Mathematical Statistician and Engineering Applications
ISSN: 2094-0343
2326-9865

Families of Weakly Compatible Mappings Satisfying (E.A) and

Common Limit Range Properties

Rajesh Kumar™?", Sanjay Kumar*
'Department of Mathematics
Deenbandhu Chhotu Ram University of Science and Technology, Murthal, Sonepat-131039,
Haryana (India)
Department of Mathematics, Institute of Higher Learning, BPS Mahila Vishwavidyalaya,
Khanpur Kalan-131305, Sonipat, Haryana (India)
rkdubaldhania@gmail.com, sanjaymudgal2004@yahoo.com

Article Info Abstract

Page Number: 3634 - 3646 The purpose of this paper is to prove common fixed point theorems for
Publication Issue: families of weakly compatible mappings satisfying (E.A) property,
Vol 71 No. 4 (2022) common limit range property and a weak contraction condition involving

cubic terms of distance function. Our results generalize and extend the
Article History results by Kumar et al. [11]. Results are supported with relevant example.
Article Received: 25 March 2022
Revised: 30 April 2022 Keywords and Phrases: Common fixed point, weak contraction, weakly
Accepted: 15 June 2022 compatible mappings, (E. A) property, common limit range property.
Publication: 19 August 2022

1. Introduction and Preliminaries

Banach’s fixed point theorem [14] states that if P is a contraction mapping of a complete
metric space (M, d) into itself then P has a unique fixed point in M. Several authors explored
some new type contraction and proved various fixed point theorems in order to generalize the
Banach fixed point theorem (see [2],[6],[9],[12],[13]). In 1976, for generalization of Banach’s
fixed point theorem, Jungck [3] used the notion of commuting maps to prove a common fixed
point theorem.

In 1982, Sessa [15] generalized the notion of commutativity to weak commutativity and
proved some common fixed point theorems for weakly commuting mappings. Further, in

1996, Jungck [5] extended the notion of compatible mappings to a larger class of mappings
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known as weakly compatible. Infact weakly compatible mappings relax the condition of
continuity of the mappings.

Definition 1.1. [5] Let P and Q be two mappings from a metric space (M, d) into itself. If P

and Q commute at their coincidence point, i.e., if Pt = Qt for some t € M implies PQt =

QPt, then P and Q are called weakly compatible.

In the general setting, the notion of property (E.A), which requires the closedness of the
subspace, was introduced by Aamri and EI- Moutawakil [7].

Definition 1.2. [7] A pair of self-mappings P and Q on a metric space (M, d) is said to satisfy
property (E.A) if there exists a sequence {u,,} € M such that lim,,_,,, Pu, = lim,_, Qu, =
t forsomet € M.

Remark 1.3. [7] One can note that weakly compatibility and property (E. A) are independent
concepts.

In 2011, Sintunavarat and Kumam [17] introduced common limit range property (CLR,) as
follows:

Definition 1.4. [17] A pair of self-mappings (P, Q) on a metric space (M, d) is said to satisfy
common limit range property with respect to @, denoted by (CLRy), if there exists a sequence
{u,} € M such that lim,,_,,, Pu, = lim,,_,, Qu,, =t for some t € Q(M).

Thus, one can note that a pair (P, Q) satisfying the property (E. A) along with the closedness
of the subspace Q (M) always enjoys the (CLR,) property with respect to the mapping Q (see
Examples 2.16-2.17 of [8]).

Imdad et al. [8] extend this notion of common limit range property for two pairs of mappings.
Definition 1.5. [8] Two pairs (P, S) and (Q, T) of a metric space (M, d) are said to satisfy the
common limit range property with respect to the mappings S and T, denoted by (CLRgy), if
there exists sequences {u,} and {v,,} in M such that

lim,_,, Pu, = lim,_ Su, = lim,_., Qv, = lim,_, Tv, =t, forsomet € S(M) N T(M).
In 2017, a new type of common limit range property is introduced by Popa [16].

