𝜑 = 𝑠𝑕  , we get  

  𝜙
𝜕𝑠𝑕

𝜕𝑡
, 𝑠𝑕

0 + (𝑎(𝑠𝑕
0)∇𝑑,𝑟 ⋅ 𝑠𝑕 , ∇𝑑,𝑟 ⋅ 𝑠𝑕) + (𝑣𝑕

0∇𝑑,𝑟 ⋅ 𝑓(𝑠𝑕), 𝑠𝑕
0) 

 +(𝑓(𝑠𝑕
0)∇𝑑,𝑟 ⋅ 𝑣𝑕 , 𝑠𝑕

0) + (𝑞−𝑠𝑕
0, 𝑠𝑕

0) = 0, (4.5) 

 we have,  

  𝜙
𝜕𝑠𝑕

0

𝜕𝑡
, 𝑠𝑕

0 ≤
1

2
∥ 𝜙 ∥

𝜕

𝜕𝑡
∥ 𝑠𝑕

0(𝑡) ∥2 

 

 |(𝑎(𝑠𝑕
0)∇𝑑,𝑟 ⋅ 𝑠𝑕 , ∇𝑑,𝑟 ⋅ 𝑠𝑕)| ≤

1

4
∥ 𝑎(𝑠𝑕

0) ∥2 +∥ ∇𝑑,𝑟𝑠𝑕 ∥2≤ 𝐶 ∥ 𝑠𝑕
0 ∥2+ 𝐶 ∥ 𝑠𝑕 ∥2, 

 

 |(𝑣𝑕
0∇𝑑,𝑟 ⋅ 𝑓(𝑠𝑕), 𝑠𝑕

0)| ≤
1

4
∥ 𝑣𝑕

0 ∥2∥ ∇𝑑,𝑟𝑓(𝑠𝑕) ∥2 +∥ 𝑠𝑕
0 ∥2≤ 𝐶 ∥ 𝑠𝑕 ∥2 +∥ 𝑠𝑕

0 ∥2, 

 

 |(𝑓(𝑠𝑕
0)∇𝑑,𝑟 ⋅ 𝑣𝑕 , 𝑠𝑕

0)| ≤
1

4
∥ (𝑓(𝑠𝑕

0) ∥2∥ ∇𝑑,𝑟𝑣𝑕 ∥2 +∥ 𝑠𝑕
0 ∥2≤

1

16
∥ 𝑓(𝑠𝑕

0 ∥2 

 +
1

4
∥ ∇𝑑,𝑟𝑣𝑕 ∥2 +∥ 𝑠𝑕

0 ∥2≤ 𝐶 ∥ 𝑠𝑕
0 ∥2+ 𝐶 ∥ 𝑣𝑕 ∥2, 

 

 |(𝑞−𝑠𝑕
0, 𝑠𝑕

0)| ≤ 𝜆 ∥ 𝑠𝑕
0 ∥2, 

 became equation (4.5), the follows  

 ∥ 𝜙 ∥
1

2

𝜕

𝜕𝑡
∥ 𝑠𝑕

0(𝑡) ∥2+ 𝐶 ∥ 𝑠𝑕
0 ∥2+ 𝐶 ∥ 𝑠𝑕 ∥2+ 𝐶 ∥ 𝑠𝑕 ∥2 +∥ 𝑠𝑕

0 ∥2 

 +𝐶 ∥ 𝑠𝑕
0 ∥2+ 𝐶 ∥ 𝑣𝑕 ∥2+ 𝜆 ∥ 𝑠𝑕

0 ∥2≤ 0, 

 

 
𝜕

𝜕𝑡
∥ 𝑠𝑕

0(𝑡) ∥2+ 𝛼1 ∥ 𝑠𝑕
0 ∥2≤ 𝛼2 ∥ 𝑠𝑕 ∥2+ 𝛼3 ∥ 𝑣𝑕 ∥2, 

 where 𝛼1 =
2

∥𝜙∥
(2𝐶 + 1 + 𝜆) , 𝛼2 =

−4𝐶

∥𝜙∥
 and 𝛼3 =

−2𝐶

∥𝜙∥
 . Multiply both sides of the above inequality 

by the integral factor 𝑒𝑥𝑝(𝛼1𝑧) and then integrate from 0 to 𝑡, we get  
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 ∥ 𝑠𝑕
0(𝑡) ∥2≤∥ 𝑠𝑕

0(0) ∥2 𝑒𝑥𝑝(−𝛼1𝑡) + 𝛼4𝑒𝑥𝑝(−𝛼1𝑡)  ‍
𝑡

0
𝑒𝑥𝑝(𝛼1𝑧){∥ 𝑠𝑕(𝑧) ∥2 

 +∥ 𝑣𝑕(𝑧) ∥2}𝑑𝑧, 

 where 𝛼4 = 𝑚𝑎𝑥{𝛼2, 𝛼3}. 

 

5  The Error Analysis  

 

 In this section we are derived error estimate for the weak Galerkin finite element methods in 

(3.11)-(3.12). Let us begin with the derivations of the error equations for weak Galerkin approximation 

(𝑣𝑕 , 𝑝𝑕 , 𝑠𝑕) and the 𝐿2  projection of the exact solution (𝑣, 𝑝, 𝑠)  in the weak finite element space 

ℚ𝑕 × 𝔾𝑕 × 𝕊𝑕
0 , will prove error estimate for 𝐿2 norm and 𝐻1 norm for each variables. 

The first let for each element 𝑇 ∈ 𝒯𝑕 , denoted by 𝑄𝑕
0  and 𝑄′𝑕

0  the 𝐿2  projection operator onto 

𝑃𝑘−1(𝑇) and [𝑃𝑘(𝑇)]𝑑 , respectively. For each edge 𝑒 ∈ ℰ𝑕 , denote by 𝑄𝑕
𝑏  and 𝑄′𝑕

𝑏  the 𝐿2 projection 

onto 𝑃𝑘−1(𝑒) and [𝑃𝑘(𝑒)]𝑑 , respectively. We shall combine 𝑄𝑕
0  and 𝑄𝑕

𝑏  by writing 𝑄𝑕 =  𝑄𝑕
0, 𝑄𝑕

𝑏  

and 𝑄′𝑕
0  and 𝑄′𝑕

𝑏  by writing 𝑄′𝑕 =  𝑄′𝑕
0 , 𝑄′𝑕

𝑏 . Then we can define two projection onto the finite 

element space ℚ𝑕  and 𝔾𝑕  such that on each element 𝑇,  

 𝑄𝑕𝑣 =  𝑄𝑕𝑣0, 𝑄𝑕𝑣𝑏 , 𝑄′𝑕𝑝 =  𝑄′𝑕𝑝0, 𝑄′𝑕𝑝𝑏 . 

 In the current application, we shall employ the following decomposition: Let  

 𝑣 − 𝑣𝑕 = (𝑣 − 𝑄𝑕𝑣) + (𝑄𝑕𝑣 − 𝑣𝑕), 

 𝑝 − 𝑝𝑕 = (𝑝 − 𝑄′𝑕𝑝) + (𝑄′𝑕𝑝 − 𝑝𝑕 ), 

 𝑠 − 𝑠𝑕 = (𝑠 − 𝑄𝑕
∗𝑠) + (𝑄𝑕

∗𝑠 − 𝑠𝑕). 

 For simplicity, we introduce the following notation:  

 𝑒𝑣 = {𝑒𝑣
0, 𝑒𝑣

𝑏} = 𝑄𝑕𝑣 − 𝑣𝑕 , 𝑒𝑝 = {𝑒𝑝
0, 𝑒𝑝

𝑏} = 𝑄′𝑕𝑝 − 𝑝𝑕 , 𝑒𝑠 = {𝑒𝑠
0 , 𝑒𝑠

𝑏} = 𝑄𝑕
∗𝑠 − 𝑠𝑕 . 

 

An error equations are given by the following lemmas 5.1, 5.2 and 5.3  

Lemma 5.1  Let 𝑣𝑕  be the solution in dual equations (3.10) and (3.11) and 𝑒𝑣  is the error estimate 

for the velocity, then  

 (𝑒𝑣
0, 𝑢0) = (𝑄𝑕𝑣0 − Π𝑕𝑣0, 𝑢0), (5.1) 
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Proof. Rewrite equation (3.11), then  

  ‍𝑇∈𝒯𝑕
(𝑣𝑕

0, 𝑢0)𝑇 = (𝛼(𝑠𝑕
0)𝑝𝑕

0, ∇𝑑,𝑟𝑢), 

 by using the projection Π𝑕  for the above equation , we arrive at  

  ‍𝑇∈𝒯𝑕
(Π𝑕𝑣0, 𝑢0) = (𝛼(𝑠𝑕

0)𝑝𝑕
0, ∇𝑑,𝑟𝑢). 

 Adding and subtracting the term (𝑄𝑕𝑣0, 𝑢0) on the right hand side of the above equation and using 

(3.14 ) we obtain,  

 (Π𝑕𝑣0 − 𝑄𝑕𝑣0, 𝑢0) + (𝑄𝑕𝑣0, 𝑢0) = (𝛼(𝑠𝑕
0)𝑝𝑕

0, ∇𝑑,𝑟𝑢). 

 since −𝛼(𝑠) ⋅ ∇𝑝 = 𝑣 , we get  

 (Π𝑕𝑣0 − 𝑄𝑕𝑣0, 𝑢0) + (𝑄𝑕𝑣0, 𝑢0) = (𝑣𝑕
0, 𝑢0), 

 then the error equation is  

 (𝑒𝑣
0, 𝑢0) = (𝑄𝑕𝑣0 − Π𝑕𝑣0, 𝑢0), 

 where 𝑒𝑣
0 = 𝑄𝑕𝑣0 − 𝑣𝑕

0. 

 

 

Lemma 5.2  Let 𝑝𝑕  be the solution of equation (3.11) and 𝑒𝑝  is the error estimate for the pressure, 

then  

 (∇𝑑,𝑟𝑒𝑝 , ∇𝑑,𝑟 ⋅ 𝑤) =  ∇𝑑,𝑟 𝑄′𝑕𝑝 − Π′𝑕𝑝 , ∇𝑑,𝑟 ⋅ 𝑤 . (5.2) 

 

 

Proof. From dual equations (3.10) and (3.11), we have  

  ‍𝑇∈𝒯𝑕
(𝛼(𝑠𝑕

0)∇𝑑,𝑟𝑝𝑕 , ∇𝑑,𝑟 ⋅ 𝑤)𝑇 = (𝑞, 𝑤0), 

  ‍𝑇∈𝒯𝑕
(𝛼(𝑠𝑕

0)Π′𝑕∇𝑑,𝑟𝑝, ∇𝑑,𝑟 ⋅ 𝑤) = (𝑞, 𝑤0), 

 Adding and subtracting the term (𝛼(𝑠𝑕
0)𝑄′𝑕∇𝑑,𝑟𝑝, ∇𝑑,𝑟 ⋅ 𝑤) on the left hand side of the above equation 

and using (3.14 ) we obtain,  

  𝛼(𝑠𝑕
0) Π′𝑕∇𝑑,𝑟𝑝 − 𝑄′𝑕∇𝑑,𝑟𝑝 , ∇𝑑,𝑟 ⋅ 𝑤 + (𝛼(𝑠𝑕

0)𝑄′𝑕∇𝑑,𝑟𝑝, ∇𝑑,𝑟 ⋅ 𝑤) 

 = (𝛼(𝑠𝑕
0)∇𝑑,𝑟𝑝𝑕 , ∇𝑑,𝑟 ⋅ 𝑤), 

 the following that  

 (𝛼(𝑠𝑕
0)∇𝑑,𝑟𝑒𝑝 , ∇𝑑,𝑟 ⋅ 𝑤) =  𝛼(𝑠𝑕

0)∇𝑑,𝑟 𝑄′𝑕𝑝 − Π′𝑕𝑝 , ∇𝑑,𝑟 ⋅ 𝑤 , 
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 then, the error equation is  

 (∇𝑑,𝑟𝑒𝑝 , ∇𝑑,𝑟 ⋅ 𝑤) =  ∇𝑑,𝑟 𝑄′𝑕𝑝 − Π′𝑕𝑝 , ∇𝑑,𝑟 ⋅ 𝑤 , 

 where 𝑒𝑝 = 𝑝𝑕 − 𝑄′𝑕𝑝. 

 

 

Lemma 5.3  Let 𝑠𝑕  be the solution of equation (3.12) and 𝑒𝑠 is the error estimate for the saturation, 

then  

 𝑎((𝑐𝑕 − 𝑄𝑕
∗𝑐), 𝜑) = (𝐷(𝑢𝑕

0)∇𝑑,𝑟(Π𝑕
∗𝑐 − 𝑄𝑕

∗𝑐), ∇𝑑,𝑟𝜑) (5.3) 

 +(𝑢𝑕
0 ⋅ ∇𝑑,𝑟(Π𝑕

∗𝑐 − 𝑄𝑕
∗𝑐), 𝜑0) − (𝑓(Π𝑕

∗𝑐0 − 𝑄𝑕
∗𝑐0), 𝜑0). 

