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Abstract 

This is well acknowledged authenticity that a collection of discrete 

entropic models in the probability spaces are unbelievably accessible in 

the literature but still there is unavoidability to produce supplementary 

parametric models to enlarge their application areas in a assortment of 

disciplines. This paper makes a comprehensive study of an innovative 

discrete entropic model along with its applications to the discipline of 

queueing theory with infinite capacity for the deliberations of the learning 

of variations of uncertainty. Our findings reveal the pattern of behavior of 

discrete entropy model in the steady and non-steady state queueing 

process with infinite channel capacity. Additionally, we have well 

designed the understanding of maximum entropy principle for the 

development of optimization principle in the discipline of queueing theory 

with finite channel capacity for the comprehension of distribution under 

consideration. 

 Keywords: Probability distribution, Queueing theory, Degenerate 

distributions, Entropy, Continuity, Symmetry, Concavity, Steady state, 

Non-steady state.  

 

INTRODUCTION    

The memorable authenticity about the discrete information models including entropic 

models intend to demonstrate their significance for expedient significance of information 

dispensing in broad-spectrum progression in statistical configuration pedestal on entropic model 

well established by Shannon [11]. This discrete entropic model influences some precious and 
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obvious requirements and furthermore can be bestowed with outfitted association in crucial 

pragmatic optimization problems concerned with a diversity of disciplines. The convention that the 

entropic models have astonishingly congenial properties led the investigators working on entropic 

models to originate abundant new-fangled mathematical entropic models. Shannon [11] established 

the significant perception of entropy by means of subsequent manifestation:  

)(PH = 
1

n

i i

i

p log p


                                                                                                          (1.1) 

It is well celebrated actuality that to facilitate sensible applications of discrete information 

models in the control of probabilistic coding theory, a broad-spectrum approach has been endowed 

with in a structure pedestal on entropic model pioneered by Shannon [11]. This quantitative 

entropic model persuades several advantageous self-evident prerequisites and furthermore it can be 

capable of allocation with an outfitted consequence in imperative convenient optimization problems 

of numerous disciplines. This is the distinguished authenticity that information models are 

significant for convenient relevance of information dispensing a broad-spectrum advancement in 

statistical structure. This entropy persuades some advantageous self-evident requirements and 

additionally can be dispensed outfitted connotation in imperative realistic problems.  

In recent times, Zhang and Shi [14] deliberated astonishing commentary about Shannon’s 

entropy that its structure has indispensable characteristic but its unboundedness over the universal 

category of distributions on an alphabet puts off its impending effectiveness from being entirely 

comprehended. To conquer this shortcoming, Zhang [13] projected a generalized feature of 

Shannon’s entropy and made comprehensive study of its asymptotic properties. Additionally, the 

author verified that these properties require no suppositions on the original distribution.  

After the establishment of Shannon [11] entropy, abundant entropic models were discussed 

and derived by assorted researchers. Some of the imperative explorations were made by Renyi’s 

[10] additive and Havrada and Charvat’s [3] non-additive entropy. To enhance the text of the 

discrete entropic models, Parkash and Kakkar [5, 6] delivered investigation and consequently 

organized protracted efforts for the exploration of abundant entropic models for the discrete 

probability spaces from application point of surveillance and consequently augmented the literature 

of discrete entropy models by means of twisting the subsequent innovative entropic models:  
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Recently, Parkash and Mukesh [9] promoted the passage of information entropic models after 

creating another discrete entropy model for the furtherance of their research communications.  

On the other hand, the perception of weighted models cannot be disregarded because of their 

extraordinarily productive responsibility. Employing significance to events and to provide the 

applications of their weighted entropic models to coding theory, Parkash and Kumar [7] completed 

protracted efforts for their investigations and consequently enriched the literature of weighted 

entropic models. Many other developments related with the study of information theoretic entropies 

for the discrete probability distributions have been made by Kapur [4], Elgawad, Barakat, 

Xiong and Alyami [1], Sholehkerdar, Tavakoli and Liu [12], Gao and Deng [2] etc. 

