
Mathematical Statistician and Engineering Applications  
ISSN: 2094-0343  

2326-9865 

3582 
Vol. 71 No. 4 (2022) 
 http://philstat.org.ph 

Binary γ - open sets in Binary Topological Space 

 

K.Muthulakshmi
1#

, M.Gilbert Rani
 *2 

 

1
Assistant Professor in Mathematics, 

V.V.Vanniaperumal College for Women(Autonomous), Virudhunagar, India 

 
2
Assistant Professor in Mathematics, 

Arul Anandar College(Autonomous), Karumathur, India 

 
a
sweetyesther20@gmail.com & 

b
gilmathaac@gmail.com 

 
 

Article Info 

Page Number: 3582-3590 

Publication Issue: 

Vol. 71 No. 4 (2022) 

 

Article History 

Article Received: 25 March 2022 

Revised: 30 April 2022  

Accepted: 15 June 2022 

Publication:19 August 2022 

Abstract 

 

According to  this paper, we bring out the new open set namely as binary 

γ-open set. And we investigate the concept of binary γ- interior and binary 

γ-closure  
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1. Introduction 

 

The introduction of topological space was given by  Ryszard Engelking[19] in the year 1977. operation γ 

of a topology 𝜏concept was put-forth by S. Kasahara [2]. A new idea was imposed by  H. Ogata [16]. The 

concept of new mapping relating the sets are given [1]. G.S.S. Krishnan and K. Balachandran [4] investigated 

the concept   γ- preopen sets. Continuity and separation axioms in [12],[13]. Generalization was introduced 

byJamal M. Mustafa [7]. R.Seethalakshmi [18] have also said about Nearly Binary Open Sets in this concept.  

In this paper, binary γ -open sets in binary topological spaces is introduced and discussed. And here we 

will also show up with some of the its definitions and properties with examples, which helps to illustrate the 

binary γ -open sets. 

 

2. BINARY γ-OPEN SETS 

 

To understand the concept, go through [11],[16]. In this section,b−O- binary open set, b− 𝐶 −binary 

𝑐𝑙𝑜𝑠𝑒𝑑 𝑠𝑒𝑡,b-cl– binary closure, BTS -binary topological space,B 𝛾 −TS-binary𝛾 − topological space,  b 𝛾- 

binary 𝛾 −open set, b 𝛾O- binary 𝛾 −open sets, b 𝛾𝐶 −binary 𝛾 − 𝑐𝑙𝑜𝑠𝑒𝑑 𝑠𝑒𝑡𝑠, 𝔅𝛾 −set of all binary 

𝛾 −open sets, b-int- binary interior, LP-limit point, LPs- limit points 

Now we see the basic definitions 
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Definition 2.1 

For BTS (𝜁, 𝜂,𝔅), (i)An operation 𝛾 on the BT ‘𝔅′ is a mapping 𝛾:𝔅2𝑋  x 2𝑌  such that (𝜌, 𝜍)⊆ 𝛾((𝜌, 𝜍)) 

for every (𝜌, 𝜍)∈ 𝔅.(ii)Take a nonempty set (ℷ, ℵ) ⊆  𝜁, 𝜂 , then (ℷ, ℵ) is called b𝛾 if for all (ℸ,ℶ)∈ (ℷ, ℵ), 

there exists (𝜌, 𝜍) ∈ 𝔅 such that (ℸ, ℶ) ∈ (𝜌, 𝜍),  𝛾((𝜌, 𝜍))⊆ (ℷ, ℵ). For example,InBTS, 𝜁={a, b}, 𝜂={1,2}                        

𝔅 ={(∅, ∅), ({a},{1}), (𝜁, 𝜂)} on 𝜁 × 𝜂. 

 𝛾: 𝔅 → 2𝑋 x2𝑌  be an operation defined as follows: 

                       For every (ℷ, ℵ))∈ 𝔅, then 𝛾((ℷ, ℵ)) = 
(ℷ, ℵ)  if  (ℷ, ℵ) = ({a}, {1})

(ℷ, ℵ) ∪ ({b}, {2}) 𝑖𝑓(ℷ, ℵ) ≠ ( 𝑎 ,  1 )
  

      Here (∅, ∅) ,  𝜁, 𝜂 , ( 𝑎 , {1}) are b 𝛾O. 