 

Proof. By testing (3.12) against 𝜑0 and using (3.15 ), we get  

 0 =  𝜙
𝜕𝑠𝑕

0

𝜕𝑡
, 𝜑0 +  ‍𝑇∈𝒯𝑕

[(𝑎(𝑠𝑕
0)∇𝑑,𝑟 ⋅ 𝑠𝑕 , ∇𝑑,𝑟 ⋅ 𝜑)𝑇 + (∇𝑑,𝑟 ⋅ (𝑓(𝑠𝑕)𝑣𝑕), 𝜑0)𝑇  +

(𝑞−𝑠𝑕
0, 𝜑0)𝑇], 

 

 0 =  𝜙
𝜕𝑐𝑕

0

𝜕𝑡
, 𝜑0 +  ‍𝑇∈𝒯𝑕

[(𝑎(Π𝑕
∗𝑠0)Π𝑕

∗∇𝑑,𝑟𝑠, ∇𝑑,𝑟𝜑)𝑇 

 +(∇𝑑,𝑟 ⋅ (𝑓(Π𝑕
∗𝑠)𝑣𝑕), 𝜑0)𝑇 + (𝑞−Π𝑕

∗𝑠0, 𝜑0)𝑇]. 

 Adding and subtracting the term 𝐴(𝑄𝑕
∗𝑠, 𝜑) ≡ (𝑎(𝑄𝑕

∗𝑠0)∇𝑑,𝑟𝑄𝑕
∗𝑠, ∇𝑑,𝑟𝜑) + (∇𝑑,𝑟 ⋅ (𝑓(𝑄𝑕

∗𝑠)𝑣𝑕), 𝜑0) +

(𝑞−𝑄𝑕
∗𝑠0, 𝜑0) on the right hand side of the above equation and then using ( 3.14 ) we obtain  

 0 =  𝜙
𝜕𝑐𝑕

0

𝜕𝑡
, 𝜑0 + (𝑎(𝑄𝑕

∗𝑠0)∇𝑑,𝑟𝑄𝑕
∗𝑠, ∇𝑑,𝑟𝜑) + (∇𝑑,𝑟 ⋅ (𝑓(𝑄𝑕

∗𝑠)𝑣𝑕), 𝜑0) 

 +(𝑞−𝑄𝑕
∗𝑠0, 𝜑0) 

 +(𝑎(Π𝑕
∗𝑠0)∇𝑑,𝑟(Π𝑕

∗𝑠 − 𝑄𝑕
∗𝑠), ∇𝑑,𝑟𝜑) + (∇𝑑,𝑟 ⋅ ((𝑓(Π𝑕

∗𝑠) − 𝑄𝑕
∗𝑠)𝑣𝑕), 𝜑0) 

 +(𝑞−(Π𝑕
∗𝑠0 − 𝑄𝑕

∗𝑠0), 𝜑0) − (𝑎(𝑄𝑕
∗𝑠0)∇𝑑,𝑟(Π𝑕

∗𝑠 − 𝑄𝑕
∗𝑠), ∇𝑑,𝑟𝜑), 

 which can be rewritten as  

 𝐴(𝑠𝑕 , 𝜑) = 𝐴(𝑄𝑕
∗𝑠, 𝜑) + (𝑎(Π𝑕

∗𝑠0)∇𝑑,𝑟(Π𝑕
∗𝑠 − 𝑄𝑕

∗𝑠), ∇𝑑,𝑟𝜑) 

 +(∇𝑑,𝑟 ⋅ ((𝑓(Π𝑕
∗𝑠) − 𝑄𝑕

∗𝑠)𝑣𝑕), 𝜑0) 

 +(𝑞−(Π𝑕
∗𝑠0 − 𝑄𝑕

∗𝑠0), 𝜑0) − (𝑎(𝑄𝑕
∗𝑠0)∇𝑑,𝑟(Π𝑕

∗𝑠 − 𝑄𝑕
∗𝑠), ∇𝑑,𝑟𝜑), 

 then, the error equation is  
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 𝐴((𝑠𝑕 − 𝑄𝑕
∗𝑠), 𝜑) = (𝑎(Π𝑕

∗𝑠0)∇𝑑,𝑟(Π𝑕
∗𝑠 − 𝑄𝑕

∗𝑠), ∇𝑑,𝑟𝜑) 

 +(∇𝑑,𝑟 ⋅ ((𝑓(Π𝑕
∗𝑠) − 𝑄𝑕

∗𝑠)𝑣𝑕), 𝜑0) + (𝑞−(Π𝑕
∗𝑠0 − 𝑄𝑕

∗𝑠0), 𝜑0) (5.4) 

 −(𝑎(𝑄𝑕
∗𝑠0)∇𝑑,𝑟(Π𝑕

∗𝑠 − 𝑄𝑕
∗𝑠), ∇𝑑,𝑟𝜑). 

 

5.1  𝑳𝟐 The Error Analysis for Velocity, Pressure and Saturation 

 

Lemma 5.4 (𝐿2 Error Analysis for Velocity) 

 Let 𝑣𝑕 ∈ ℚ𝑕  be a solution to the dual equations (3.10 and 3.11). Then  

 ∥ 𝑒𝑣 ∥2≤ 𝐶1𝑕[∥ 𝑣𝑕
0 ∥2 +∥ 𝑣𝑕 ∥2 +∥ 𝑒𝑝

0 ∥2 +∥ 𝑒0 ∥2]. (5.5) 

 where 𝐶1 is a constant and independent 𝑕.  

 

Proof. Put 𝑣𝑕 = Π𝑕𝑣 for dual equations (3.10 )and (3.11), we have  

 (Π𝑕∇𝑑,𝑟 ⋅ 𝑣, 𝑤0) = (𝑞, 𝑤0);     ∀𝑤 ∈ 𝔾𝑕 , (5.6) 

 (Π𝑕𝑣0, 𝑢0) = (𝛼(𝑠𝑕
0)𝑝𝑕

0, ∇𝑑,𝑟𝑢);    ∀𝑢 ∈ ℚ𝑕  (5.7) 

 subtracting equation (3.10) from (5.6) and equation (3.11) from (5.7), then  

 (Π𝑕𝑣0 − 𝑣𝑕
0, 𝑢0) = ((Π𝑕∇𝑑,𝑟 ⋅ 𝑣 − ∇𝑑,𝑟 ⋅ 𝑣𝑕), 𝑤0). 

 Adding and subtract the two terms (𝑄𝑕𝑣0, 𝑢0) and (∇𝑑,𝑟 ⋅ 𝑄𝑕𝑣, 𝑤0), put 𝑢 = 𝑒𝑣 = (𝑄𝑕𝑣 − 𝑣𝑕) and 

𝑤 = 𝑒𝑝 = (𝑄𝑕𝑝 − 𝑝𝑕 ), we have  

  (Π𝑕𝑣0 − 𝑄𝑕𝑣0 + 𝑄𝑕𝑣0 − 𝑣𝑕
0), 𝑒𝑣

0  

 =  (Π𝑕∇𝑑,𝑟 ⋅ 𝑣 − ∇𝑑,𝑟 ⋅ 𝑄𝑕𝑣 + ∇𝑑,𝑟 ⋅ 𝑄𝑕𝑣 − ∇𝑑,𝑟 ⋅ 𝑣𝑕), 𝑒𝑝
0 , 

 

  (Π𝑕𝑣0 − 𝑄𝑕𝑣0), 𝑒𝑣
0 +  (𝑄𝑕𝑣0 − 𝑣𝑕

0), 𝑒𝑣
0 =  ∇𝑑,𝑟 ⋅ (Π𝑕𝑣 − 𝑄𝑕𝑣), 𝑒𝑝

0  

 + ∇𝑑,𝑟 ⋅ (𝑄𝑕𝑣 − 𝑣𝑕), 𝑒𝑝
0 , (5.8) 

 so,  

 𝐽11 + 𝐽12 = 𝐽13 + 𝐽14 

 by Cauchy-Schwarz inequality and Young’s inequality, we get  

  𝐽11 =    Π𝑕𝑣0 − 𝑄𝑕𝑣0 , 𝑒𝑣
0  ≤

1

4
∥  Π𝑕𝑣0 − 𝑄𝑕𝑣0 ∥2 +∥ 𝑒𝑣

0 ∥2≤ 𝐶𝑕2 ∥ 𝑣𝑕
0 ∥2 +∥

𝑒𝑣
0 ∥2, 
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 |𝐽12| = | (𝑄𝑕𝑣0 − 𝑣𝑕
0), 𝑒𝑣

0 | ≤ 𝐶 ∥ 𝑒𝑣
0 ∥2, 

 

 |𝐽13| = | ∇𝑑,𝑟 ⋅ (Π𝑕𝑣 − 𝑄𝑕𝑣), 𝑒𝑝
0 | ≤

1

4
∥ ∇𝑑,𝑟 ⋅ (Π𝑕𝑣 − 𝑄𝑕𝑣) ∥2 +∥ 𝑒𝑝

0 ∥2 

 ≤ 𝐶𝑕 ∥ 𝑣𝑕 ∥2 +∥ 𝑒𝑝
0 ∥2, 

 

 |𝐽14| = | ∇𝑑,𝑟 ⋅ (𝑄𝑕𝑣 − 𝑣𝑕), 𝑒𝑝
0 | ≤

1

4
∥ ∇𝑑,𝑟 ⋅ 𝑒𝑣 ∥2 +∥ 𝑒𝑝

0 ∥2≤ 𝐶 ∥ 𝑒 ∥2 +∥ 𝑒𝑝
0 ∥2, 

 then equation (5.8) becomes  

 𝐶𝑕 ∥ 𝑣𝑕 ∥2 +∥ 𝑒𝑝
0 ∥2+ 𝐶 ∥ 𝑒𝑣 ∥2 +∥ 𝑒𝑝

0 ∥2≤ 𝐶𝑕2 ∥ 𝑣𝑕
0 ∥2 +∥ 𝑒𝑣

0 ∥2+ 𝐶 ∥ 𝑒𝑣
0 ∥2, 

 then  

 ∥ 𝑒𝑣 ∥2≤ 𝐶1𝑕[∥ 𝑣𝑕
0 ∥2 +∥ 𝑣𝑕 ∥2 +∥ 𝑒𝑝

0 ∥2 +∥ 𝑒𝑣
0 ∥2], 

 where 𝐶1 = 𝑚𝑎𝑥{𝑕, −1, −2/𝐶𝑕, 1/𝐶𝑕, 1/𝑕}. 

 

Lemma 5.5 (𝐿2 Error Analysis for Pressure) 

 Let 𝑝𝑕 ∈ 𝔾𝑕  be a solution to the dual equations (3.10 and 3.11). Then  

 ∥ 𝑒𝑝 ∥2≤ 𝐶′1𝑕[∥ 𝑝𝑕 ∥2 +∥ 𝑒𝑣
0 ∥2], (5.9) 

 where 𝐶′1 is a constant and independent 𝑕.  

 

Proof. Rewrite equation (3.11), we get  

 (𝑣𝑕
0, 𝑢0) = (𝛼(𝑠𝑕

0)∇𝑑,𝑟𝑝𝑕 , 𝑢0);     ∀𝑢 ∈ ℚ𝑕 , (5.10) 

 put 𝑝𝑕 = Π′𝑕𝑝 for equation (5.10 ), we have  

 (𝑣𝑕
0, 𝑢0) = (𝛼(𝑠𝑕

0)Π′𝑕∇𝑑,𝑟𝑝, 𝑢0). (5.11) 

 Subtracting equation (5.10) from (5.11), then  

 (𝛼(𝑠𝑕
0)(Π′𝑕∇𝑑,𝑟𝑝 − ∇𝑑,𝑟𝑝𝑕 ), 𝑢0) = 0. 