To enhance the literature of discrete weighted entropic models, Parkash, Kumar, Mukesh 

and Kakkar [19] well thought-out prolonged efforts for the exploration of plentiful weighted 

parametric entropic models for the discrete probability spaces from application point of view in the 

field of coding theory. Through their cooperative efforts, the authors delivered numerous 

observations and consequently enhanced the literature of such models by means of twisting the two 

subsequent quantitative outward show:
 

  1
,

1

1
; log , 1, 1

n

i i

i

n

i i

i

w p

H P W

w p



 


 
 





 
 
   

  
  




 or 1, 1                                                     (1.4) 

One of the application areas of entropy measures in Operations Research finds compatibility 

with queueing theory under infinite channel capacity. While providing applications in a simple 

birth-death process, we assume pn(t) to be the probability of n persons at some time t and n0 be the 

persons at some time t = 0, then if we describe the probability generating function by the 

subsequent appearance: 

   





on

n

n stpts, ,                                                              (1.5) 
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then, we acquire subsequent outcome: 

 
   

   

0

1
, ,

1

n

s x
s t

x s x

  
  

  

   
  

    

                                                           (1.6)  

          = 
 

0

1
,

1

n

t t s

t ts

 
 

 

  
 

  
                                                            (1.7) 

where exp( )x t                                                                            (1.8) 

By making expansion of the function  ts, , one can discover pn(t). With the well acknowledged 

notations of the system, we presuppose  and  to be arrival and service rates respectively in the 

steady state, then we are well recognized with the subsequent form: 

(1 ) n

np    , 0,1,2.3,....;n





                                                                                               (1.9) 

In the sequel, we have wrought out an innovative entropic model for the discrete probability 

distributions and completed the comprehensive learning of its interesting properties. Additionally, 

by employing this model, we have collected the knowledge of variations of uncertainty in the 

diverse states of queueing system with infinite channel capacity.  More additionally, we have 

premeditated the responsiveness of maximum entropy principle for the development of optimization 

principle in the discipline of queueing theory with finite channel capacity for the knowledge of 

distribution under consideration. 

2. A NEW-FANGLED ENTROPIC MODEL IN PROBABILITY SPACES 

 Here, we have produced a novel parametric entropic models in probability spaces and studied 

their crucial properties for their authenticity. The necessity for the development of these models 

arises due to their applicability to underline their applications in the disciplines of Statistics, 

Operations Research and Coding theory.  

I. Firstly, we establish the subsequent quantitative discrete parametric entropic model specified by  

     
1 1

1 (1 )
log 1 log 1 log(1 ); 0, 0

n n

i i i i

i i

H P p p p p


    

  


                            (2.1) 

We observe that 
0

1

lim ( ) log
n

i i

i

H P p p




  .  

Hence, we examine that the appearance of  H P  is a generalized entropic model. 

To authenticate that (2.1) is a convincing model, we study its subsequent fundamental properties: 
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(i) We have   0H P   

For n degenerate distributions, we have   0H P  . Since, entropy gives minimum value for 

degenerate distributions and the minimum value is 0, we must have   0H P  . 

(ii)  H P is symmetric. 

(iii)  H P is continuous. 

(iv) Concavity: To demonstrate the concavity, we carry on subsequently: 

We have  
( )

2 log log 1i i

i

H P
p p

p

 


      
 

Also
2

2

( ) 1
0

1i i i

H P

p p p

 




   

 
which verifies concavity of  H P . 

Moreover, with the assistance of numerical data exposed in the subsequent Table-2.1 for 2n  and 

2  , we have presented the entropic model  H P against p  as revealed in Figure-2.1. 

Table-2.1:  H P against p  for 2n  and 2   

p  0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1  

 H P

 

0.000

0000 

0.27

564

56 

0.38

845

67 

0.45

456

78 

0.48

934

89 

0.50

000

00 

0.489

5636 

0.45

4676

7 

0.38

8787

8 

0.27

1458

7 

0.000

0000 

 

 

Figure-2.1: Concavity of  H P  with respect to P  
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The Figure-2.1 undoubtedly demonstrates the concavity of (2.1). Consequently, we claim that 

 H P is an acceptable entropy model.  

(v) Maximization: We make exploitation of Lagrange’s technique to deliberate maximization the 

entropic model (2.1) under the discussion of the usual and accustomed constraint. 

In this case, we think about the equivalent Lagrange’s function appearing in the subsequent 

structure: 

 
1

1
n

i

i

L H P p 


 
   

 
                                                                                                               (2.2) 

Differentiating (2.2) with respect to ip and connecting its derivatives to nil, we acquire the 

correspondence which is promising only if 1 2 ... np p p   .  

Further, by means of the property
1

1
n

i

i

p


 , we search out that
1

,ip i
n

  . 

As a consequence, we monitor that  
max

H P   takes place at the uniform distribution and this 

consequence is essentially attractive one. 

(vi) If we symbolize  
max

H P   by  f n then, we acquire 

 
2 1

' log 1 0f n
n n





 
    

 
 

which provide the evidence that  f n  increases with n , which all over again an striking 

consequence for the reason that the maximum value of any entropy measure forever increase. 

In the next section, we have deliberated the applications of the discrete entropic model shaped 

above in the direction of its relevance in queueing theory with infinite channel capacity. 