(iii)(ℷ, ℵ) isb 𝛾C if (ℷ, ℵ)
c∈  𝔅𝛾. 

Result 2.1: 

Let {(𝐴𝛼 , 𝐵𝛼 )/ 𝛼 𝜖Ω} be any collection of b 𝛾O on a BTS(𝜁, 𝜂, 𝔅). Then  (𝐴𝛼 , 𝐵𝛼)𝛼𝜖Ω  is also a b 𝛾O. 

Proof: (𝐴1, 𝐵1), (𝐴2, 𝐵2), . . . . (𝐴𝑛 , 𝐵𝑛) are b 𝛾O on a BTS. 

Let (ℸ,ℶ) ∈  (𝐴𝛼 , 𝐵𝛼)𝛼𝜖Ω . Then (ℸ, ℶ) ∈ (𝐴𝑗 , 𝐵𝑗 ), for some j 𝜖Ω. 

Since (𝐴𝑗 , 𝐵𝑗 ) is b 𝛾, ∃b 𝛾 (𝜌, 𝜍) such that (ℸ, ℶ) ∈ (𝜌, 𝜍),  𝛾((𝜌, 𝜍))⊆  𝐴𝑗 , 𝐵𝑗  .  

It follows that 𝛾((𝜌, 𝜍))⊆  (𝐴𝛼 , 𝐵𝛼)𝛼𝜖Ω . 

Remark 2.1: Arbitrary intersection of b 𝛾O is not binary 𝛾-open set. 

Result 2.2: 

Let {(𝐴𝛼 , 𝐵𝛼 )/ 𝛼 𝜖{1, 2, . . . , n}} be any finite collection of b 𝛾Oon a BTS. Then  (𝐴𝑖 , 𝐵𝑖)
𝑛
𝑖=1  is ab𝛾. 

Proof: Let (𝐴1, 𝐵1), (𝐴2, 𝐵2), . . . . (𝐴𝑛 , 𝐵𝑛) be  b 𝛾O in (𝜁, 𝜂,𝔅). 

By induction on n , put n=2,Let (a, b) ∈ (𝐴1 ∩ 𝐴2 , 𝐵1 ∩ 𝐵2). Then (a, b) ∈ (𝐴1, 𝐵1) and  

 (a, b) ∈ (𝐴2, 𝐵2).Since (𝐴1, 𝐵1) is b 𝛾O, ∃(𝑈1, 𝑉1) ∈ 𝔅𝛾 such that (a, b) ∈ (𝑈1, 𝑉1) and 

𝛾((𝑈1, 𝑉1))⊆ (𝐴1, 𝐵1). Also  (𝐴2, 𝐵2) is b 𝛾O, ∃(𝑈2, 𝑉2) ∈ 𝔅𝛾 such that (a, b) ∈  𝑈2, 𝑉2 and  

𝛾( 𝑈2, 𝑉2 )⊆  𝐴2, 𝐵2 . Therefore (a, b) ∈  𝑈1 ∩ 𝑈2, 𝑉1 ∩ 𝑉2 and𝛾((𝑈1 ∩ 𝑈2, 𝑉1 ∩ 𝑉2)) ⊆ (𝐴1 ∩ 𝐴2, 𝐵1 ∩

𝐵2). Hence (𝐴1 ∩ 𝐴2, 𝐵1 ∩ 𝐵2) is b𝑖𝑛𝑎𝑟𝑦  𝛾 − 𝑜𝑝𝑒𝑛. Let us take this result is true for n-1. (𝐴1 ∩ 𝐴2. . . ∩

𝐴𝑛 ,  𝐵1 ∩ 𝐵2. . . ∩ 𝐵𝑛 )= (𝐴1 ∩ 𝐴2. . . ∩ 𝐴𝑛−1,  𝐵1 ∩ 𝐵2. . . ∩ 𝐵𝑛−1) ∩  (𝐴𝑛 , 𝐵𝑛). By hypothesis,   (𝐴𝑖 , 𝐵𝑖)
𝑛
𝑖=1  

is a b𝑖𝑛𝑎𝑟𝑦  𝛾 − 𝑜𝑝𝑒𝑛. 