 Adding and subtract the term (𝛼(𝑠𝑕
0)∇𝑑,𝑟𝑄′𝑕𝑝, 𝑢0),  

 (𝛼(𝑠𝑕
0)(Π′𝑕∇𝑑,𝑟𝑝 − ∇𝑑,𝑟𝑄′𝑕𝑝), 𝑢0) + (𝛼(𝑠𝑕

0)(∇𝑑,𝑟𝑝𝑕 − ∇𝑑,𝑟𝑄′𝑕𝑝), 𝑢0) = 0, (5.12) 

 put 𝑢 = 𝑒𝑣 = (𝑄𝑕𝑣 − 𝑣𝑕), we get  

 (𝛼(𝑠𝑕
0)(Π′𝑕∇𝑑,𝑟𝑝 − ∇𝑑,𝑟𝑄′𝑕𝑝), 𝑒𝑣

0) + (𝛼(𝑠𝑕
0)(∇𝑑,𝑟𝑝𝑕 − ∇𝑑,𝑟𝑄′𝑕𝑝), 𝑒𝑣

0) = 0, (5.13) 

 so,  
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 𝐽31 + 𝐽32 = 0, 

 by Cauchy-Schwarz inequality and Young’s inequality, we get  

 |𝐽31| = |(𝛼(𝑠𝑕
0)(Π′𝑕∇𝑑,𝑟𝑝 − ∇𝑑,𝑟𝑄′𝑕𝑝), 𝑒𝑣

0)| ≤
1

4
∥ 𝛼(𝑠𝑕

0) ∥2∥ 𝑒𝑣
0 ∥2 

 +∥ (Π′𝑕∇𝑑,𝑟𝑝 − ∇𝑑,𝑟𝑄′𝑕𝑝) ∥2≤
1

4
∥ 𝛼(𝑠𝑕

0) ∥2∥ 𝑒𝑣
0 ∥2+ 𝐶′𝑕 ∥ 𝑝𝑕 ∥2, 

 

 |𝐽32| = |(𝛼(𝑠𝑕
0)(∇𝑑,𝑟𝑄′𝑕𝑝 − ∇𝑑,𝑟𝑝𝑕), 𝑒𝑣

0)| ≤
1

4
∥ 𝛼(𝑠𝑕

0) ∥2∥ 𝑒𝑣
0 ∥2 

 +∥ (∇𝑑,𝑟𝑄′𝑕𝑝 − ∇𝑑,𝑟𝑝𝑕) ∥2≤
1

4
∥ 𝛼(𝑠𝑕

0) ∥2∥ 𝑒𝑣
0 ∥2+ 𝐶′ ∥ 𝑒𝑝 ∥, 

 become equation (5.13) as the follows  

 
1

4
∥ 𝛼(𝑠𝑕

0) ∥2∥ 𝑒𝑣
0 ∥2+ 𝐶′ ∥ 𝑒𝑝 ∥2+

1

4
∥ 𝛼(𝑠𝑕

0) ∥2∥ 𝑒𝑣
0 ∥2+ 𝐶′𝑕 ∥ 𝑝𝑕 ∥2≤ 0, 

 then,  

 ∥ 𝑒𝑝 ∥2≤ 𝐶′1𝑕[∥ 𝑝𝑕 ∥2 +∥ 𝑒𝑣
0 ∥2], 

 where 𝐶′1 = 𝑚𝑎𝑥{
−∥𝛼(𝑠𝑕

0)∥2

2𝑕
, 1}. 

 

Theorem 5.1 (𝐿2 Error Analysis for Velocity and Pressure) 

Let 𝑣𝑕 ∈ ℚ𝑕  and 𝑝𝑕 ∈ 𝔾𝑕  be the solutions to the dual equations (3.10 and 3.11). Then  

 ∥ 𝑒𝑣 ∥2 +∥ 𝑒𝑝 ∥2≤ 𝐶′′𝑕[∥ 𝑣𝑕 ∥2 +∥ 𝑢𝑕
0 ∥2 +∥ 𝑝𝑕 ∥2 +∥ 𝑒𝑣

0 ∥2 +∥ 𝑒𝑝
0 ∥2]. (5.14) 

 where 𝐶′′ is a constant and independent 𝑕.  

 

Proof. From equations (3.10 )and (5.10), put 𝑣𝑕 = Π𝑕𝑣 and 𝑝𝑕 = Π′𝑕𝑝 for equations we have  

 (Π𝑕∇𝑑,𝑟 ⋅ 𝑣, 𝑤0) = (𝑞, 𝑤0);     ∀𝑤 ∈ 𝔾𝑕 , (5.15) 

 (Π𝑕𝑣0, 𝑢0) = (𝛼(𝑠𝑕
0)Π′𝑕∇𝑑,𝑟𝑝, 𝑢0);     ∀𝑢 ∈ ℚ𝑕  (5.16) 

 subtracting equation (3.10) from (5.15) and equation (5.10) from (5.16), then  

 (Π𝑕𝑣0 − 𝑣𝑕
0, 𝑢0) + (𝛼(𝑠𝑕

0)(∇𝑑,𝑟𝑝𝑕 − Π′𝑕∇𝑑,𝑟𝑝), 𝑢0) 

 = ((Π𝑕∇𝑑,𝑟 ⋅ 𝑣 − ∇𝑑,𝑟 ⋅ 𝑣𝑕), 𝑤0). 

 Adding and subtracting the three terms (∇𝑑,𝑟 ⋅ 𝑄𝑕𝑣, 𝑤0), (𝛼(𝑠𝑕
0)∇𝑑,𝑟𝑄′𝑕𝑝, 𝑢0) and (𝑄𝑕𝑣0, 𝑢0), and 

put 𝑢 = 𝑒𝑣  and 𝑤 = 𝑒𝑝    ,we have  



Mathematical Statistician and Engineering Applications 

ISSN: 2094-0343 

2326-9865 

 

 
3139 

 
Vol. 71 No. 4 (2022) 
http://philstat.org.ph 
 
 
 

  ∇𝑑,𝑟 ⋅ (Π𝑕𝑣 − 𝑄𝑕𝑣), 𝑒𝑝
0 +  ∇𝑑,𝑟 ⋅ (𝑄𝑕𝑣 − 𝑣𝑕), 𝑒𝑝

0 =  (Π𝑕𝑣0 − 𝑄𝑕𝑣0), 𝑒𝑣
0  

 + (𝑄𝑕𝑣0 − 𝑣𝑕
0), 𝑒𝑣

0 + (𝛼(𝑠𝑕
0)∇𝑑,𝑟(𝑄′𝑕𝑝 − Π′𝑕𝑝), 𝑒𝑣

0) 

 +(𝛼(𝑠𝑕
0)∇𝑑,𝑟(𝑄′𝑕𝑝 − 𝑝𝑕), 𝑒𝑣

0), (5.17) 

 suppose equation (5.17) as  

 𝐽13 + 𝐽14 = 𝐽11 + 𝐽12 − 𝐽31 − 𝐽32 , 

 from lemmas (5.4) and (5.5), we get  

 𝐶𝑕 ∥ 𝑣𝑕 ∥2 +∥ 𝑒𝑝
0 ∥2+ 𝐶 ∥ 𝑒𝑣 ∥2 +∥ 𝑒𝑝

0 ∥2≤ 𝐶𝑕2 ∥ 𝑣𝑕
0 ∥2 +∥ 𝑒𝑣

0 ∥2+ 𝐶 ∥ 𝑒𝑣
0 ∥2 

 +
1

4
∥ 𝛼(𝑠𝑕

0) ∥2∥ 𝑒𝑣
0 ∥2+ 𝐶′ ∥ 𝑒𝑝 ∥2+

1

4
∥ 𝛼(𝑠𝑕

0) ∥2∥ 𝑒𝑣
0 ∥2+ 𝐶′𝑕 ∥ 𝑝𝑕 ∥2, 

 then,  

 ∥ 𝑒𝑣 ∥2 +∥ 𝑒𝑝 ∥2≤ 𝐶′′𝑕[∥ 𝑣𝑕 ∥2 +∥ 𝑣𝑕
0 ∥2 +∥ 𝑝𝑕 ∥2 +∥ 𝑒𝑣

0 ∥2 +∥ 𝑒𝑝
0 ∥2], 

 where 𝐶′′ = 𝑚𝑎𝑥{−𝐶, 𝐶𝑕, , 𝐶′/𝑕, 1/𝐶𝑕, 𝐶/𝑕,
∥𝛼(𝑠𝑕

0)∥2

2𝑕
, −2/𝑕}/𝑚𝑖𝑛{𝐶, −𝐶′} 

 

Lemma 5.6 (𝐿2 Error Analysis for Saturation). 

Let 𝑄𝑕
∗𝑠  be the 𝐿2  projection of 𝑠𝑕  on the corresponding finite element space such that 𝑠𝑕  be a 

solution (3.12), and 𝐶 and 𝛽 are the constants. Then  

 ∥ 𝑒𝑠
0(𝑡) ∥2≤ 𝑒𝑥𝑝(−𝛽𝑡) ∥ 𝑒𝑠

0(0) ∥2+ 𝛽1𝑕  ‍
𝑡

0
𝑒𝑥𝑝((𝑧 − 𝑡)𝛽)[∥ 𝑠𝑕(𝑧) ∥2 

 +∥ 𝑠𝑕
0(𝑧) ∥2 +∥ 𝑒𝑠(𝑧) ∥2] 𝑑𝑧. (5.18) 

 provided that the meshsize 𝑕 is sufficiently small.  

 

Proof. Put 𝑠𝑕 = Π𝑕
∗𝑠 in equation (3.12), we get  

  𝜙
𝜕Π𝑕

∗ 𝑠0

𝜕𝑡
, 𝜑0 + (𝑎(Π𝑕

∗𝑠0)Π𝑕
∗∇𝑑,𝑟 ⋅ 𝑠, ∇𝑑,𝑟 ⋅ 𝜑) + (∇𝑑,𝑟 ⋅ (𝑓(Π𝑕

∗𝑠)𝑣𝑕), 𝜑0) 

 +(𝑞−Π𝑕
∗𝑠0, 𝜑0) = 0,   𝜑 ∈ 𝕊𝑕

0 (𝑗, 𝑙), (5.19) 

 subtracting equation (3.12) from (5.19) and using the fact  𝜙
𝜕𝑠𝑕

0

𝜕𝑡
, 𝜑0 =  𝜙

𝜕𝑄𝑕
∗𝑠0

𝜕𝑡
, 𝜑0 , then  

  𝜙
𝜕

𝜕𝑡
(𝑄𝑕

∗𝑠0 − 𝑠𝑕
0), 𝜑0 + (𝑎(Π𝑕

∗𝑠0)Π𝑕
∗∇𝑑,𝑟 ⋅ 𝑠, ∇𝑑,𝑟 ⋅ 𝜑) 

 −(𝑎(𝑠𝑕
0)∇𝑑,𝑟 ⋅ 𝑠𝑕 , ∇𝑑,𝑟 ⋅ 𝜑) + (𝑞−Π𝑕

∗𝑠0, 𝜑0) − (∇𝑑,𝑟 ⋅ (𝑓(𝑠𝑕)𝑣𝑕), 𝜑0) 

 −(𝑞−𝑠𝑕
0, 𝜑0) + (∇𝑑,𝑟 ⋅ (𝑓(Π𝑕

∗𝑠)𝑣𝑕), 𝜑0) = 0, 
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 Adding and subtracting for each, the terms (𝑎(𝑄𝑕
∗𝑠0)𝑄𝑕

∗∇𝑑,𝑟 ⋅ 𝑠, ∇𝑑,𝑟 ⋅ 𝜑) , (∇𝑑,𝑟 ⋅ (𝑓(𝑄𝑕
∗𝑠)𝑣𝑕), 𝜑0) 

and (𝑞−𝑄𝑕
∗𝑠0, 𝜑0), and put 𝜑 = 𝑒𝑠 = (𝑄𝑕

∗𝑠 − 𝑠𝑕) ,we have  

  𝜙
𝜕

𝜕𝑡
(𝑄𝑕

∗𝑠0 − 𝑠𝑕
0), 𝑒𝑠

0 + (𝑎(Π𝑕
∗𝑠0)∇𝑑,𝑟 ⋅ (Π𝑕

∗𝑠 − 𝑄𝑕
∗𝑠), ∇𝑑,𝑟 ⋅ 𝑒𝑠) 

 +(𝑞−(𝑄𝑕
∗𝑠0 − 𝑠𝑕

0), 𝑒𝑠
0) + ((𝑎(Π𝑕

∗𝑠0) − 𝑎(𝑄𝑕
∗𝑠0))∇𝑑,𝑟 ⋅ 𝑄𝑕

∗𝑠, ∇𝑑,𝑟 ⋅ 𝑒𝑠) 

 +((𝑎(𝑄𝑕
∗𝑠0) − 𝑎(𝑠𝑕

0))∇𝑑,𝑟 ⋅ 𝑠𝑕 , ∇𝑑,𝑟 ⋅ 𝑒𝑠) + (∇𝑑,𝑟 ⋅  𝑣𝑕 𝑓 Π𝑕
∗𝑠 − 𝑓 𝑄𝑕

∗𝑠  , 𝑒𝑠
0 +

(∇𝑑,𝑟 ⋅ (𝑣𝑕(𝑓(𝑄𝑕
∗𝑠) − 𝑓(𝑠𝑕)), 𝑒𝑠

0) + (𝑞−(Π𝑕
∗ 𝑠0 − 𝑄𝑕

∗𝑠0), 𝑒𝑠
0) 

 +(𝑎(𝑄𝑕
∗𝑠0)∇𝑑,𝑟 ⋅ (𝑄𝑕

∗𝑠 − 𝑠𝑕), ∇𝑑,𝑟 ⋅ 𝑒𝑠) = 0, (5.20) 

 so,  

  𝜙
𝜕

𝜕𝑡
(𝑄𝑕

∗𝑠0 − 𝑠𝑕
0), 𝑒𝑠

0 + 𝐽51 + 𝐽52 + 𝐽53 + 𝐽54 + 𝐽55 + 𝐽56 + 𝐽57 + 𝐽58 = 0. (5.21) 