Definition 1.6. [16] Let P, S and T be self mappings of a metric space (M, d). The pair (P, S)
is said to satisfy a common limit range property with respect to T, denoted by, (CLR)p s)r , if
there exist a sequence {u,} in M such that

lim,_,, Pu, = lim,_ Su, = u, forsome u € S(M) n T(M).
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In this paper, we prove common fixed point theorems for families of weakly compatible

mappings enjoying (E.A) and (CLR) )y properties.

2. Main Results
In 2021, Kumar et al. [11] introduced a new weak contraction condition that involves cubic
terms of distance function and proved common fixed point theorems for compatible mappings
and its variants.
Theorem 2.1. [11] Let f, g, S and T be four mappings of a complete metric space (M, d) into
itself satisfying the following conditions:

(C1) f(M) c T(M),g(M) c S(M),

(€2) d*(fx, 9y) < p max(; [42(Sx, f)d(Ty, gy) + d(Sx, f)d(Ty, gy)],

d(Sx, fx)d(Sx, gy)d(Ty, fx),d(Sx, gy)d(Ty, fx)d(Ty, gy)}
~p(m(sx,Ty)),
for all x,y € M, where
m(Sx, Ty) = maxifd?(Sx, Ty),d(Sx, fx)d(Ty, gy),d(Sx, gy)d(Ty, fx),

~[d(Sx, fx)d(Sx, gy) + d(Ty, fx)d(Ty, gy)1},
where p is a real number satisfying 0 <p <1 and ¢:[0,0) — [0,%) is a continuous
function with ¢(t) = 0 ifft = 0and ¢(t) > 0 for eacht > 0.
(€3)0ne of f, g,S and T is continuous.
Assume that the pairs (f,S) and (g,T) are compatible or compatible of type (A) or
compatible of type (B) or compatible of type (C) or compatible of type (P), then
f,g,S and T have a unique common fixed point in M.

Now we prove our main results for families of weakly compatible mappings enjoying
(E.A) property.
Theorem 2.2. Let Q4,Q>, ..., Q2,, Py and P; be self mappings on a metric space (M,d),
satisfying the following conditions:

(C9)Q2(Q4 - Q2) = (Q4 - Q2,)Q2, Q2Q4(Q - Q2)

= (Q6 - Q20)Q2Q4, -, Q2 . Q20 —2(Q2n) = (Q20) Q2 - Q2n—2;
P1(Q4 - Qzn) = (Q4 - Q2) Py, P1(Qg - Q27) = (Q6 - Q2n) Py, oo, P1Q2y = Q2 Py,
Q1(Q3 - Q2n—1) = (Q3 - Q2,-1)Q1, Q1Q3(Q5 .- Q25—1) = (Qs5 - Q2,-1)Q1 Q3
ey Q1 Q2n-3(Q2n-1) = (Q20-1)Q1 - Q2n—3;
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Py(Q3 .. Qz2n-1) = (Q3 .. Q2n-1)Po, Po(Qs .. Q2n-1) = (@5 ... Q2n—1)Po, -, PoQ2n—1
= Q2n-1Po,
(C5)Py(M) € Q, ...Q5,(M) and the pair (Py,Qq ...Q,,—1) satisfies (E.A) property and
Q1 - Q2,1 (M) is a closed subset of M.
or
(C6)P; (M) c Q1 ...Q2,—1(M) and the pair (P;,Q; ...Q,,) satisfies (E.A) property and
Q3 ... Q2,,(M) is a closed subset of M.
(C7) d3(Pyx, Pyy)

1
<p max{z [d*(Q; .. Q2p—1%, Pox)d(Q; ... Q2, Y, P1Y)