Result 2.3: 
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Let {(𝐴𝛼 , 𝐵𝛼 )/ 𝛼 𝜖Ω} be any collection of b 𝛾C on a BTS. 

Then(i)  (𝐴𝛼 , 𝐵𝛼)𝛼 𝜖Ω is also a b 𝛾C and (ii) (𝐴𝛼 , 𝐵𝛼)𝛼𝜖Ω  need not be a b 𝛾C. 

Proof: Let (𝐴1, 𝐵1), (𝐴2, 𝐵2), . . . . (𝐴𝑛 , 𝐵𝑛). . .  be  b 𝛾C. Then (𝐴1, 𝐵1)c
, (𝐴2, 𝐵2)c

 , . . . , (𝐴𝑛 , 𝐵𝑛)c
 . . . are 

b 𝛾O. 

(𝐴1
c
, 𝐵1

c
), (𝐴2

c
, 𝐵2

c
), . . . , (𝐴𝑛

c
, 𝐵𝑛

c
) are b 𝛾C. By result 2.1,  (𝛼𝜖Ω 𝐴𝛼

𝑐 , 𝐵𝛼
𝑐 , ) is 

b 𝛾O.(i.e) (𝐴𝛼 , 𝐵𝛼)𝑐
𝛼 𝜖Ω ∈ 𝔅𝛾. ( (𝐴𝛼 , 𝐵𝛼))𝛼 𝜖Ω

c
 is b 𝛾O.⇒  (𝐴𝛼 , 𝐵𝛼)𝛼 𝜖Ω is also a b 𝛾C. 

(ii) By remark 2.1,  (𝐴𝛼 , 𝐵𝛼)𝑐
𝛼 𝜖Ω  need not be a b 𝛾O.So, (𝐴𝛼 , 𝐵𝛼) need not be a  binary  𝛾 −𝛼𝜖Ω

𝑐𝑙𝑜𝑠𝑒𝑑 𝑠𝑒𝑡. 

Result 2.4: 

Let {(𝐴𝛼 , 𝐵𝛼 )/ 𝛼 𝜖{1, 2, . . . , n}} be any finite collection of b 𝛾C on a BTS (𝜁, 𝜂, 𝔅). Then  (𝐴𝑖 , 𝐵𝑖)
𝑛
𝑖=1  is a 

b𝑖𝑛𝑎𝑟𝑦 𝛾 − 𝑐𝑙𝑜𝑠𝑒𝑑 𝑠𝑒𝑡. 

Definition 2.2: 

Let (P, Q) be any subset of a BTS (𝜁, 𝜂,𝔅 ) and 𝛾 be an operation on 𝔅. Let (𝑃, 𝑄)∗  = ∪ {𝑃1:  𝑃1, 𝑄1  𝑖𝑠 

binary  𝛾-open and  𝑃1, 𝑄1 ⊆(P, Q)} and (𝑃, 𝑄)∗∗ =∪ {𝑄1: 𝑃1, 𝑄1 𝑖𝑠 binary 𝛾 − open and (𝑃1 , 𝑄1) ⊆ (P, 

Q)} .Then clearly ((𝑃, 𝑄)∗,(𝑃, 𝑄)∗∗) is binary 𝛾 −open and also ((𝑃, 𝑄)∗,(𝑃, 𝑄)∗∗) ⊆ (P, Q). 

Also binary 𝛾 − interior of (P, Q) is denoted as 𝔅𝛾 - int (P, Q) and is defined by the union of all b 𝛾O 

contained in (P, Q).That is 𝔅𝛾 −int (P, Q) = ((𝑃, 𝑄)∗,(𝑃, 𝑄)∗∗). 