 To estimate 𝐽51 − 𝐽58  by Cauchy-Schwarz inequality and Young’s inequality, we get  

 |𝐽51| = |(𝑎(Π𝑕
∗𝑠0)∇𝑑,𝑟 ⋅ (Π𝑕

∗𝑠 − 𝑄𝑕
∗𝑠), ∇𝑑,𝑟 ⋅ 𝑒𝑠)| ≤∥ ∇𝑑,𝑟(Π𝑕

∗𝑠 − 𝑄𝑕
∗𝑠) ∥2 

 +
∥𝑎(Π𝑕

∗ 𝑠0)∥2

4
∥ ∇𝑑,𝑟𝑒𝑠) ∥2≤ 𝐶𝑕 ∥ 𝑠𝑕 ∥2+ 𝐶 ∥ 𝑒𝑠 ∥2, 

 

 |𝐽52| = |(𝑞−(𝑄𝑕
∗𝑠0 − 𝑠𝑕

0), 𝑒𝑠
0)| ≤∥ 𝑞− ∥∥ 𝑒𝑠

0 ∥2≤ 𝐶 ∥ 𝑒𝑠
0 ∥2, 

 

 |𝐽53| = |((𝑎(Π𝑕
∗𝑠0) − 𝑎(𝑄𝑕

∗𝑠0))∇𝑑,𝑟 ⋅ 𝑄𝑕
∗𝑠, ∇𝑑,𝑟 ⋅ 𝑒𝑠)| 

 ≤∥ (𝑎(Π𝑕
∗𝑠0) − 𝑎(𝑄𝑕

∗𝑠0)) ∥2∥ ∇𝑑,𝑟 ⋅ 𝑄𝑕
∗𝑠 ∥2+

1

4
∥ ∇𝑑,𝑟𝑒𝑠 ∥2 

 ≤ 𝛼 ∥ (𝑎(Π𝑕
∗𝑠0) − 𝑎(𝑄𝑕

∗𝑠0)) ∥2+
𝛼

4
∥ ∇𝑑,𝑟 ⋅ 𝑄𝑕

∗𝑠 ∥2+
1

4
∥ ∇𝑑,𝑟𝑒𝑠 ∥2 

 ≤ 𝐶 ∥ (Π𝑕
∗𝑠0 − 𝑄𝑕

∗𝑠0) ∥2+ 𝐶 ∥ 𝑠𝑕 ∥2+ 𝐶 ∥ ∇𝑑,𝑟𝑒𝑠 ∥2≤ 𝐶𝑕 ∥ 𝑠𝑕
0 ∥2 

 +𝐶 ∥ 𝑠𝑕 ∥2+ 𝐶 ∥ 𝑒𝑠 ∥2, 

 

 |𝐽54| = |((𝑎(𝑄𝑕
∗𝑠0) − 𝑎(𝑠𝑕

0))∇𝑑,𝑟 ⋅ 𝑠𝑕 , ∇𝑑,𝑟 ⋅ 𝑒𝑠)| 

 ≤∥ ((𝑎(𝑄𝑕
∗𝑠0) − 𝑎(𝑠𝑕

0)) ∥2∥ ∇𝑑,𝑟 ⋅ 𝑠𝑕 ∥2+
1

4
∥ ∇𝑑,𝑟𝑒𝑠 ∥2 

 ≤ 𝛼 ∥ ((𝑎(𝑄𝑕
∗𝑠0) − 𝑎(𝑠𝑕

0)) ∥2+
𝛼

4
∥ ∇𝑑,𝑟 ⋅ 𝑠𝑕 ∥2+

1

4
∥ ∇𝑑,𝑟𝑒𝑠 ∥2 

 ≤ 𝐶 ∥ (𝑄𝑕
∗𝑠0 − 𝑠𝑕

0) ∥2+ 𝐶 ∥ 𝑠𝑕 ∥2+ 𝐶 ∥ ∇𝑑,𝑟𝑒𝑠 ∥2≤ 𝐶 ∥ 𝑒𝑠
0 ∥2 

 +𝐶 ∥ 𝑠𝑕 ∥2+ 𝐶 ∥ 𝑒𝑠 ∥2, 
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 |𝐽55| = |(∇𝑑,𝑟 ⋅ (𝑣𝑕(𝑓(Π𝑕
∗𝑠) − 𝑓(𝑄𝑕

∗𝑠)), 𝑒𝑠
0)| ≤

1

4
∥

∇𝑑,𝑟 ⋅ (𝑣𝑕 𝑓 Π𝑕
∗𝑠 − 𝑓 𝑄𝑕

∗𝑠  ∥2 +∥ 𝑒𝑠
0 ∥2≤

𝛼

4
∥ 𝑣𝑕 ∥2∥ (𝑓(Π𝑕

∗𝑠) − 𝑓(𝑄𝑕
∗𝑠)) ∥2 +∥ 𝑒𝑠

0 ∥2 

 ≤
𝛼1

4
∥ 𝑣𝑕 ∥2∥ (Π𝑕

∗𝑠 − 𝑄𝑕
∗𝑠) ∥2 +∥ 𝑒𝑠

0 ∥2≤ 𝐶𝑕 ∥ 𝑠𝑕 ∥2 +∥ 𝑒𝑠
0 ∥2, 

 

 |𝐽56| = |(∇𝑑,𝑟 ⋅ (𝑣𝑕(𝑓(𝑄𝑕
∗𝑠) − 𝑓(𝑠𝑕)), 𝑒𝑠

0)| ≤
1

4
∥ ∇𝑑,𝑟 ⋅ (𝑣𝑕 𝑓 𝑄𝑕

∗𝑠 − 𝑓 𝑠𝑕  ∥2 +∥

𝑒𝑠
0 ∥2≤

𝛼

4
∥ 𝑣𝑕 ∥2∥ (𝑓(𝑄𝑕

∗𝑠) − 𝑓(𝑠𝑕)) ∥2 +∥ 𝑒𝑠
0 ∥2 

 ≤
𝛼1

4
∥ 𝑣𝑕 ∥2∥ (𝑄𝑕

∗𝑠 − 𝑠𝑕) ∥2 +∥ 𝑒𝑠
0 ∥2≤ 𝐶𝑕 ∥ 𝑒𝑠 ∥2 +∥ 𝑒𝑠

0 ∥2, 

 

 |𝐽57| = |(𝑞−(Π𝑕
∗𝑠0 − 𝑄𝑕

∗𝑠0), 𝑒𝑠
0)| ≤

∥𝑞−∥2

4
∥ (Π𝑕

∗𝑠0 − 𝑄𝑕
∗𝑠0) ∥2 +∥ 𝑒𝑠

0 ∥2 

 ≤ 𝐶𝑕2 ∥ 𝑠𝑕
0 ∥2 +∥ 𝑒𝑠

0 ∥2, 

 

 |𝐽58| = |(𝑎(𝑄𝑕
∗𝑠0)∇𝑑,𝑟 ⋅ (𝑄𝑕

∗𝑠 − 𝑠𝑕), ∇𝑑,𝑟 ⋅ 𝑒𝑠)| = |(𝑎(𝑄𝑕
∗𝑠0)∇𝑑,𝑟 ⋅ 𝑒𝑠 , ∇𝑑,𝑟 ⋅ 𝑒𝑠)| 

 ≤∥ 𝑎(𝑄𝑕
∗𝑠0) ∥∥ ∇𝑑,𝑟 ⋅ 𝑒𝑠 ∥2≤ 𝐶 ∥ 𝑒𝑠 ∥2, 

 substituting 𝐽51 − 𝐽58 in the equation (5.21), we get  

  𝜙
𝜕

𝜕𝑡
(𝑄𝑕

∗𝑠0 − 𝑠𝑕
0), 𝑒𝑠

0 + 𝐶𝑕 ∥ 𝑠𝑕 ∥2+ 𝐶 ∥ 𝑒𝑠 ∥2+ 𝐶 ∥ 𝑒𝑠
0 ∥2+ 𝐶𝑕 ∥ 𝑠𝑕

0 ∥2 

 +𝐶 ∥ 𝑠𝑕 ∥2+ 𝐶 ∥ 𝑒𝑠 ∥2+ 𝐶 ∥ 𝑒𝑠
0 ∥2+ 𝐶 ∥ 𝑠𝑕 ∥2+ 𝐶 ∥ 𝑒𝑠 ∥2+ 𝐶𝑕 ∥ 𝑠𝑕 ∥2 

 +∥ 𝑒𝑠
0 ∥2+ 𝐶𝑕 ∥ 𝑒𝑠 ∥2 +∥ 𝑒𝑠

0 ∥2+ 𝐶𝑕2 ∥ 𝑠𝑕
0 ∥2 +∥ 𝑒𝑠

0 ∥2+ 𝐶 ∥ 𝑒𝑠 ∥2≤ 0, 

 so,  

 ∥ 𝜙 ∥
1

2

𝜕

𝜕𝑡
∥ 𝑒𝑠

0 ∥2+ 𝐶𝑕 ∥ 𝑠𝑕 ∥2+ 𝐶 ∥ 𝑒𝑠 ∥2+ 𝐶 ∥ 𝑒𝑠
0 ∥2+ 𝐶𝑕 ∥ 𝑠𝑕

0 ∥2+ 𝐶 ∥ 𝑠𝑕 ∥2 

 +𝐶 ∥ 𝑒𝑠 ∥2+ 𝐶 ∥ 𝑒𝑠
0 ∥2+ 𝐶 ∥ 𝑠𝑕 ∥2+ 𝐶 ∥ 𝑒𝑠 ∥2+ 𝐶𝑕 ∥ 𝑠𝑕 ∥2 +∥ 𝑒𝑠

0 ∥2 

 +𝐶𝑕 ∥ 𝑒𝑠 ∥2 +∥ 𝑒𝑠
0 ∥2+ 𝐶𝑕2 ∥ 𝑠𝑕

0 ∥2 +∥ 𝑒𝑠
0 ∥2+ 𝐶 ∥ 𝑒𝑠 ∥2≤ 0, 

 

 
𝜕

𝜕𝑡
∥ 𝑒𝑠

0 ∥2+ 𝛽 ∥ 𝑒𝑠
0 ∥2≤ 𝛽1𝑕[∥ 𝑠𝑕 ∥2 +∥ 𝑠𝑕

0 ∥2 +∥ 𝑒𝑠 ∥2]. 

 where 𝛽 = 𝑚𝑖𝑛{2𝐶, 3} and 𝛽1 = 𝑚𝑎𝑥{−2𝐶, −2𝐶/𝑕, −𝐶, −𝐶𝑕, −4𝐶/𝑕, −1/𝑕}. 

Multiply both sides of the above inequality by the integral factor 𝑒𝑥𝑝(𝛽𝑧) and then integrate from 0 

to 𝑡, we have  
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 ∥ 𝑒𝑠
0(𝑡) ∥2≤ 𝑒𝑥𝑝(−𝛽𝑡) ∥ 𝑒𝑠

0(0) ∥2+ 𝛽1𝑕  𝑒𝑥𝑝(−𝛽𝑡)  ‍
𝑡

0
𝑒𝑥𝑝(𝛽𝑧)[∥ 𝑠𝑕 𝑧 ∥2 +∥

𝑠𝑕
0(𝑧) ∥2 +∥ 𝑒𝑠(𝑧) ∥2] 𝑑𝑧. 

 

Theorem 5.2 Let 𝑣𝑕 ∈ ℚ𝑕  , 𝑝𝑕 ∈ 𝔾𝑕  and 𝑠𝑕 ∈ 𝕊𝑕
0  are the solutions for the equations (3.10) , (3.11) 

and (3.12), respectively. And 𝑄𝑕𝑣, 𝑄′𝑕𝑝 and 𝑄𝑕
∗𝑠 are the 𝐿2 projection operators for all 𝑣𝑕 , 𝑝𝑕  and 

𝑠𝑕  on the corresponding finite element spaces . Then  

 ∥ 𝑒𝑣 ∥2 +∥ 𝑒𝑝 ∥2 +∥ 𝑒𝑠
0(𝑡) ∥2≤ 𝑒𝑥𝑝(−𝛽𝑡) ∥ 𝑒𝑠

0(0) ∥2+ 𝛽2𝑕[∥ 𝑣𝑕 ∥2 +∥ 𝑣𝑕
0 ∥2  +∥

𝑝𝑕 ∥2 +∥ 𝑒𝑣
0 ∥2 +∥ 𝑒𝑝

0 ∥2+  ‍
𝑡

0
𝑒𝑥𝑝(𝛽(𝑧 − 𝑡))[∥ 𝑠𝑕(𝑧) ∥2 

 +∥ 𝑠𝑕
0(𝑧) ∥2 +∥ 𝑒𝑠(𝑧) ∥2] 𝑑𝑧]. (5.22) 

 where 𝛽2 and 𝛽 are the constants and independent 𝑕.  