3. APPLICATIONS OF DISCRETE PARAMETRIC ENTROPIC MODEL IN QUEUEING 

THEORY 

          Here, we have completed the learning of discrepancy of entropy in the different states of 

queueing process and for this rationale, we have well thought-out the subsequent cases: 

Case-I: Variations of entropic model in the steady state with infinite capacity   

For the steady state queueing process, we rewrite the above model (2.1) as 
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     
0

1 (1 )
, log 1 log 1 log(1 )n n n n

n o n

S p p p p 
    

 

 

 


                                          (3.1) 

Substituting the standard result of queueing theory, that is, (1 ) n

np    , we acquire the 

subsequent appearance: 

     
0

1
, (1 ) log((1 ) log 1 (1 ) log 1 (1 )

(1 )
log(1 )

n n n n

n o n

S            







 

 

           


 

 
                                                                                                        

 

 
0

1
(1 ) log(1 ) log

(1 )

1 (1 )
1 (1 ) log 1 (1 ) log(1 )n n

n

   



      

 





    



        

                                    (3.2) 

To provide the solution of the problem under deliberation, we reflect on the IInd and IIrd terms of 

equation (3.2) and taking limit as 0,  the above equation gives the subsequent consequence:  

 0 0

0

1 (1 )
1 (1 ) log 1 (1 ) log(1 )n n

n

Lt Lt 


      

 



 




          

     2 3(1 ) (1 ) (1 ) (1 ) ... 1                    

     2 3(1 ) 1 ... 1 0               

As a consequence, equation (3.2) becomes 

   0

1
, (1 ) log(1 ) log

(1 )
Lt S

      


     


                                                                  (3.3) 

Differentiating equation (3.3) w.r.t. , we search out the subsequent result: 

 0 2

log
, 0

(1 )
Lt S




 

 



  

 
 

This surveillance implies that the in steady-state, uncertainty prevailed gets enhanced from 0 to 

 as   gets amplified from 0  to unity. Accordingly, in this case, we perceive that uncertainty gets 

enlarged with the increase in utilization factor. 

Case-II: Entropic Variations in non-steady state queueing process with infinite capacity 

Here, we primarily develop the results by considering Kapur’s [4] observation that 
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   
        


  

 

so that
 

 

1

1
( ) , 1

1

n

n n

t
p t n

t








 


.  

Also  
t

t
tp








1
0  

Consequently, we acquire the subsequent mathematical appearance: 

 

 

1

1
, 1

1( )

, 0
1

n

n

n

t
n

tp t

t
n

t
















 





                                                                                                               (3.4) 

Now, we provide the wide-ranging learning of the diverse variations by taking into consideration 

the probabilistic entropic model (3.1). 

Consider the first term of (3.1) as 

   

 

2 1 log 1 log
( ) log ( )

1
n n

n o

t t t t
p t p t

t

   







     


  

Accordingly, equation (3.1) acquires the precise manifestation, the second term of which in the 

limiting case as 0  , provides the subsequent mathematical communication: 

   0

0

1
1 log 1 ( ) 1n n

n

Lt p p t  








    

Similarly, captivating limit as 0  , the third term of the same manifestation confers with the 

subsequent noticeable illustration: 

0

(1 )
log(1 ) 1Lt








   

Thus, in the limiting case, equation (3.1) bestows with the subsequent emergence: 

 
   

 0

2 1 log 1 log
,

1

t t t t
Lt S

t





   
 




    


                                                                       (3.5) 

Now 

2

0 12log
( , )

0 1( ) ((1 )

if td t
S t

if td t t





 

 
 

     

which implies that the uncertainty increases if t <1 and decreases if t 1.  
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Furthermore from (3.5), the highest uncertainty happens when t =1 and in this case,  

Max ( , ) 2log 2S t           

Additionally, at the time when 0t  , uncertainty is 0 and at the time when t  , we acquire 

subsequent manifestation:  

( , ) 0
t
Lt S t 



 

Consequently, we scrutinize that uncertainty begins absolutely  with worth 0 at time 0t  and 

finishes absolutely with worth 0 as time ,t   and sandwiched between this time, it accomplishes 

the greatest value at t =1,that is, at t = 
1

.


      

In the succeeding segment, we have well planned the awareness of maximum entropy principle for 

the development of optimization principle in the discipline of queueing theory with finite channel 

capacity for the knowledge of distribution under consideration. 