+d(Qy ... Q2n—1%, Pox)d*(Q2 ... Q2nY, P1Y)],

d(Q1 - Qzn-1%, Pox)d(Q1 ... Q2n—1%, P1y)d(Q; ... Q2,Y, Pox),

d(Qy - Q2n-1%, P1y)d(Q; ... Q2nY, Pox)d(Q2 .. Q22 Y, P1¥)}

—¢(m(x, ),
forall x,y € M, where

m(x,y) = maxifd® (Qy ... Qzn-1%, Q2 - Q20 ¥), d(Q1 - Q2n—1%, Pox)d(Q; - Q20Y, P1Y),
d(Q1 - Q2n—1%, P1y)d(Q; .- Q2,Y, Pyx),
[d(Q1 - Q2n—1%, Pox)d(Q1 ... Q2p—1X, P1y) +
dQg2..02ny,POxdQ2...02ny,P1y},

where p is a real number satisfying 0 <p <1 and ¢:[0,) — [0,0) is a continuous
function with ¢(t) = 0 ifft = 0and ¢(t) > 0 for each t > 0.

N | =

Then Q4, Q,, ..., @2, Py and P;have a unique common fixed point in M given that the pairs
(Py, Q1 ... Q1) and (P1, Q3 ... Q2,,_») are weakly compatible.

Proof. Let Q; = Q;03..05,1 and Q, = Q;Q4 ... Q5, . First we assume that the pair
(Py, Q1 ... Q2,—1) satisfies (E.A)property, then there exists a sequence {u,, } in M such that

lim, o Pou, = limQq ... Q2,_1u, = u, forsome u € M.
n—>0o
Since Py(M) < Q, ... Q,,(M), there exists a sequence {v,} in Msuch that Q, ... Q,,(v,) =
Pyu, . Hence lim Q; ... @, v, = u.
n—->0oo

Step (i): First we show that lim,,_,,, P; v,, = u. On putting x = u,, and y = v, in (C7), we

have
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d3(POun:P1vn)
1
<p max{z [d%(Q1 - Q2n—1Un, Pyt )d(Q3 ... Q20 Uy, P11y)

+ d(Q - Q2n—1Uy, Pyt )d?(Qy ... Q2 v, P113y)],
d(Q1 . Q2n—1Un, Potty)d(Qy ... Q2n—1Up, P1v,)d(Q ... Q25 U, Poty,), d(Qy ... Qa1 Uy,
_¢(m(unrvn)):

where
MUy, v) = Maxifid? (Qy .. Qzn—1Un, Q2 - Q20 V), d(Q1 - Q2n—1tn, Polt)
d(Q2 - Q20 Vn, P11), d(Q1 . Q2p—1Un, P1vy)d(Q2 ... Q20 Vn, Pon),
%[d((h e Qn—1Un, Pty )d(Q1 .. Q2n—1un, P1vy) +

dQ2..02nvn, PO0und@2...02nvn,Plvn}.

Taking limits as n — oo, we have
1
d3(ul Plvn) S p maXL“E [dz(ul u)d(u, Plvn) + d(ul u)dz(u, Plvn)]:
d(u,uw)d(u, Pyv,)d(u,w),d(u, Pyv,)d(u, w)d(u, Pyv,)}
_¢(m(un;vn));
where
m(u,, v,) = {d?(w,w), d(u, w)d(u, Piv,), d(w, Pyv,)d(u,w),

1
S [dwwd(w, Pv,) + d(w,wd(u, P13
which implies that lim d3(u, P;v,) = 0. Hence

lim Pyu, = limQ; ...Qz,_1u, = lim P, v, = limQ; ... 03, v, = u.
n—oo n—oo n—oo

n—oo

Now suppose that Q; ... Q2,—1 (M) is closed subset of M, then exists v € M such that

Q1 .. Q2p—1V = U

Step (ii): Now we show that Pyv = u. Using (C7) with x = v and y = v,,, we get
1
d*(Pyv, Pyvy) < p max{z [d2(Q1 - Q2n-1V, Pyv)d(Q; ... Q2 v, P11y,)

+d(Qy ... Q2n-1V, Po0)d*(Q2 ... Q20 ¥, P11)],
d(Q1 - Q2n-1v, Pov)d(Q1 ... Q2n -1V, P1v)d(Q2 ... Q25 0, Pov),
d(Q1 - Q2n-1V, P1v3)d(Q2 .. Q2 Vn, Pov)A(Q2 - Q2nVn, P11}
—p(m(v, v,)),

where
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m(, v,) = maxfid?(Qq ... Q2n-17, Q2 - Q2n V), A(Q1 - Q2n_1v, Pov)
.d(Q2 - Q2nVn, P11), d(Q1 . Q2p—1V, P11)d(Q .. Q2 ¥y, Pov),
[d(Q1 ... Q2n—1v, Pov)d(Q1 ... Q2n -1V, P1vy,) +
dQ2..02nvn PO0vdQ2...02nvn P1vn}.