 

Proof. From the equations (5.14) and (5.18 ), we get proof. 

 

5.2  𝑯𝟏 Error Analysis for Velocity, Pressure and Saturation 

 

Lemma 5.7 (𝐻1 Error Analysis for Velocity). 

Let 𝑣𝑕 ∈ ℚ𝑕  be a solution to the dual equations (3.10 and 3.11). Then  

 ∥ ∇𝑑,𝑟 ⋅ 𝑒𝑣(𝑡) ∥2 +∥ 𝑒𝑣(𝑡) ∥2≤ 𝐶2𝑕  ‍
𝑡

0
[∥ (𝑣𝑕)𝑧(𝑧) ∥2 +∥ 𝑒𝑝

0(𝑧) ∥2 +∥ (𝑣𝑕
0)𝛿 𝑧 ∥2 +∥

𝑒𝑣
0(𝑧) ∥2 +∥ (𝑒𝑣

0)𝑧(𝑧) ∥2] 𝑑𝑧+∥ ∇𝑑,𝑟 ⋅ 𝑒𝑣(0) ∥2 +∥ 𝑒𝑣(0) ∥2. (5.23) 

 where 𝐶2 is a constant and independent 𝑕.  

 

Proof. Put 𝑒𝑣 = (𝑒𝑣)𝑡  and 𝑒𝑝 = (𝑒𝑝)𝑡  in equation (5.8) , we have  

  (Π𝑕𝑣0 − 𝑄𝑕𝑣0), (𝑒𝑣
0)𝑡 +  (𝑄𝑕𝑣0 − 𝑣𝑕

0), (𝑒𝑣
0)𝑡  

 =  ∇𝑑,𝑟 ⋅ (Π𝑕𝑣 − 𝑄𝑕𝑣), (𝑒𝑝
0)𝑡 +  ∇𝑑,𝑟 ⋅ (𝑄𝑕𝑣 − 𝑣𝑕), (𝑒𝑝

0)𝑡 , (5.24) 

 so,  

 𝐽21 + 𝐽22 = 𝐽23 + 𝐽24 , 

 by Cauchy-Schwarz inequality and Young’s inequality, we get  
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 |𝐽21| = | (Π𝑕𝑣0 − 𝑄𝑕𝑣0), (𝑒𝑣
0)𝑡 | ≤ |

𝜕

𝜕𝑡
 (Π𝑕𝑣0 − 𝑄𝑕𝑣0), 𝑒𝑣

0 | 

 −|  
𝜕

𝜕𝑡
(Π𝑕𝑣0 − 𝑄𝑕𝑣0), 𝑒𝑣

0 | ≤
𝜕

𝜕𝑡
| (Π𝑕𝑣0 − 𝑄𝑕𝑣0), 𝑒𝑣

0 | 

 +
1

4
∥ (Π𝑕𝑣0 − 𝑄𝑕𝑣0)𝑡 ∥2 +∥ 𝑒𝑣

0 ∥2≤ 𝐶𝑕2 ∥ (𝑣𝑕
0)𝑡 ∥2 +∥ 𝑒𝑣

0 ∥2, 

 

 |𝐽22| = | (𝑄𝑕𝑣0 − 𝑣𝑕
0), (𝑒𝑣

0)𝑡 | ≤ |
𝜕

𝜕𝑡
  𝑄𝑕𝑣0 − 𝑣𝑕

0 , 𝑒𝑣
0 | −   

𝜕

𝜕𝑡
 𝑄𝑕𝑣0 − 𝑣𝑕

0 , 𝑒𝑣
0   ≤

|
𝜕

𝜕𝑡
 (𝑄𝑕𝑣0 − 𝑣𝑕

0), 𝑒𝑣
0 | + 𝐶 ∥ (𝑒𝑣

0)𝑡 ∥2≤ 𝐶 ∥ (𝑒𝑣
0)𝑡 ∥2, 

 

 |𝐽23| = | ∇𝑑,𝑟 ⋅ (Π𝑕𝑣 − 𝑄𝑕𝑣), (𝑒𝑝
0)𝑡 | ≤ |

𝜕

𝜕𝑡
 ∇𝑑,𝑟 ⋅ (Π𝑕𝑣 − 𝑄𝑕𝑣), 𝑒𝑝

0 | 

 −|  
𝜕

𝜕𝑡
∇𝑑,𝑟 ⋅ (Π𝑕𝑣 − 𝑄𝑕𝑣), 𝑒𝑝

0 | ≤ |
𝜕

𝜕𝑡
 ∇𝑑,𝑟 ⋅ (Π𝑕𝑣 − 𝑄𝑕𝑣), 𝑒𝑝

0 | 

 +
1

4
∥ ∇𝑑,𝑟 ⋅  (Π𝑕𝑣 − 𝑣𝑕) − (𝑄𝑕𝑣 − 𝑣𝑕 ) 𝑡 ∥2 +∥ 𝑒𝑝

0 ∥2 

 ≤ |
𝜕

𝜕𝑡
 ∇𝑑,𝑟 ⋅  Π𝑕𝑣 − 𝑄𝑕𝑣 , 𝑒𝑝

0 | + 𝐶𝑕 ∥ (𝑣𝑕)𝑡 ∥2+ 𝐶𝑕 ∥ (𝑒𝑣)𝑡 ∥2 +∥ 𝜚0 ∥2≤ 𝐶𝑕 ∥

(𝑣𝑕)𝑡 ∥2+ 𝐶𝑕 ∥ (𝑒𝑣)𝑡 ∥2 +∥ 𝑒𝑝
0 ∥2, 

 

 |𝐽24| = | ∇𝑑,𝑟 ⋅ (𝑄𝑕𝑣 − 𝑣𝑕), (𝑒𝑝
0)𝑡 | ≤ |

𝜕

𝜕𝑡
 ∇𝑑,𝑟 ⋅ (𝑄𝑕𝑣 − 𝑣𝑕), 𝑒𝑝

0 | 

 −|  
𝜕

𝜕𝑡
∇𝑑,𝑟 ⋅ (𝑄𝑕𝑣 − 𝑣𝑕), 𝑒𝑝

0 | ≤ |
𝜕

𝜕𝑡
 ∇𝑑,𝑟 ⋅ (𝑄𝑕𝑣 − 𝑣𝑕), 𝑒𝑝

0 | 

 +
1

4
∥ ∇𝑑,𝑟 ⋅ (𝑒𝑣)𝑡 ∥2 +∥ 𝑒𝑝

0 ∥2≤
1

4
∥ ∇𝑑,𝑟 ⋅ (𝑒𝑣)𝑡 ∥2 +∥ 𝑒𝑝

0 ∥2, 

 then equation (5.24) becomes  

 𝐶𝑕 ∥ (𝑣𝑕)𝑡 ∥2+ 𝐶𝑕 ∥ (𝑒𝑣)𝑡 ∥2 +∥ 𝑒𝑝
0 ∥2+

1

4
∥ ∇𝑑,𝑟 ⋅ (𝑒𝑣)𝑡 ∥2 +∥ 𝑒𝑝

0 ∥2 

 ≤ 𝐶𝑕2 ∥ (𝑣𝑕
0)𝑡 ∥2 +∥ 𝑒𝑣

0 ∥2+ 𝐶 ∥ (𝑒𝑣
0)𝑡 ∥2, 

 then  

 
𝜕

𝜕𝑡
[∥ ∇𝑑,𝑟 ⋅ 𝑒𝑣 ∥2 +∥ 𝑒𝑣 ∥2] ≤ 𝐶2𝑕[∥ (𝑣𝑕)𝑡 ∥2 +∥ 𝑒𝑝

0 ∥2 +∥ (𝑣𝑕
0)𝑡 ∥2 +∥ 𝑒𝑣

0 ∥2 +∥

(𝑒𝑣
0)𝑡 ∥2], 

 where 𝐶2 = 𝑚𝑎𝑥{−𝐶, −2/𝑕, 𝐶𝑕, 1/𝑕, 𝐶/𝑕}/𝑚𝑖𝑛{1/4, 𝐶𝑕}, and integrate with respect to 𝑧 from 0 to 

𝑡, we have  
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 ∥ ∇𝑑,𝑟 ⋅ 𝑒𝑣(𝑡) ∥2 +∥ 𝑒𝑣(𝑡) ∥2≤ 𝐶2𝑕2  ‍
𝑡

0
[∥ (𝑣𝑕)𝑧(𝑧) ∥2 +∥ 𝑒𝑝

0(𝑧) ∥2 +∥ (𝑣𝑕
0)𝑧(𝑧) ∥2 

 +∥ 𝑒𝑣
0(𝛿) ∥2 +∥ (𝑒𝑣

0)𝑧(𝑧) ∥2] 𝑑𝑧+∥ ∇𝑑,𝑟 ⋅ 𝑒𝑣(0) ∥2 +∥ 𝑒𝑣(0) ∥2. 

 

Lemma 5.8 (𝐻1 Error Analysis for Pressure).  

Let 𝑝𝑕 ∈ 𝔾𝑕  be a solution to the equation (3.11). Then  

 ∥ ∇𝑑,𝑟𝑒𝑝(𝑡) ∥2 +∥ 𝑒𝑝(𝑡) ∥2≤∥ ∇𝑑,𝑟𝑒𝑝(0) ∥2 +∥ 𝑒𝑝(0) ∥2 

 +𝐶′2𝑕  ‍
𝑡

0
[∥ (𝑝𝑕)𝑧(𝑧) ∥2 +∥ 𝑒𝑣

0(𝑧) ∥2] 𝑑𝑧. (5.25) 

 where 𝐶′2 is a constant and independent 𝑕.  

 

 

Proof. Put 𝑢 = (𝑒𝑣)𝑡  in equation (5.12) , we have  

 (𝛼(𝑠𝑕
0)(Π′𝑕∇𝑑,𝑟𝑝 − ∇𝑑,𝑟𝑄′𝑕𝑝), (𝑒𝑣

0)𝑡) + (𝛼(𝑠𝑕
0)(∇𝑑,𝑟𝑝𝑕 − ∇𝑑,𝑟𝑄′𝑕𝑝), (𝑒𝑣

0)𝑡) = 0 

 (𝛼(𝑠𝑕
0)∇𝑑,𝑟(Π′𝑕𝑝 − 𝑄′𝑕𝑝), (𝑒𝑣

0)𝑡) + (𝛼(𝑠𝑕
0)∇𝑑,𝑟(𝑝𝑕 − 𝑄′𝑕𝑝), (𝑒𝑣

0)𝑡) = 0, (5.26) 

 so,  

 𝐽41 + 𝐽42 = 0, 

 by Cauchy-Schwarz inequality and Young’s inequality, we get  

 |𝐽41| = |(𝛼(𝑠𝑕
0)∇𝑑,𝑟(Π′

𝑕𝑝 − 𝑄′
𝑕𝑝), (𝑒𝑣

0)𝑡)| ≤  
𝜕

𝜕𝑡
 𝛼 𝑠𝑕

0 ∇𝑑,𝑟 Π
′
𝑕𝑝 − 𝑄′

𝑕𝑝 , 𝑒𝑣
0   −

|  
𝜕

𝜕𝑡
𝛼(𝑠𝑕

0)∇𝑑,𝑟(Π′𝑕𝑝 − 𝑄′𝑕𝑝), 𝑒𝑣
0 | ≤ |

𝜕

𝜕𝑡
(𝛼(𝑠𝑕

0)∇𝑑,𝑟(Π′𝑕𝑝 − 𝑄′𝑕𝑝), 𝑒𝑣
0)| 

 +
∥𝛼(𝑠𝑕

0)∥2

4
∥ 𝑒𝑣

0 ∥2 +∥ ∇𝑑,𝑟 Π′𝑕𝑝 − 𝑝𝑕 − (𝑄′𝑕𝑝 − 𝑝𝑕) 𝑡 ∥2 

 ≤ |
𝜕

𝜕𝑡
(𝛼(𝑠𝑕

0)∇𝑑,𝑟(Π′𝑕𝑝 − 𝑄′𝑕𝑝), 𝑒𝑣
0)| +

∥𝛼(𝑠𝑕
0)∥2

4
∥ 𝑒0 ∥2+ 𝐶′𝑕 ∥ (𝑝𝑕)𝑡 ∥2 

 +𝐶′𝑕 ∥ ∇𝑑,𝑟(𝑒𝑝)𝑡 ∥2≤ 𝐶′𝑕 ∥ (𝑝𝑕)𝑡 ∥2+ 𝐶′𝑕 ∥ ∇𝑑,𝑟(𝑒𝑝)𝑡 ∥2+
∥𝛼(𝑠𝑕

0)∥2

4
∥ 𝑒𝑣

0 ∥2, 

 

 |𝐽42| = |(𝛼(𝑠𝑕
0)(∇𝑑,𝑟(𝑄′

𝑕𝑝 − 𝑝𝑕 ), (𝑒𝑣
0)𝑡)| ≤ |

𝜕

𝜕𝑡
 𝛼 𝑠𝑕

0  ∇𝑑,𝑟 𝑄
′
𝑕𝑝 − 𝑝𝑕 , 𝑒𝑣

0   −

|  
𝜕

𝜕𝑡
𝛼(𝑠𝑕

0)(∇𝑑,𝑟(𝑄′𝑕𝑝 − 𝑝𝑕), 𝑒𝑣
0 | ≤ |

𝜕

𝜕𝑡
(𝛼(𝑠𝑕

0)(∇𝑑,𝑟(𝑄′𝑕𝑝 − 𝑝𝑕 ), 𝑒𝑣
0)| 

 +
∥𝛼(𝑠𝑕

0)∥2

4
∥ 𝑒𝑣

0 ∥2 +∥ (∇𝑑,𝑟(𝑄′𝑕𝑝 − 𝑝𝑕 )𝑡) ∥2≤
∥𝛼(𝑠𝑕

0)∥2

4
∥ 𝑒𝑣

0 ∥2+ 𝐶′ ∥ (𝑒𝑝)𝑡 ∥2, 
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 substituting 𝐽41 and 𝐽42 in the equation (5.26), we get  