4. DEVELOPMENT OF OPTIMIZATIONAL PRINCIPLE IN THE FIELD OF QUEUEING 

THEORY 

         In this fragment, we make available the relevance of MaxEnt principle for estimation of 

discrete probability distribution when simply fractional information concerning the specified 

distribution is accessible. To elaborate structure to this MaxEnt principle, we think about the 

subsequent model: 

Model: Optimizational principle by the employment of entropic model with finite space 

capacity and known mean size of the system 

To accomplish our intention, we exploit the discrete parametric entropic model (2.1) previously 

commenced in section-2. Consequently, our optimizational problem gets converted into the 

subsequent mathematical appearance: 

Maximize (2.1) under the subsequent set of constraints: 

1

1
n

i

i

p


                                                                                                                                          (4.1) 

and 
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1

n

i

i

ip m


                                                                                                                                        (4.2) 

To act in accordance with the optimizational problem, we think about the equivalent Lagrange’s 

function appearing in the subsequent mathematical structure: 

   
1 1 1 1

1 (1 )
log 1 log 1 log(1 ) 1

n n n n

i i i i i i

i i i i

L p p p p p ip m


    
    

    
             

   
     

Now, in the limiting case as 0,  0
i

L

p





 gives 

i i

ip e e ab                                                                                                                                (4.3) 

where (2 ) ,a e b e     and ,a b are to be determined from the subsequent equations: 

1 1

1
n n

i i

i i

a b and a ib m
 

                                                                                                               (4.4) 

Now,  

2 3 4
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...
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a b a b b b b b
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       
1

1

nb
ab

b

 
  

 
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2 3 4

1

2 3 4 ...
n

i n

i

a ib a b b b b nb


         

             
2

1

(1 ) 1

n nb nb
ab

b b

 
  

  
 

Employing these values equations (4.4), we acquire the subsequent communication 

 
1 1

1
1 1 1

n n

n

b nb
ab and m

b b b


  

  
                                                                                               (4.5) 

With the known values of m and n , the equations (4.5) give the values of a and b and hence 

equation (4.3) determines the required set of probabilities. Thus, we observe that the maximizing 

entropy probability distribution is geometric distribution. 

The above process has been exemplified with the facilitation of subsequent numerical illustration: 

Numerical Illustration: 

 Upon maximization of the discrete entropic model (2.1) with the employment of (4.1) and 

(4.2) particularly, for 9n  and 1.5,m  the equations (4.5) and (4.3) provide the subsequent 

communications: 
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1 0.6012p  2 0.1475,p  3 0.0827p  , 4 0.0534,p  5 0.03412,p  6 0.0312,p  7 0.0225,p 

8 0.0121p  , 9 0.0102p   

Obviously, we have the subsequent probabilistic appearance: 

9

1

1.0020i

i

p


  

This modus operandi is reiterated for dissimilar values of m  when we capture 9n  . For the period 

of the modus operandi implemented, we experimented that in certain cases, we contracted a small 

amount of negative probabilities, not advantageous at all. To undertake the circumstances, we 

overlooked these probabilities and once again originated the problem for outstanding probabilities 

and resolved it for its explanation. The consequences of our working out are exposed in the 

subsequent Table-4.1. 

Table-4.1 

m  
1p  2p  3p  4p  5p  6p  7p  8p  9p  

1.5  0.6012  0.1475  0.0827  0.0534  0.0412  0.0312  0.0225  0.0121  0.0102  

2.5  0.4565  0.1853  0.1272  0.0882  0.0662  0.0518  0.0425  0.0387  0.0371  

3.5  0.2334  0.1835  0.1283  0.0989  0.0867  0.0767  0.0694  0.5565  0.0565  

4.5  0.1375  0.1264  0.1075  0.0989  0.0978  0.0896  0.0886  0.0879  0.0784  

5.5  0.0000  0.0000  0.2202  0.1862  0.1632  0.1432  0.1138  0.1034  0.0913  

6.5  0.0000  0.0000  0.0000  0.0000  0.3063  0.2634  0.1723  0.1422  0.1218  

7.5  0.0000  0.0000  0.0000  0.0000  0.0000  0.4012  0.3078  0.2167  0.1005  

8.5  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.7023  0.2130  0.1003  

9.5  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.5000  0.5000  

 

Concluding Remarks: With the development of entropy model, we have deliberated the study of 

variations of uncertainty and observed that the uncertainty always increases in the steady state 
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despite the fact that in the non-steady state, uncertainty in the beginning increases and receives 

maximum value whereas with time, it gets decreased and receives its minima. The consequences of 

our findings bring about intact compatibility with reality and consequently our conclusions are 

fascinating. Furthermore, we have well premeditated the responsiveness of maximum entropy 

principle for the enlargement of optimization principle in the discipline of queueing theory for the 

understanding of distribution under contemplation. 
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