N =

Approaching limits as n - o, we get d3(Pyv,u) <0, ie, Ppv=u. Hence Pyv =
Q103 ...Q2,—1v = u. Since Py(M) € Q, ... Q2,,(M), there exists w € M such that Pyv =
Qy ...0,,w =u.

Step (iii): Next we show that Q,Q, ... Q2,w = u. On using (C7) withx =vandy = w, we
get

1
d3(Pyv, Piw) <p max{z [d%(Q1 .. Q2n—1v, Pov)d(Q; ... Q2 W, PyW)
+d(Qy ... Q2n—1v, Pyv)d?(Q; ... Q2uw, PiW)],
d(Q1 .- Q2n—1v, Pyv)d(Qy ... Q21 v, Pw)d(Q; ... Q2 W, Pyv),
d(Q1 ... Q2p—1v, Piw)d(Q; ... Q2,W, Pov)d(Q3 ... Q2 W, PyW)}
—¢(m(v, W)),

where
m(v,w) = maxifd®(Qy ... Qzn—1v, Q ... Q2nW), d(Q1 ... Q2n—1v, Pov)
d(Q2 . Qznw, P1w), d(Q1 ... Q2 1V, Piw)d(Q3 ... Q2 W, Pyv),
[d(Q1 ... Q2n—1v, Pov)d(Q1 ... Q2n -1V, Pyw) +
dQ2..02nw,POvdQ2...02nw,P1w}.

N | =

which implies that d3(u, P,w) < 0, i.e., ,w = u and hence Pyv = Q;Q5 ... Q3,,_1V = Piw =
Q20Q4 ...Q,w = u. Since the pairs (Py, Q1Q3 ...Q2,—1) and (P, Q,Q4 ... Q2,) are weakly

compatible, we have

Q103 .. Qzp—1u = Q1Q3 ... Q2,1 (Pov) = Py(Q1Q3 .. Q2,—1V) = Pou
and

Q204 .. Q2put = Q2Q4 ... Q2 (Pyw) = P1(Q20Q4 ... Q2,W) = Pru.
Step (iv): In this step, we prove that Pyv = P;u. Suppose that Pyv # Pyu. On putting x = v
and y = u in (C7), we obtain
1
d*(Pyv,Piu) < p max{z [d%(Q; ... Q2n—1V, Pov)d(Qs ... Q2nu, P1u)
+d(Q1 ... Q2n—1v, Pyv)d?*(Q2 ... Qzu, Pyu)],
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d(Qq ... Q2n—1v, Pyv)d(Q ... Q2n—1v, Pyu)d(Q; ... Q2,u, Pyv),
d(Q1 ... Q2p—1v, Pru)d(Q; ... Q2 u, Pyv)d(Q; ... Q2 u, Pru)}
—d)(m(v, u)),

m(v,u) = maxifd®(Qq ... Q2n-17, Q2 - Q2 1), d(Q1 ... Q2n—1v, Pyv)
d(Qz - Q2nu, P1u), d(Q1 .. Q2p—1v, PLw)d(Qy ... Q2nu, Pyv),

[d(Q1 ... Q2n—1V, Pov)d(Q1 ... Q21 v, P1u) +

dQ2..02nu,PO0vdQ2...02nu Plu}.