 
∥𝛼(𝑠𝑕

0)∥2

4
∥ 𝑒𝑣

0 ∥2+ 𝐶′ ∥ (𝑒𝑝)𝑡 ∥2+
∥𝛼(𝑠𝑕

0)∥2

4
∥ 𝑒𝑣

0 ∥2+ 𝐶′𝑕 ∥ (𝑝𝑕)𝑡 ∥2 

 +𝐶′𝑕 ∥ ∇𝑑,𝑟(𝑒𝑝)𝑡 ∥2≤ 0 

 

 
𝜕

𝜕𝑡
[∥ ∇𝑑,𝑟𝑒𝑝 ∥2 +∥ 𝑒𝑝 ∥2] ≤ 𝐶′2𝑕[∥ (𝑝𝑕 )𝑡 ∥2 +∥ 𝑒𝑣

0 ∥2], 

 where 𝐶′2 = 𝑚𝑎𝑥{−𝐶′, −
∥𝛼(𝑠𝑕

0)∥2

2𝑕
}/𝑚𝑖𝑛{𝐶′, 𝐶′𝑕}, and integrate with respect to 𝑧 from 0 to 𝑡, we get  

 ∥ ∇𝑑,𝑟𝑒𝑝(𝑡) ∥2 +∥ 𝑒𝑝(𝑡) ∥2≤∥ ∇𝑑,𝑟𝑒𝑝(0) ∥2 +∥ 𝑒𝑝(0) ∥2 

 +𝐶′2𝑕2  ‍
𝑡

0
[∥ (𝑝𝑕 )𝑧(𝑧) ∥2 +∥ 𝑒𝑣

0(𝑧) ∥2] 𝑑𝑧. 

 

Theorem 5.3 (𝐻1 Error Analysis for Velocity and Pressure). 

Let 𝑣𝑕 ∈ ℚ𝑕  and 𝑝𝑕 ∈ 𝔾𝑕  are the solutions to the dual equations (3.10, 3.11 ). Then  

 ∥ ∇𝑑,𝑟 ⋅ 𝑒𝑣(𝑡) ∥2 +∥ 𝑒𝑣(𝑡) ∥2 +∥ ∇𝑑,𝑟𝑒𝑝(𝑡) ∥2 +∥ 𝑒𝑝(𝑡) ∥2≤ 𝐶 ′′
1𝑕  ‍

𝑡

0
[∥

(𝑣𝑕)𝑧 𝑧 ∥2 +∥ (𝑣𝑕
0)𝑧(𝑧) ∥2 +∥ (𝑝𝑕)𝑧(𝑧) ∥2 +∥ 𝑒𝑣

0(𝑧) ∥2 +∥ (𝑒𝑣
0)𝑧(𝑧) ∥2 

 +∥ 𝑒𝑝
0(𝑧) ∥2]𝑑𝑧+∥ ∇𝑑,𝑟 ⋅ 𝑒𝑣(0) ∥2 +∥ 𝑒𝑣(0) ∥2 

 +∥ ∇𝑑,𝑟𝑒𝑝(0) ∥2 +∥ 𝑒𝑝(0) ∥2. (5.27) 

 where 𝐶′′1 is a constant and independent 𝑕.  

 

 

Proof. Put 𝑒𝑣 = (𝑒𝑣)𝑡  and 𝑒𝑝 = (𝑒𝑝)𝑡  in equation (5.17) , we have  

  ∇𝑑,𝑟 ⋅ (Π𝑕𝑣 − 𝑄𝑕𝑣), (𝑒𝑝
0)𝑡 +  ∇𝑑,𝑟 ⋅ (𝑄𝑕𝑣 − 𝑣𝑕), (𝑒𝑝

0)𝑡  

 =  (Π𝑕𝑣0 − 𝑄𝑕𝑣0), (𝑒𝑣
0)𝑡 +  (𝑄𝑕𝑣0 − 𝑣𝑕

0), (𝑒𝑣
0)𝑡  (5.28) 

 +(𝛼(𝑠𝑕
0)∇𝑑,𝑟(𝑄′𝑕𝑝 − Π′𝑕𝑝), (𝑒𝑣

0)𝑡) + (𝛼(𝑠𝑕
0)∇𝑑,𝑟(𝑄′𝑕𝑝 − 𝑝𝑕), (𝑒𝑣

0)𝑡), 

 then, equation (5.29) becomes  

 𝐽23 + 𝐽24 = 𝐽21 + 𝐽22 − 𝐽41 − 𝐽42 , 

 by lemmas (5.7) and (5.8), we get  

 𝐶𝑕 ∥ (𝑣𝑕)𝑡 ∥2+ 𝐶𝑕 ∥ (𝑒𝑣)𝑡 ∥2 +∥ 𝑒𝑝
0 ∥2+

1

4
∥ ∇𝑑,𝑟 ⋅ (𝑒𝑣)𝑡 ∥2 +∥ 𝑒𝑝

0 ∥2≤ 𝐶𝑕2 ∥ (𝑣𝑕
0)𝑡 ∥2 
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 +∥ 𝑒𝑣
0 ∥2+ 𝐶 ∥ (𝑒𝑣

0)𝑡 ∥2−
∥𝛼(𝑠𝑕

0)∥2

4
∥ 𝑒𝑣

0 ∥2− 𝐶′ ∥ (𝑒𝑝)𝑡 ∥2 

 −
∥𝛼(𝑠𝑕

0)∥2

4
∥ 𝑒𝑣

0 ∥2− 𝐶′𝑕 ∥ (𝑝𝑕 )𝑡 ∥2− 𝐶′𝑕 ∥ ∇𝑑,𝑟(𝑒𝑝)𝑡 ∥2, 

 so,  

 
𝜕

𝜕𝑡
[∥ ∇𝑑,𝑟 ⋅ 𝑒𝑣 ∥2 +∥ 𝑒𝑣 ∥2 +∥ ∇𝑑,𝑟𝑒𝑝 ∥2 +∥ 𝑒𝑝 ∥2] ≤ 𝐶′′1𝑕[∥ (𝑣𝑕)𝑡 ∥2 +∥ (𝑣𝑕

0)𝑡 ∥2 

 +∥ (𝑝𝑕 )𝑡 ∥2 +∥ 𝑒𝑣
0 ∥2 +∥ (𝑒𝑣

0)𝑡 ∥2 +∥ 𝑒𝑝
0 ∥2], 

 where 𝐶′′1 = 𝑚𝑎𝑥{−𝐶/𝑕, 𝐶𝑕, −𝐶′, 1/𝑕, −
∥𝛼(𝑠𝑕

0)∥2

2𝑕
, 𝐶/𝑕, −2/𝑕}/{1/4, 𝐶𝑕, 𝐶′, 𝐶′𝑕}, and integrate with 

respect to 𝑧 from 0 to 𝑡, we have 

 

 ∥ ∇𝑑,𝑟 ⋅ 𝑒𝑣(𝑡) ∥2 +∥ 𝑒𝑣(𝑡) ∥2 +∥ ∇𝑑,𝑟𝑒𝑝(𝑡) ∥2 +∥ 𝑒𝑝(𝑡) ∥2≤ 𝐶 ′′
1𝑕  ‍

𝑡

0
[∥

(𝑣𝑕)𝑧 𝑧 ∥2 +∥ (𝑣𝑕
0)𝑧(𝑧) ∥2 +∥ (𝑝𝑕)𝑧(𝑧) ∥2 +∥ 𝑒𝑣

0(𝑧) ∥2 +∥ (𝑒𝑣
0)𝑧(𝑧) ∥2 

 +∥ 𝑒𝑝
0(𝑧) ∥2]𝑑𝑧+∥ ∇𝑑,𝑟 ⋅ 𝑒𝑣(0) ∥2 +∥ 𝑒𝑣(0) ∥2 

 +∥ ∇𝑑,𝑟𝑒𝑝(0) ∥2 +∥ 𝑒𝑝(0) ∥2. 

 

Lemma 5.9 (Error Analysis 𝐻1 for Saturation).  

Let 𝑠𝑕 ∈ 𝕊𝑕(𝑗; 𝑙) be the weak Galerkin approximation of 𝑠 arising from (3.12). Denote by 𝑒𝑠 = 𝑠𝑕 −

𝑄𝑕
∗𝑠 the difference between the weak Galerkin approximation and the 𝐿2 projection of the exaction 

solution 𝑠 = (𝑠1, 𝑠2). Then there exists a constant 𝐶"3 such that  

 ∥ ∇𝑑,𝑟 ⋅ 𝑒𝑠(𝑡) ∥2 +∥ 𝑒𝑠(𝑡) ∥2≤ 𝐶 ′′
3𝑕  ‍

𝑡

0
[∥ 𝑠𝑕

0(𝑧) ∥2 +∥ (𝑠𝑕
0 𝑧 )𝑧 ∥2 +∥ 𝑠𝑕 𝑧 ∥2 +∥

(𝑠𝑕(𝑧))𝑧 ∥2 +∥ (𝑒𝑠
0)𝑧(𝑧) ∥2 +∥ 𝑒𝑠

0(𝑧) ∥2 +∥ 𝑒𝑠(𝑧) ∥2 

 +∥ (𝑣𝑕(𝑧))𝑧 ∥2]𝑑𝑧−∥ ∇𝑑,𝑟 ⋅ 𝑒𝑠(0) ∥2 −∥ 𝑒𝑠(0) ∥2. (5.29) 

 provided that the meshsize 𝑕 is sufficiently small.  

 

 

Proof. Put 𝑒𝑠 = (𝑒𝑠)𝑡  in equation (5.20), we get 

 

  𝜙
𝜕

𝜕𝑡
(𝑄𝑕

∗𝑠0 − 𝑠𝑕
0), (𝑒𝑠

0)𝑡 + (𝑎(Π𝑕
∗𝑠0)∇𝑑,𝑟 ⋅ (Π𝑕

∗𝑠 − 𝑄𝑕
∗𝑠), ∇𝑑,𝑟 ⋅ (𝑒𝑠)𝑡) 
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 +(𝑞−(𝑄𝑕
∗𝑠0 − 𝑠𝑕

0), (𝑒𝑠
0)𝑡) + ((𝑎(Π𝑕

∗𝑠0) − 𝑎(𝑄𝑕
∗𝑠0))∇𝑑,𝑟 ⋅ 𝑄𝑕

∗𝑠, ∇𝑑,𝑟 ⋅  𝑒𝑠)𝑡  +

((𝑎(𝑄𝑕
∗𝑠0) − 𝑎(𝑠𝑕

0))∇𝑑,𝑟 ⋅ 𝑠𝑕 , ∇𝑑,𝑟 ⋅ (𝑒𝑠)𝑡) 

 +(∇𝑑,𝑟 ⋅ (𝑣𝑕(𝑓(Π𝑕
∗𝑠) − 𝑓(𝑄𝑕

∗𝑠)), (𝑒𝑠
0)𝑡) + (∇𝑑,𝑟 ⋅ (𝑣𝑕(𝑓(𝑄𝑕

∗𝑠) − 𝑓(𝑠𝑕)),  𝑒𝑠
0)𝑡  +

(𝑞−(Π𝑕
∗𝑠0 − 𝑄𝑕

∗𝑠0), (𝑒𝑠
0)𝑡) + (𝑎(𝑄𝑕

∗𝑠0)∇𝑑,𝑟 ⋅ (𝑄𝑕
∗𝑠 − 𝑠𝑕), ∇𝑑,𝑟 ⋅ (𝑒𝑠)𝑡) = 0, 

 so,  

  𝜙
𝜕

𝜕𝑡
(𝑄𝑕

∗𝑠0 − 𝑠𝑕
0), (𝑒𝑠

0)𝑡 + 𝐽61 + 𝐽62 + 𝐽63 + 𝐽64 + 𝐽65 + 𝐽66 + 𝐽67 + 𝐽68 = 0, 

 then the above equation becomes  

 𝐶 ∥ 𝜙 ∥∥ (𝑒𝑠
0)𝑡 ∥2+ 𝐽61 + 𝐽62 + 𝐽63 + 𝐽64 + 𝐽65 + 𝐽66 + 𝐽67 + 𝐽68 = 0. (5.30) 