 In the above example, 𝔅𝛾-int( 𝑏 ,  2  )=(∅, ∅), 𝔅𝛾-int ( 𝑎 ,  1  )=( 𝑎 ,  1 ) 

Proposition 2.1: 

(P, Q) of (𝜁, 𝜂) is b 𝛾 in (𝜁, 𝜂, 𝔅 ) if and only if (P, Q) = 𝔅𝛾- int (P, Q). 

Proof : 

Let us take (P, Q) is binary  𝛾 −  open in (𝜁, 𝜂, 𝔅). By Definition 2.2, P⊆ (𝑃, 𝑄)∗ andQ ⊆ (𝑃, 𝑄)∗∗ . 

Therefore (P, Q) ⊆ ((𝑃, 𝑄)∗,(𝑃, 𝑄)∗∗).((𝑃, 𝑄)∗,(𝑃, 𝑄)∗∗) ⊆ (P, Q).  

Thus (P, Q) = ((𝑃, 𝑄)∗,(𝑃, 𝑄)∗∗). 

Conversely assume that (P, Q) = 𝔅𝛾- int (P, Q).By the above definition, (P, Q) is b 𝛾. 

Definition 2.3: 

Let (P,Q)* = ∩{𝑃1:  𝑃1, 𝑄1  is a binary 𝛾-closed & (𝑃, 𝑄) ⊆ (𝑃1, 𝑄1)} and (P,Q)**= ∩{𝑄1:  𝑃1, 𝑄1  is a 

binary 𝛾-closed &(𝑃, 𝑄) ⊆ (𝑃1, 𝑄1)}.Then clearly ((P,Q)*,(P,Q)**) is binary 𝛾 −closed and also (P, Q) 

⊆((P,Q)*,(P,Q)**) . 
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Binary 𝛾-closure of (P,Q) is denoted as 𝔅𝛾-cl(P,Q) and is defined as intersection of all b 𝛾C containing 

(P,Q). That is 𝔅𝛾-cl(P, Q) = ((P,Q)*,(P,Q)**) 

Proposition 2.2: 

 (P, Q) of  (𝜁, 𝜂) is binary 𝛾 − closed set in (𝜁, 𝜂, 𝔅 ) if and only if  (P, Q) =𝔅𝛾- cl (P, Q). 

Proposition 2.3: 

Let (P, Q) ⊆ (𝜁, 𝜂). Then in BTS(𝜁, 𝜂, 𝔅),  

(i)𝔅𝛾-int(∅, ∅)= ∅, ∅  

(ii)𝔅𝛾-int(𝑋, 𝑌)=(𝜁, 𝜂) 

(iii)𝔅𝛾-int(𝔅𝛾-int (P,Q))= 𝔅𝛾-int(P,Q) 

(iv)𝔅𝛾-cl(∅, ∅)= ∅, ∅  

(v)𝔅𝛾-cl(𝜁, 𝜂)=(𝜁, 𝜂) 

(vi)𝔅𝛾-cl(𝔅𝛾-cl (P,Q))= 𝔅𝛾-cl(P,Q) 

Definition 2.4: 

Let 𝜁 and 𝜂 be any two non empty sets. A binary 𝛾- topology is a binary 𝛾- structure𝔅𝛾 ⊂ 2𝑋 × 2𝑌 , if it 

satisfies the following  

(i) ∅, ∅ ∈ 𝔅𝛾  (ii) (𝜁, 𝜂) ∈ 𝔅𝛾 (iii)finite intersection of b 𝛾O is  binary 𝛾 −open set.  

(iv)If {(𝐴𝛼 , 𝐵𝛼)/ 𝛼𝜖𝛿} is acollection of members of 𝔅𝛾, then ( 𝐴𝛼 ,  𝐵𝛼)𝛼𝜖𝛿𝛼𝜖𝛿 ∈ 𝔅𝛾. 

Result 2.5: 

If 𝔅 and 𝔅𝛾 are binary and binary gamma topology respectively, then  𝔅𝛾 ⊂ 𝔅 . And two topologies 

are same, if  𝛾 is identity function on 𝔅. 