On simplification, we have d3(Pyv, Pyu) < —¢(d?(Pyv, Pyu)), a contradiction. Thus, we

have Pyv = Pju = u, i.e., Piu = Q,Q4 ... Q2,u = u.
Further on putting x = y = u in (C7), we have Pyu = u hence Pyu = Q1Q3 ... Q2,_1u = u.
Step (v): On putting x =u and y = Q4 ... Q,,u in (€7) and using condition (C4) and
Q1 = Q103 .- Q2n—1and Q; = Q3Qy ... Q2 We have

d*(Pou, P1Q4 ... Q2n1t)

where

1 , ,
<p max{z [d?(Qu, Pow)d(Q;Q4 .. Q2 P1Qy ... Q1)

+ d(Qu, Pow)d?(Q2Qs .- Q20 P1 Qs .. Q2]
d(Qiu, Pou)d(Q1, Py Qs ... Q2 u)d(Q2Qy ... Q2ntt, Pout),
d(Q11, P1Q4 .. Q2,)d(Q3Q4 ... Q2ntt, PQy .. Q2 1)
-d(Q2Q4 - Q2nu, Pru)} — p(m(u, Q4 ... Q2 1)),

m(w, Q4 ... Q2uu) = maxifd? (Qqu, Q5Q4 - Q2nu), d(Q1u, Pyu)
d(Q2Q4 - Qon, P1w), d(Q1, Py Q4 . Qo) d(Q5Q4 .. Quntt, Pow),

~1d(Q1u, Pan)d(Qyu, PyQy ... Qantt) +

202’ 04...02nu,POudQ2’04...02nu,P104...02nu}

On simplification, we get d3(u, Q4 ... Q2,,u) < —d(d?(u, Q4 ... Q3,u)), i.e., Q4 ... Q2 u = .

Hence Q,Q, ... Q;,u = Q,u = u. Continuing like this, we have

Therefore,

Pou = Qu = Qqu = - = Qzu = u.

Pou = Piu = Qiu = Qau = --- = Qzp,qu = Q2pu = U

3640
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Hence u is a common fixed point of the given mappings. Uniqueness follows easily from

condition (C7). Similarly, the proof holds for the condition (€6). This completes the proof.

Now we prove the following theorem for families of mappings which is a slight
generalization of Theorem 2.2.
Theorem 2.3. Let {F,},¢and {Qi}fﬁ1 be two families of self-mappings on a metric space
(M, d). Suppose that there exists a fixed g € J such that:
(€8)Q2(Q4 - Q21) = (Q4 - Q2,)Q2, Q20Q4(Qs - Q2r,)
= (Q6 - Q21)Q204,
oy Q2 0 Q2p—2(Q2n) = (Q22)Q2 - Q2n—2;
Pp(Q4 - Q2) = (Q4 - Q20)P3, P3(Qp - Q21) = (Qp - Q20) Pp, o, Pg Q2 = Q20 P,
Q1(Q3 ... Q2p-1) = (Q3 ... Q27-1)Q1, Q1Q3(Qs5 ... Q27-1) = (Qs ... Q2,-1)Q1 03,
ey Q1 Q2n3(Q2n-1) = (Q20-1)Q1 - Q2n—3;
Pr(Q3 - Q2n-1) = (Q3 - Q2n—1)Fs, Po(Qs5 . Q2n—1) = (@5 . Q2n-1)Fs, -, PeQan—1
= Qan-1Fe,
(CHP, (M) € Q; ...Q2, (M) and the pair (P, Q1 ... Q,,—1) satisfies (E.A) property and
Q1 -.-Q2,—1(M) is a closed subset of M.
or
(C10)Pg(M) € Q1 ... Q2,—1(M) and the pair (P, Q; ...Q2,) satisfies (E.A) property and
Q3 ... Q2,(M) is a closed subset of M.
(€11) d*(Px, Psy)

1
< pmax{(z[d*(Q1 - Qan-1%, Pux)d(Qz - Quny, Ppy)