 To estimate 𝐼61 − 𝐼68 ,by Cauchy-Schwarz inequality and Young’s inequality, we get  

 |𝐽61| = |(𝑎(Π𝑕
∗𝑠0)∇𝑑,𝑟 ⋅ (Π𝑕

∗𝑠 − 𝑄𝑕
∗𝑠), ∇𝑑,𝑟 ⋅ (𝑒𝑠)𝑡)| 

 ≤ |
𝜕

𝜕𝑡
𝑎(Π𝑕

∗𝑠0)∇𝑑,𝑟 ⋅ (Π𝑕
∗𝑠 − 𝑄𝑕

∗𝑠), ∇𝑑,𝑟𝑒𝑠)| 

 −|(
𝜕

𝜕𝑡
𝑎(Π𝑕

∗𝑠0)∇𝑑,𝑟 ⋅ (Π𝑕
∗𝑠 − 𝑄𝑕

∗𝑠), ∇𝑑,𝑟𝑒𝑠)| 

 ≤ |
𝜕

𝜕𝑡
(𝑎(Π𝑕

∗𝑠0)∇𝑑,𝑟 ⋅ (Π𝑕
∗𝑠 − 𝑄𝑕

∗𝑠), ∇𝑑,𝑟𝑒𝑠)| 

 +
∥𝑎(Π𝑕

∗ 𝑠0)∥2

4
∥ ∇𝑑,𝑟 ⋅ (Π𝑕

∗𝑠 − 𝑠𝑕 − (𝑄𝑕
∗𝑠 − 𝑠𝑕))𝑡 ∥2+ 𝐶 ∥ 𝑒𝑠 ∥2 

 ≤ 𝐶 ∥ 𝑎(Π𝑕
∗𝑠0) ∥2+ 𝐶 ∥ 𝑒𝑠 ∥2+

𝛼1

4
∥ ∇𝑑,𝑟 ⋅ (Π𝑕

∗𝑠 − 𝑠𝑕) ∥2 

 +
𝛼1

16
∥ ∇𝑑,𝑟 ⋅ (𝑄𝑕

∗𝑠 − 𝑠𝑕) ∥2≤ 𝐶 ∥ 𝑠𝑕
0 ∥2+ 𝐶𝑕 ∥ 𝑠𝑕 ∥2 

 +𝐶 ∥ ∇𝑑,𝑟 ⋅ (𝑒𝑠)𝑡 ∥2+ 𝐶 ∥ 𝑒𝑠 ∥2, 

 

 |𝐽62| = |(𝑞−(𝑄𝑕
∗𝑠0 − 𝑠𝑕

0), (𝑒𝑠
0)𝑡)| ≤ |

𝜕

𝜕𝑡
𝑞−(𝑄𝑕

∗𝑠0 − 𝑠𝑕
0), 𝑒𝑠

0)| 

 −|(
𝜕

𝜕𝑡
(𝑞−(𝑄𝑕

∗𝑠0 − 𝑠𝑕
0), 𝑒𝑠

0)| 

 ≤ |
𝜕

𝜕𝑡
𝑞−(𝑄𝑕

∗𝑠0 − 𝑠𝑕
0), 𝑒𝑠

0)| +
∥𝑞−∥

2
∥ (𝑒𝑠

0)𝑡 ∥2≤ 𝐶 ∥ (𝑒𝑠
0)𝑡 ∥2, 

 

 |𝐽63| = |((𝑎(Π𝑕
∗𝑠0) − 𝑎(𝑄𝑕

∗𝑠0))∇𝑑,𝑟 ⋅ 𝑄𝑕
∗𝑠, ∇𝑑,𝑟 ⋅ (𝑒𝑠)𝑡)| 

 ≤  
𝜕

𝜕𝑡
((𝑎(Π𝑕

∗𝑠0) − 𝑎(𝑄𝑕
∗𝑠0))∇𝑑,𝑟 ⋅ 𝑄𝑕

∗𝑠, ∇𝑑,𝑟 ⋅ 𝑒𝑠)  

 −   
𝜕

𝜕𝑡
((𝑎(Π𝑕

∗𝑠0) − 𝑎(𝑄𝑕
∗𝑠0))∇𝑑,𝑟 ⋅ 𝑄𝑕

∗𝑠, ∇𝑑,𝑟 ⋅ 𝑒𝑠   
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 ≤∥ ∇𝑑,𝑟 ⋅ 𝑒𝑠 ∥2+
𝛼2

4
∥ ((𝑎(Π𝑕

∗𝑠0) − 𝑎(𝑄𝑕
∗𝑠0))𝑡 ∥2 

 +  
𝜕

𝜕𝑡
((𝑎(Π𝑕

∗𝑠0) − 𝑎(𝑄𝑕
∗𝑠0))∇𝑑,𝑟 ⋅ 𝑄𝑕

∗𝑠, ∇𝑑,𝑟 ⋅ 𝑒𝑠)  

 +
𝛼2

16
∥ ∇𝑑,𝑟 ⋅ 𝑄𝑕

∗𝑠𝑡 ∥2≤ 𝐶 ∥ 𝑒𝑠 ∥2+ 𝐶 ∥ (𝑠𝑕)𝑡 ∥2+ 𝐶𝑕 ∥ (𝑠𝑕
0)𝑡 ∥2, 

 

 |𝐽64| = |((𝑎(𝑄𝑕
∗𝑠0) − 𝑎(𝑠𝑕

0))∇𝑑,𝑟 ⋅ 𝑠𝑕 , ∇𝑑,𝑟 ⋅ (𝑒𝑠)𝑡)| 

 ≤ |
𝜕

𝜕𝑡
((𝑎(𝑄𝑕

∗𝑠0) − 𝑎(𝑠𝑕
0))∇𝑑,𝑟 ⋅ 𝑠𝑕 , ∇𝑑,𝑟 ⋅ 𝑒𝑠)| 

 −|(
𝜕

𝜕𝑡
(𝑎(𝑄𝑕

∗𝑠0) − 𝑎(𝑠𝑕
0))∇𝑑,𝑟 ⋅ 𝑠𝑕 , ∇𝑑,𝑟 ⋅ 𝑒𝑠)| 

 ≤ |
𝜕

𝜕𝑡
((𝑎(𝑄𝑕

∗𝑠0) − 𝑎(𝑠𝑕
0))∇𝑑,𝑟 ⋅ 𝑠𝑕 , ∇𝑑,𝑟 ⋅ 𝑒𝑠)| 

 +∥ ∇𝑑,𝑟 ⋅ 𝑒𝑠 ∥2+
𝛼2

4
∥ (∇𝑑,𝑟 ⋅ 𝑠𝑕)𝑡 ∥2+

𝛼2

16
∥ (𝑎(𝑄𝑕

∗𝑠0) − 𝑎(𝑠𝑕
0))𝑡 ∥2 

 ≤ 𝐶 ∥ 𝑒𝑠 ∥2+ 𝐶 ∥ (𝑠𝑕)𝑡 ∥2+ 𝐶 ∥ (𝑒𝑠
0)𝑡 ∥2, 

 

 |𝐽65| = |(∇𝑑,𝑟 ⋅ (𝑣𝑕(𝑓(Π𝑕
∗𝑠) − 𝑓(𝑄𝑕

∗𝑠)), (𝑒𝑠
0)𝑡)| 

 ≤ |
𝜕

𝜕𝑡
(∇𝑑,𝑟 ⋅ (𝑣𝑕(𝑓(Π𝑕

∗𝑠) − 𝑓(𝑄𝑕
∗𝑠)), 𝑒𝑠

0)| 

 −|(
𝜕

𝜕𝑡
∇𝑑,𝑟 ⋅ (𝑣𝑕(𝑓(Π𝑕

∗𝑠) − 𝑓(𝑄𝑕
∗𝑠)), 𝑒𝑠

0)| 

 ≤ |
𝜕

𝜕𝑡
(∇𝑑,𝑟 ⋅ (𝑣𝑕(𝑓(Π𝑕

∗𝑠) − 𝑓(𝑄𝑕
∗𝑠)), 𝑒𝑠

0)| 

 +
1

4
∥

𝜕

𝜕𝑡
(∇𝑑,𝑟 ⋅ (𝑣𝑕(𝑓(Π𝑕

∗𝑠) − 𝑓(𝑄𝑕
∗𝑠)) ∥2 +∥ 𝑒𝑠

0 ∥2 

 ≤
𝛼3

4
∥

𝜕

𝜕𝑡
((𝑣𝑕(𝑓(Π𝑕

∗𝑠) − 𝑓(𝑄𝑕
∗𝑠)) ∥2 +∥ 𝑒𝑠

0 ∥2≤
𝛼3

4
∥ (𝑣𝑕)𝑡 ∥2 

 +
𝛼3

16
∥ ((Π𝑕

∗𝑠 − 𝑠𝑕) − (𝑄𝑕
∗𝑠 − 𝑠𝑕))𝑡 ∥2 +∥ 𝑒𝑠

0 ∥2≤ 𝐶 ∥ (𝑣𝑕)𝑡 ∥2 

 +𝐶𝑕2 ∥ (𝑠𝑕)𝑡 ∥2+ 𝐶 ∥ (𝑒𝑠)𝑡 ∥2 +∥ 𝑒𝑠
0 ∥2, 

 

 |𝐽66| = |(∇𝑑,𝑟 ⋅ (𝑣𝑕(𝑓(𝑄𝑕
∗𝑠) − 𝑓(𝑠𝑕)), (𝑒𝑠

0)𝑡)| 

 ≤ |
𝜕

𝜕𝑡
(∇𝑑,𝑟 ⋅ (𝑣𝑕(𝑓(𝑄𝑕

∗𝑠) − 𝑓(𝑠𝑕)), 𝑒𝑠
0)| 

 −|(
𝜕

𝜕𝑡
∇𝑑,𝑟 ⋅ (𝑣𝑕(𝑓(𝑄𝑕

∗𝑠) − 𝑓(𝑠𝑕)), 𝑒𝑠
0)| 

 ≤
𝜕

𝜕𝑡
(∇𝑑,𝑟 ⋅ (𝑣𝑕(𝑓(𝑄𝑕

∗𝑠) − 𝑓(𝑠𝑕)), 𝑒𝑠
0)| 
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 +
1

4
∥

𝜕

𝜕𝑡
(∇𝑑,𝑟 ⋅ (𝑣𝑕(𝑓(𝑄𝑕

∗𝑠) − 𝑓(𝑠𝑕)) ∥2 +∥ 𝑒𝑠
0 ∥2 

 ≤
𝛼3

4
∥

𝜕

𝜕𝑡
(𝑄𝑕

∗𝑠 − 𝑠𝑕) ∥2+
𝛼3

16
∥

𝜕

𝜕𝑡
(𝑣𝑕) ∥2 

 +∥ 𝑒𝑠
0 ∥2≤ 𝐶 ∥ (𝑒𝑠)𝑡 ∥2+ 𝐶 ∥ (𝑣𝑕)𝑡 ∥2 +∥ 𝑒𝑠

0 ∥2, 

 

 |𝐽67| = |(𝑞−(Π𝑕
∗𝑠0 − 𝑄𝑕

∗𝑠0), (𝑒𝑠
0)𝑡)| ≤ |

𝜕

𝜕𝑡
(𝑞−(Π𝑕

∗𝑠0 − 𝑄𝑕
∗𝑠0), 𝑒𝑠

0)| 

 −|(
𝜕

𝜕𝑡
𝑞−(Π𝑕

∗𝑠0 − 𝑄𝑕
∗𝑠0), 𝑒𝑠

0)| ≤ |
𝜕

𝜕𝑡
(𝑞−(Π𝑕

∗𝑠0 − 𝑄𝑕
∗𝑠0), 𝑒𝑠

0)| 

 +
∥𝑞−∥2

4
∥ (Π𝑕

∗𝑠0 − 𝑄𝑕
∗𝑠0)𝑡 ∥2 +∥ 𝑒𝑠

0 ∥2≤ 𝐶𝑕2 ∥ (𝑠𝑕
0)𝑡 ∥2 +∥ 𝑒𝑠

0 ∥2, 

 