Proof: 

Let (ℷ, ℵ)∈ 𝔅𝛾.Therefore there exists (ρ, σ) ∈ 𝔅 such that (ℸ, ℶ) ∈ (ρ, σ), 

 γ((ρ, σ))⊆ (ℷ, ℵ), for each (ℸ, ℶ)  ∈ (ℷ, ℵ). 

Since (ρ, σ)⊆ γ((ρ, σ)), hence, for every (ℸ, ℶ) ∈ (ℷ, ℵ), there exists b−O(ρ, σ) such that (ℸ, ℶ) ∈ (ρ, σ), (ρ, σ) 

⊆ (ℷ, ℵ). Therefore (ℷ, ℵ)) ∈ 𝔅. Hence 𝔅γ ⊂ 𝔅 . 

Take γ:𝔅2X  x 2Y  such that (ρ, σ)= γ((ρ, σ)) 

Let (ℷ, ℵ)) ∈ 𝔅 and let (ℸ, ℶ) ∈ (ℷ, ℵ)). Since (ℷ, ℵ) is b−O, there exists (ρ, σ) ∈ 𝔅 such that  

(ℸ, ℶ) ∈ (ρ, σ), (ρ, σ)⊆ (ℷ, ℵ). Hence, for each (ℸ, ℶ)  ∈ (ℷ, ℵ), there exists (ρ, σ) ∈ 𝔅 such that  
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(ℸ, ℶ) ∈ (ρ, σ)and  γ(ρ, σ))⊆ (ℷ, ℵ), since (ρ, σ)= γ((ρ, σ)). 

Therefore (ℷ, ℵ)∈ 𝔅γ. Hence 𝔅 ⊂  𝔅γ. 

Definition 2.5: 

Let (𝜁, 𝜂, 𝔅𝛾 ) be a B𝛾 − TS and let (ℸ, ℶ) ∈ (𝜁, 𝜂). The b𝛾 (ℷ, ℵ) is  a binary 𝛾- neighbourhood of (ℸ,ℶ) if 

ℸ ∈A and ℶ ∈ B.  

Definition2.6: 

Let (ℷ, ℵ)⊆ B𝛾 − TS. A point (ℸ,ℶ) ∈ (𝜁, 𝜂) is said to be a LP of (ℷ,ℵ) if every b 𝛾O  (𝜌, 𝜍) containing 

(ℸ,ℶ)contains a point of (ℷ, ℵ) different from (ℸ,ℶ). The set of all LPs of (ℷ, ℵ) in the B𝛾 − TS  is denoted 

by (ℷ, ℵ)𝛾
′
 

For example, Take BTS (𝜁, 𝜂, 𝔅), where 𝜁= {a, b, c, d}, 𝜂= {1,2, 3, 4, 5} 

𝔅 =  {(∅, ∅), ({a},{1}), ({b},{2}), ({a, b},{1, 2}), (𝜁, 𝜂)} on  𝜁 ×  𝜂. 𝐿𝑒𝑡𝛾: 𝔅 → 2𝑋  × 2𝑌  be an operation 

defined as follows: 

                       For every (ℷ, ℵ)∈ 𝔅, then 𝛾((ℷ, ℵ)) = 
(ℷ, ℵ)  if  (ℷ, ℵ) = ({b}, {2})

(ℷ, ℵ) ∪ ({b}, {2}) 𝑖𝑓 (ℷ, ℵ) ≠ ( 𝑏 ,  2 )
  

𝔅γ = {(∅, ∅), (ζ, η), ({b},{2})}. 

Let ({a, b},{2, 3})⊂ (ζ, η). 

Take ({a},{1}) ∈( ζ, η). 

Neighborhood of ({a},{1}) is (ζ, η) 

({a, b},{2, 3})∩ (ζ, η) =({a, b},{2, 3}) 

Therefore ({a},{1}) is a LP. 

Theorem 2.1: 

Let (ℷ, ℵ)⊆Bγ − TS.Then (ℸ, ℶ) ∈ 𝔅γ -cl(ℷ, ℵ) iff every b 𝛾O (𝜌, 𝜍) containing (ℸ,ℶ) intersects (ℷ, ℵ). 