+d(Q1 - Qan-1% Pex)d*(Qz - Q2ny, Ps¥)]
d(Q1 - Qzn-1% Px)d(Q; ... Qn—1%, Pgy)d(Qz .. Q20 Y, Py ),
d(Q1 - Qzn-1%,Pgy)d(Q; ... Q2,Y, Pyx)d(Qy ... Q20Y, Ps¥)}
—p(m(x,y)),
forall x,y € M, where
m(x,y) = maxfd?(Q; ... Q2n-1%, Q2 - Q2,¥), d(Qy ... Q2n—1%, Pox)d(Q; ... Q20Y, P3),
d(Qy . Q2n—1%,P3y)d(Q; ... Q2,y, Py),
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%[d(Ql e Q2n—1%,Pyx)d(Q1 .. Qano1x, Ppy) +
dQ2...02ny,PaxdQ2...02ny, PLY},
where p is a real number satisfying 0 <p <1 and ¢:[0,0) — [0,00) is a continuous
function with ¢(t) = 0 ifft = 0and ¢(t) > 0 for each t > 0.
Then all Q; and P, have a unique common fixed point in M given that the pairs
(P, Q1 . Q2,—1) and (Pg, Q3 ... Q2,,—) are weakly compatible.
Proof. Let P,obe a fixed element in {F,},¢;. By Theorem 2.2 with F, = P, and P; = Py it
follows that there exists some u € M such that
Pgu = Pyou = Q204 ... Q2pu = Q103 ... Q21U = U.
Leta € J be arbitrary. Then from condition (C11), we have

1
d*(P,u, Ppu) <p max{z [d2(Q; - Qzn—1u, P,w)d(Q; ... Q2nu, Pput)

+d(Q1 - Qan—1w, PBwd?(Qy ... Qznu, Pau)],
d(Q1 - Q2n-1u P,wd(Qy ... Q2n—1u, Pau)d(Q, ... Q2nu, Pyw),
d(Q]L e Qo1 Pﬁu)d(Qz o Q2n, P,u)d(Qy ... Q2 u, Ppu)}
—qb(m(u, u)),

where
m(u,w) = maxqd?(Q1 ... Qzn-1% Qz ... Q2uw), d(Qy ... Q2n—1u, P,w)d(Q; ... Q2nu, Pyu),
d(Q1 ... Q2n—1u, Pau)d(Q; ... Q2 Pyw),

N| =

[d(Q; ... Q2n—1u, P,w)d(Q; ... Q21 Pgu)

+ d(Qy ... Q2nu, Pw)d(Q; .. Qnu, Ppu) |}
and hence
d}(Pu,u) <p max{% [d?(u, B,u)d(u,w) + d(u, P,u)d?(u,u)],

d(u, P,u)d(u,u)d(u, P,u),
d(u,wd(u, Rbwdwu)} — ¢(d?(u,w),

which impliesthat d3(P,u,u) <-0, i.e., P,u = u for each a € J. Uniqueness follows easily.

Next, we prove a theorem for any even number of weakly compatible mappings satisfying

common limit range property.
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Theorem 2.4. Let Q4,0Q,,...,0Q,,, Py and P; be self mappings on a metric space (M,d),
satisfying the conditions (C4), (C7) and
(C12) the pair (Py, Q1) and Q; satisfy (CLR) p, 9o, PrOperty.
Then Q4, Q,, ..., Q,,, Py and P; have a unique common fixed point in M given that the pairs
(Py,0;) and (P;,Q,) are weakly compatible, where Q; = Q;Q3...Q,_; and Q, =
Q2Q4 .. Q2.
Proof. Since the pair (P, Q;) and Qésatisfy (CLR)(p, , 0 )q, Property, there exists a sequence
{u,} in M such that

lim Pyu, = lim Q;u,, = lim Q1Q3...02,_1u, =1,
n—oo n—->oo

n—oo

for some u € Q1 N Q2 = Q2Q4 - Q20 (M) N Q1Q3 ... Q2n—1 (M).
Since u € Q,Q4 ... Q2, (M), this gives u = Q,Q, ... Q,, v, for some v in M.
We show that u = P;v. On putting x = u,, and y = v in (C7), we have

1
d*(Pyu,, Piv) <p max{z [d2(Q1 - Q2n—1Un, Potty)d(Q; ... Q2 v, PyV)