 |𝐽68| = |(𝑎(𝑄𝑕
∗𝑠0)∇𝑑,𝑟 ⋅ (𝑄𝑕

∗𝑠 − 𝑠𝑕), ∇𝑑,𝑟 ⋅ (𝑒𝑠)𝑡)| 

 ≤ |
𝜕

𝜕𝑡
(𝑎(𝑄𝑕

∗𝑠0)∇𝑑,𝑟 ⋅ (𝑄𝑕
∗𝑠 − 𝑠𝑕), ∇𝑑,𝑟 ⋅ 𝑒𝑠)| 

 −|(
𝜕

𝜕𝑡
𝑎(𝑄𝑕

∗𝑠0)∇𝑑,𝑟 ⋅ (𝑄𝑕
∗𝑠 − 𝑠𝑕), ∇𝑑,𝑟 ⋅ 𝑒𝑠)| 

 ≤ |
𝜕

𝜕𝑡
(𝑎(𝑄𝑕

∗𝑠0)∇𝑑,𝑟 ⋅ (𝑄𝑕
∗𝑠 − 𝑠𝑕), ∇𝑑,𝑟 ⋅ 𝑒𝑠)| 

 +
𝛼4

4
∥ (𝑎(𝑄𝑕

∗𝑠0)𝑡 ∥2+
𝛼4

16
∥ (∇𝑑,𝑟 ⋅ (𝑄𝑕

∗𝑠 − 𝑠𝑕))𝑡 ∥2 +∥ ∇𝑑,𝑟 ⋅ 𝑒𝑠 ∥2 

 ≤ 𝐶 ∥ (𝑠𝑕
0)𝑡 ∥2+ 𝐶 ∥ ∇𝑑,𝑟 ⋅ (𝑒𝑠)𝑡 ∥2+ 𝐶 ∥ 𝑒𝑠 ∥2, 

 substituting 𝐽61 − 𝐽68 in equation (5.30), we get  

 𝐶 ∥ 𝜙 ∥∥ (𝑒𝑠
0)𝑡 ∥2+ 𝐶 ∥ 𝑠𝑕

0 ∥2+ 𝐶𝑕 ∥ 𝑠𝑕 ∥2+ 𝐶 ∥ ∇𝑑,𝑟 ⋅ (𝑒𝑠)𝑡 ∥2+ 𝐶 ∥ 𝑒𝑠 ∥2+ 𝐶 ∥

(𝑒𝑠
0)𝑡 ∥2 

 +𝐶 ∥ 𝑒𝑠 ∥2+ 𝐶 ∥ (𝑠𝑕)𝑡 ∥2+ 𝐶𝑕 ∥ (𝑠𝑕
0)𝑡 ∥2+ 𝐶 ∥ 𝑒𝑠 ∥2+ 𝐶 ∥ (𝑠𝑕)𝑡 ∥2 

 +𝐶 ∥ (𝑒𝑠
0)𝑡 ∥2+ 𝐶 ∥ (𝑣𝑕)𝑡 ∥2+ 𝐶𝑕2 ∥ (𝑠𝑕)𝑡 ∥2+ 𝐶 ∥ (𝑒𝑠)𝑡 ∥2 +∥ 𝑒𝑠

0 ∥2 

 +𝐶 ∥ (𝑒𝑠)𝑡 ∥2+ 𝐶 ∥ (𝑣𝑕)𝑡 ∥2 +∥ 𝑒𝑠
0 ∥2+ 𝐶𝑕2 ∥ (𝑠𝑕

0)𝑡 ∥2 +∥ 𝑒𝑠
0 ∥2 

 +𝐶 ∥ (𝑠𝑕
0)𝑡 ∥2+ 𝐶 ∥ ∇𝑑,𝑟 ⋅ (𝑒𝑠)𝑡 ∥2+ 𝐶 ∥ 𝑒𝑠 ∥2≤ 0, 

 so,  

 
𝜕

𝜕𝑡
[∥ ∇𝑑,𝑟 ⋅ 𝑒𝑠 ∥2 +∥ 𝑒𝑠 ∥2] ≤ 𝐶 ′′

3𝑕[∥ 𝑠𝑕
0 ∥2 +∥ (𝑠𝑕

0)𝑡 ∥2 +∥ 𝑠𝑕 ∥2 +∥ (𝑠𝑕)𝑡 ∥2 +∥

(𝑒𝑠
0)𝑡 ∥2 +∥ 𝑒𝑠

0 ∥2 +∥ 𝑒𝑠 ∥2 +∥ (𝑣𝑕)𝑡 ∥2] 

 where 𝐶′′3 = 𝑚𝑎𝑥{𝐶/𝑕, 𝐶, 𝐶𝑕, 2𝐶/𝑕, 3/𝑕, 4𝐶/𝑕, 𝐶 ∥ 𝜙 ∥/𝑕}/(−2𝐶), and integrate with respect to 𝑧 
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from 0 to 𝑡, we have  

 ∥ ∇𝑑,𝑟 ⋅ 𝑒𝑠(𝑡) ∥2 +∥ 𝑒𝑠(𝑡) ∥2≤ 𝐶 ′′
3𝑕  ‍

𝑡

0
[∥ 𝑠𝑕

0(𝑧) ∥2 +∥ (𝑠𝑕
0 𝑧 )𝑧 ∥2 +∥ 𝑠𝑕 𝑧 ∥2 +∥

(𝑠𝑕(𝑧))𝑧 ∥2 +∥ (𝑒𝑠
0)𝑧(𝑧) ∥2 +∥ 𝑒𝑠

0(𝑧) ∥2 +∥ 𝑒𝑠(𝑧) ∥2 

 +∥ (𝑣𝑕(𝑧))𝑧 ∥2]𝑑𝑧−∥ ∇𝑑,𝑟 ⋅ 𝑒𝑠(0) ∥2 −∥ 𝑒𝑠(0) ∥2. 

 

6  Numerical Result 

  For numerical validation of the weak Galerkin method presented in the previous section, we consider 

a two-dimensional test case of incompressible immiscible displacement. 

The weak Galerkin method in the synthetic problem for a coupled system of pressure-saturation 

equation that admits an exact solution, and investigates the effects of the accuracy of total velocity 

reconstruction on the convergence order for a coupled system. The numerical simulations have been 

performed using developed by authors’ MATLAB software package that implements the weak 

Galerkin method in two-dimensional geometry in a fast sparse matrix programming environment. 

We are considered in Ω = (0,1) × (0,1) for the benchmark problem given below [1] [26]:  

 ∇ ⋅ (𝑘(𝑠)∇𝑝) = 0, (6.1) 

 𝑣 = 𝑘(𝑠)∇𝑝 , (6.2) 

 
𝜕

𝜕𝑡
𝑠 + ∇ ⋅ (−𝜖∇𝑠 + 𝑣𝑓(𝑠)) = 𝐹 , (6.3) 

 with 𝑘(𝑠) = (0.5 − 0.2𝑠)−1 , 𝜖 = 0.01 , 𝑓(𝑠) = 𝑠 , where 𝐹 = 2𝜋2𝜖sin(𝜋(𝑥 + 𝑦 − 2𝑡)) , boundary 

and initial conditions correspond to the exact solution  

 𝑝 =
0.2

𝜋
cos(𝜋(𝑥 + 𝑦 − 2𝑡)) + 0.5(𝑥 + 𝑦), 

 𝑠 = sin(𝜋(𝑥 + 𝑦 − 2𝑡)). 

 

In Tables 1, 2 and 3 for the errors and convergence orders of first order weak Galerkin method, 

calculated on nested sequences of structured triangular meshes, are presented for pressure, total 

velocity and saturation at final time 𝑡 = 1. In the simulation, a small uniform time step was used to 

eliminate time error pollution. We can observe that the convergence order is optimal for all three 

variables. 
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𝑕 ∥ 𝑣 − 𝑣𝑕 ∥𝐻1   Order  ∥ 𝑣 − 𝑣𝑕 ∥𝐿2   Order  ∥ 𝑣 − 𝑣𝑕 ∥𝐿∞   Order  

  1/2 1.7387e-01  0  2.1316e-01   0  2.0750e-01  0  

  1/4 1.0541e-01  7.2207e-01 4.3763e-02 2.2842e+00  5.4918e-02 1.9177e+00  

  1/8 4.5946e-02 1.1980e+00 1.0297e-02 2.0874e+00  1.4161e-02 1.9553e+00 

  1/16 2.1004e-02 1.1292e+00  2.5313e-03 2.0243e+00  3.5977e-03 1.9768e+00 

  1/32 9.9384e-03 1.0796e+00 6.3010e-04  2.0063e+00  9.0684e-04 1.9882e+00 

  1/64 4.8180e-03 1.0446e+00 1.5735e-04  2.0016e+00  2.2765e-04  1.9940e+00 

Table  1:  Errors for Velocity of weak Galerkin method with fixed 𝑡 = 1, Δ𝑡 = 0.001 and 𝜀 = 0.01 . 

 

𝑕 ∥ 𝑝 − 𝑝𝑕 ∥𝐻1   Order  ∥ 𝑝 − 𝑝𝑕 ∥𝐿2   Order  ∥ 𝑝 − 𝑝𝑕 ∥𝐿∞   Order  

  1/2 4.6756e-03  0 3.9482e-03   0 1.9560e-01  0 

  1/4 2.6169e-03 8.3730e-01 1.0132e-03 1.9622e+00 5.7881e-02 1.7567e+00 

  1/8 1.3364e-03 9.6948e-01 2.5313e-04 2.0010e+00 1.4568e-02 1.9903e+00 

  1/16 6.7069e-04 9.9466e-01 6.3244e-05 2.0009e+00 3.6525e-03 1.9959e+00 

  1/32 3.3559e-04 9.9895e-01 1.5808e-05 2.0002e+00 9.1401e-04 1.9986e+00 

  1/64 1.6782e-04 9.9976e-01 3.9519e-06 2.0001e+00 2.2857e-04 1.9996e+00 

Table  2:  Errors for Pressure of weak Galerkin method with fixed 𝑡 = 1, Δ𝑡 = 0.001 and 𝜀 = 0.01 . 

 

𝑕 ∥ 𝑠 − 𝑠𝑕 ∥𝐻1   Order  ∥ 𝑠 − 𝑠𝑕 ∥𝐿2   Order  ∥ 𝑠 − 𝑠𝑕 ∥𝐿∞   Order  

  1/2  5.0581e-02   0   6.2516e-02   0  3.7532e-03   0 

  1/4  2.5187e-02   1.0059e+00   1.9268e-02   1.6980e+00   9.3995e-04   1.9975e+00 

  1/8  1.2563e-02   1.0035e+00   5.2248e-03   1.8828e+00   2.3492e-04   2.0004e+00 

  1/16  6.2715e-03   1.0023e+00   1.3479e-03   1.9547e+00   5.8956e-05   1.9944e+00 

  1/32  3.1325e-03   1.0015e+00   3.4152e-04   1.9807e+00   1.4901e-05   1.9842e+00 

  1/64  1.5652e-03   1.0010e+00   8.5947e-05   1.9905e+00   3.8285e-06   1.9605e+00 

Table  3:  Errors for Saturation of weak Galerkin method with fixed 𝑡 = 1, Δ𝑡 = 0.001 and 𝜀 = 0.01  

 

7  Conclusions and Future Work 

 We have developed a weak Galerkin method sequential solution technique for miscible fluid flows in 
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porous media, in which we use the weak Galerkin mixed finite element method to solve the pressure 

and Darcy velocity equations and weak Galerkin method to solve the transport equation for saturation. 

Error convergence in 𝐻1 and 𝐿2 is proved for semi-discrete schemes by the error equations, and the 

stabilization and energy conservation for the weak Galerkin methods. 

The numerical results demonstrate that the weak Galerkin simulator generates accurate and physically 

reasonable solutions. The use of the weak Galerkin mixed finite element method for the pressure 

equation yields accurate Darcy velocity fields that conserve mass, whereas the saturation equation by 

using the standard weak Galerkin method ,clearly in figures (4, 8 and 12), respectively. 

Future work consists of the following steps: 

* Studying the weak Galerkin hybrid finite element methods for two-dimensional incompressible 

immiscible displacement fluid in a porous medium. 

* Studying the Crank-Nicolson-weak Galerkin finite element scheme for two-dimensional 

incompressible immiscible displacement fluid in a porous medium. 

* Studying a simplified weak Galerkin finite element model for two-dimensional incompressible 

immiscible displacement fluid in a porous medium. 

 

  

(a) Order error for 𝐻1 (b) Order error for 𝐿2 

 

(c) Order error for 𝐿∞  

Figure  1:  Order Error for Velocity with 𝑯𝟏−, 𝑳𝟐 −and 𝑳∞ − norms. 
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(a) Order error for 𝐻1 (b) Order error for 𝐿2 

 

(c) Order error for 𝐿∞  

Figure  2:  Order Error for Pressure with 𝑯𝟏−, 𝑳𝟐 −and 𝑳∞ − norms. 

 

  

(a) Order error for 𝐻1 (b) Order error for 𝐿2 

 

(c) Order error for 𝐿∞  

Figure  3:  Order Error for Saturation with 𝑯𝟏−, 𝑳𝟐 −and 𝑳∞ − norms. 
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