Proof: 

Suppose (ℸ,ℶ) ∉ 𝔅𝛾 -cl(ℷ, ℵ). Then (𝜌, 𝜍) = (𝜁, 𝜂) -  𝔅𝛾 -cl(ℷ, ℵ)  is an b 𝛾O, which containing (ℸ, ℶ).  

Since (ℷ, ℵ)⊆ 𝔅𝛾 -cl(ℷ, ℵ), (𝜌, 𝜍) ∩(ℷ, ℵ)= 𝜙. 

Suppose there exist (𝜌, 𝜍) ∈ 𝔅𝛾 such that (ℸ, ℶ) ∈(𝜌, 𝜍) and  (𝜌, 𝜍) ∩(ℷ, ℵ)= 𝜙.  

Let(𝜁, 𝜂) -  (𝜌, 𝜍)= (P, Q). Then (P, Q) is 𝔅𝛾 -closed and (ℸ, ℶ) ∉ (P, Q). Therefore (ℸ, ℶ) ∉ 𝔅𝛾 -cl(ℷ, ℵ), 

since by definition of binary gamma closure. 

Theorem 2.2: 
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𝔅𝛾 -cl(ℷ, ℵ) =(ℷ, ℵ)  (ℷ, ℵ)𝛾
′
. 

Proof: 

Let (ℸ,ℶ) ∈(ℷ, ℵ)  (ℷ, ℵ)𝛾
′
. Then (ℸ, ℶ) ∈(ℷ, ℵ) 𝑜𝑟 (ℷ, ℵ)𝛾

′ . Let us take(ℸ,ℶ) ∈ (ℷ, ℵ)𝛾
′
. Then every b 𝛾O 

containing (ℸ,ℶ) intersect (ℷ, ℵ). By theorem 2.1, (ℸ, ℶ) ∈ 𝔅𝛾-cl(ℷ, ℵ). Suppose  (ℸ, ℶ) ∈(ℷ, ℵ) .  

Then (ℸ, ℶ) ∈ 𝔅𝛾 -cl(ℷ, ℵ). since (ℷ, ℵ)⊂ 𝔅𝛾 -cl(ℷ, ℵ).Therefore (ℷ, ℵ)  (ℷ, ℵ)𝛾
′ ⊆ 𝔅𝛾 -cl(ℷ, ℵ).  

If (ℸ,ℶ) ∈(ℷ, ℵ), then (ℸ,ℶ) ∈(ℷ, ℵ)  (ℷ, ℵ)𝛾
′
.Suppose (ℸ,ℶ) ∉(ℷ, ℵ). Then by theorem 2.1, every b 𝛾 (𝜌, 𝜍) 

of (ℸ,ℶ) intersects (ℷ, ℵ). It follows that (𝜌, 𝜍) intersect (ℷ, ℵ) different from (ℸ,ℶ),  

since (ℸ, ℶ) ∉(ℷ, ℵ). Therefore(ℸ, ℶ) ∈ (ℷ, ℵ)𝛾
′
. Thus 𝔅𝛾 -cl(ℷ, ℵ)⊆(ℷ, ℵ)  (ℷ, ℵ)𝛾

′
. 

Theorem 2.3: 

A subset of a B𝛾 − TS is binary 𝛾-closed iff it contains all its LPs. 

Proof: 

By Proposition 2.2, the set (ℷ, ℵ) is binary 𝛾-closed iff (ℷ, ℵ) = 𝔅𝛾 -cl(ℷ, ℵ).Also by theorem 2.2, therefore a 

subset of a B𝛾 − TS is binary  𝛾-closed iff it contains all its LPs. 

Proposition 2.4: 

Let (ℷ, ℵ) be a subset of the  BTS  (𝜁, 𝜂, 𝔅 ). Then (ℸ,ℶ) ∈ b-cl(ℷ, ℵ) iff every b−O(𝜌, 𝜍) containing (ℸ,ℶ) 

intersects (ℷ, ℵ). 