+ d(Qq - Q2n—1Un, Pyt )d*(Q3 .. Q2 v, Piv)],
d(Qq .. Q2n—1Uy, Pyt )d(Qq ... Q2n—1Uy, P1v)d(Q3 ... Q25 V, Pouy),
d(Q1 ... Q2n—1Uy, P1v)d(Q; ... Q2,V, Pyt )A(Q3 ... Q25 v, P1v)}

~¢(m(un, v)),
where
m(uy, v) = maxfd®(Q; - Qan-1Un, Q2 - Q20 ), d(Q1 - Qan—1tn, Potty)
d(Qy ...Q2, v, P1v),d(Q1 .. Qupn_1Uy, P1v)d(Q; ... Q2, v, Pyuy),
~[d(Q1 - Qan1n, Pott)A(Q1 . Qan1ty, P1v) +

dQ2...02nvn, PO0und@2...02nv,P1v}.
Taking limits as n — oo and on simplification, we have d3(u, P;v) <0, i.e., P;v = u and
hence u = Piv = Q;Q4 ... Qv
Also u € Q,Q3 ... Q3,1 (M) which gives u = Q1Q5 ... Q5,,_1w, for some w € M.
If we put x = w and y = v in condition (C7), on simplification we get, Pow = u.
Hence Pow = Q1Q3 ... Q2,—1W = Pjv = Q30Q4 ... Q3,,v = .
Due to weakly compatibility of the given mappings, we obtain

Pou = PyQ10Q3 .. Q21w = Q103 ... Q2,1 Pow = Q103 ... Q2,1 U
and
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Piu = P1Q2Q4 ... Q2nV = Q2Q4 ... Q2n P1v = Q204 ... Q2n U
Further using steps (iv) and (v) of Theorem 2.2, we get u is a unique common fixed of the
given mappings.
The following theorem is a slight generalization of Theorem 2.4.
Theorem 2.5. Let {F,},¢;and {Qi}fﬁ1 be two families of self-mappings on a metric space

(M, d). Suppose that there exists a fixed g € J such that conditions (€8) and (C11) are
satisfied. Further,

(C13) the pair (P,,Q1Q3...Q2n—1) and Q2Qy ... Q4y satisfy (CLR)p. 0,05..09n-1)0204.-02n
property.

Then all Q; and P, have a unique common fixed point in M given that the pairs
(Py) Q1 - Q2,—1) and (Pg, Q3 .. Q2,,—7) are weakly compatible.

Proof. Proof of the Theorem 2.5 follows from the proof of Theorem 2.3.

Corollary 2.6. Let f, g, S and T are self-mappings on a metric space (M, d) satisfying (C2)
and the following conditions

(C14)f (M) c T(M) and the pair (f,S) satisfies (E. A) property and S(M) is a closed subset
of M.

or

(C15)g(M) c S(M) and the pair (g, T) satisfies (E.A) property and T (M) is a closed subset
of M.

Then f, g, S and T have a unique common fixed point in M provided that the pairs (f, S) and
(g, T) are weakly compatible.

Proof. Ifwetake Py = f,P1 = 9,01 =S,Q, =T and Q3 = Q4 = - = Q,, = I (Identity

Map) in Theorem 2.2, we get required result.

Remark 2.7. Corollary 2.6 is a generalization of Theorem 2.1 in the sense that conditions of
completeness of space and continuity of the mappings are relaxed. Theorems 2.2-2.5
generalize and extend Theorem 2.1 for families of weakly compatible mappings.

Now we give an example in support of our theorems.
Example 2.8. Let M = [0,1] and d be usual metric on M. Define

x3
1+x3

P, (x) = foreacha € Jand all x € M,
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Q;(x) =xV3foreachi € {1,2,...,2n}and all x € M.
Then Q2Q4 ... Q2px = x°,Q1Q3 ... Q21X = x°. _
Let ¢: [0, 0) — [0, o) be a function defined by ¢(t) = ;—0 for t > 0. Then all the conditions

of Theorems 2.2-2.5 are satisfied for p = % and 0 is the unique common fixed point of the

mappings.
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