Proof: 

Suppose (ℸ,ℶ) ∉ b-cl(ℷ, ℵ). Then (𝜌, 𝜍) = (𝜁, 𝜂) \ b-cl(ℷ, ℵ)  is an b−O, which containing (ℸ,ℶ). 

Since(ℷ, ℵ)⊆ b-cl(ℷ, ℵ), (𝜌, 𝜍)∩(ℷ, ℵ)= 𝜙. 

Suppose there exist (𝜌, 𝜍) ∈ 𝔅 such that (ℸ, ℶ) ∈(𝜌, 𝜍) and (𝜌, 𝜍)∩(ℷ, ℵ)= 𝜙. Take(𝜁, 𝜂) \ (𝜌, 𝜍)= (P, Q). 

Then (P, Q) is b− 𝐶 and (ℸ,ℶ) ∉ (P, Q). Since by definition of binary closure, (ℸ,ℶ) ∉ b-cl(ℷ, ℵ). 

Proposition 2.5: 

 b-cl(ℷ, ℵ) =(ℷ, ℵ)  (ℷ,ℵ)′. 

Proof: 

Let (ℸ, ℶ) ∈(ℷ, ℵ)  (ℷ, ℵ)′ . Then (ℸ, ℶ) ∈(ℷ, ℵ)𝑜𝑟 (ℷ, ℵ)′ . Assume that (ℸ, ℶ) ∈ (ℷ, ℵ)′ . Then every b−O 

containing (ℸ, ℶ) intersect (ℷ, ℵ). By proposition 2.4, (ℸ, ℶ) ∈ 𝔅𝛾 -cl(ℷ, ℵ). Suppose (ℸ, ℶ) ∈(ℷ, ℵ) .  

Then (ℸ, ℶ) ∈ 𝔅𝛾 -cl(ℷ, ℵ) ,since (ℷ, ℵ)⊂ 𝔅𝛾 -cl(ℷ, ℵ).Therefore (ℷ, ℵ)  (ℷ, ℵ)′ ⊆ 𝔅𝛾 -cl(ℷ, ℵ).  

If (ℸ, ℶ) ∈(ℷ, ℵ), then (ℸ, ℶ) ∈(ℷ, ℵ)  (ℷ, ℵ)′ .Suppose (ℸ, ℶ) ∉(ℷ, ℵ). Then by same proposition, every b−O 

(𝜌, 𝜍) of (ℸ, ℶ) intersects(ℷ, ℵ). Hence (𝜌, 𝜍) intersect(ℷ, ℵ) different from (ℸ, ℶ), 
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 since (ℸ, ℶ) ∉(ℷ, ℵ). Therefore (ℸ, ℶ) ∈ (ℷ, ℵ)′ .Thus b-cl(ℷ, ℵ)⊆(ℷ, ℵ)  (ℷ, ℵ)′ . 

Proposition2.6: 

(ℷ, ℵ)′ ⊆ (ℷ, ℵ)𝛾
′
. 

Proof: 

Let (ℸ,ℶ) ∈ (ℷ, ℵ)′. Then every b−O intersect with (ℷ, ℵ) except (ℸ,ℶ). By the result 2.5,(ℸ,ℶ) ∈ (ℷ, ℵ)𝛾
′
.  

Proposition 2.7: 

 b-cl(ℷ, ℵ) ⊆ 𝔅𝛾 -cl(ℷ, ℵ). 

Proof:, 

Let (ℸ,ℶ) ∈ b-cl(ℷ, ℵ). Then b-cl(ℷ, ℵ)= (ℷ, ℵ)   (ℷ, ℵ)′ ⊆(ℷ, ℵ)   (ℷ, ℵ)𝛾
′
. 

By theorem 2.2, b-cl(ℷ, ℵ) ⊆ 𝔅𝛾 -cl(ℷ, ℵ). 

Result 2.6: 

𝔅𝛾 -int(ℷ, ℵ) ⊆ b-int(ℷ, ℵ). 

 

3. CONCLUSION 

 

Hence, we have discussed new concepts.  And the theories approached in this concept are beneficial in 

mathematical operation. 
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