Single Server Queueing Model with Catastrophe, Restoration and Partial Breakdown

M. Seenivasan ${ }^{1, \mathrm{a})}$ R. Ramesh ${ }^{2, \text { b) }}$ and F. Patricia ${ }^{\text {3,c) }}$
${ }^{1}$ Mathematics Wing -DDE, Annamalai University, Annamalainagar, India.
${ }^{2}$ Department of Mathematics, Arignar Anna Govt. Arts College, Musiri - 621211, Tamilnadu, India.
${ }^{3}$ Research scholar, Department of Mathematics, Annamalai University, Annamalainagar, India.
${ }^{\text {a) }}$ Corresponding Author: emseeni@ yahoo.com
${ }^{\text {b) }}$ rameshsanju123@gmail.com
c) jermypriyan@gmail.com

Article Info

Publication Issue:
Vol 71 No. 4 (2022)

Article History
Article Received: 25 March 2022
Revised: 30 April 2022
Accepted: 15 June 2022
Publication: 19 August 2022

Page Number: 3661 - 3685 In this article, we have considered an $\mathrm{M} / \mathrm{M} / 1 / \mathrm{N}$ model with catastrophe,

Abstract

 restoration and breakdown. The server works with the slower rate of service during partial breakdown. The number of times the system attains its capacity has been analyzed through matrix geometric method and some performance measures are obtained and numerical illustrations are also presented.Keywords: Catastrophe, Restoration, Working Breakdown, Repair, Matrix Geometric Method.

1. Introduction:

In many real life situations, queues are often seen and it has various applications in different fields. The term catastrophe is a sudden destruction. When a queue undergoes catastrophe, all the customers are removed from the system. So, the system is in the position to regain its state. Moreover, the system takes its time to accept new customers which is referred as restoration time. Chao(1995) had studied A queueing network model with catastrophes and product from solution. Balasubramanian (2015) has
derived finite markovian queue with catastrophe and bulk service. Rakesh Kumar (2008) have procured the solution for the queueing system with catastrophe and restoration along with batch arrivals in A catastrophic-cum-restorative queueing system with correlated batch arrivals and variable capacity. Jain, And Kumar, (2005) worked out the catastrophe in transient solution of a catastrophiccum-restorative queueing problem with correlated arrivals and variable service capacity. Seenivasan et al (2021) has obtained $\mathrm{M} / \mathrm{M} / 2$ heterogeneous queueing system having unreliable server with catastrophes and restoration. Seenivasan and Abinaya(2021) has studied Markovian queueing model with single working vacation and catastrophe.

Dicrescenzo et al (2003) who analyzed well about the catastrophic queues in the $\mathrm{m} / \mathrm{m} / 1$ queue with catastrophes and its continuous approximation. Kumar, And Arivudainambi,(2000) acquired the solution for single server queue in Transient Solution of an M/M/1 Queue with Catastrophes. Danesh Garg (2013) has found out the result by employing probability generating function in performance analysis of number of times a system reaches its capacity with catastrophe and restoration.

The mechanism of service is subject to partial breakdown. Perhaps the server still keeps working even in breakdown with a slower rate since it is considered as partial. After the process of repair, the server will switch over to normal working rate. Many authors have been analyzed breakdown since it's applicable in many areas like communication networks, manufacturing industries and so on. Kalidass, Kasturi (2012) had perused in queue with working breakdowns. Kalidas, Pavithra(2016) investigated a research in an $\mathrm{M} / \mathrm{M} / 1 / \mathrm{N}$ queue with working breakdowns and Bernoulli feedbacks. Kim, Lee.(2014) established his work in working breakdown in the M/G/1 queue with disasters and working breakdowns. Kim et al(2017) had studied about breakdown in Analysis of unreliable BMAP/PH/n type queue with Markovian flow of breakdowns. Yang \& Wu (2017) had derived the Analysis of a finitecapacity system with working breakdowns and retention of impatient customers. Ye, Liu .(2018) accomplished his work in Analysis of MAP/M/1 queue with working breakdowns". Wartenhosrt (1995) done his research in N parallel Queueing systems with server breakdowns and repair. Neuts,.(1981)derived the Matrix-Geometric solutions in stochastic models. In this paper, we have four sections viz., introduction, model description, numerical illustrations and graphical representations.

2. Model Description:

We consider a Markovian queueing model with single server. The arrival process follows Poisson distribution with mean rate λ. The service time follows exponential distribution with μ during busy period and with μ_{1} during breakdown(refer FIGURE .1). The system becomes empty when it experiences catastrophe.

Fig 1. The system of transition diagram
However the catastrophe does not occur while system is not empty. The catastrophe occurs at the rate of ξ. After the occurrence of catastrophe, system takes its time to get ready to accept new customers. This time is restoration time which is identically independently distributed with parameter
γ. The partial breakdown takes place at the rate of α_{0} while the system is attaining its capacity first time and α_{1} for second time. The repair time follows exponential distribution with β_{0} and β_{1}.

Define, $\mathrm{P}_{\mathrm{k}, \mathrm{n}}(\mathrm{t})=\operatorname{Prob} .[\mathrm{K}(\mathrm{t})=\mathrm{k}, \mathrm{N}(\mathrm{t})=\mathrm{n}], 0 \leq \mathrm{n} \leq \mathrm{N}$
where $K(t)=\left\{\begin{array}{l}0, \text { when the system attains its capacity one time } \\ 1, \text { when the system attains its capacity two time } \\ 2, \text { when the server is partial breakdown }\end{array}\right.$
$N(t)=$ the number of customers in the system at time t.
The Quasi-Birth Death process along with the state space as follow: $\{0,0\} \mathrm{Q}\{(\mathrm{i}, \mathrm{j}) ; \mathrm{i} \geq 1, \mathrm{j}=0,1\}$. A QBD process with Infinitesimal generator matrix Q is considered and presented below:

$$
\begin{aligned}
& Q=\left(\begin{array}{cccccc}
B_{00} & B_{01} & \ldots & \ldots & \ldots & \ldots \\
B_{10} & A_{1} & A_{0} & \ldots & \ldots & \ldots \\
B_{20} & A_{2} & A_{1} & A_{0} & \ldots & \ldots \\
B_{20} & \ldots & A_{2} & A_{1} & A_{0} & \ldots \\
B_{20} & \ldots & \ldots & A_{2} & A_{1} & A_{0}
\end{array}\right) \\
& B_{00}=-(3 \lambda+3 \gamma) B_{01}=(\lambda+\gamma, \lambda+\gamma, \lambda+\gamma) \\
& B_{10}=\left(\begin{array}{c}
\mu+\xi \\
\mu+\xi \\
\mu_{1}+\xi
\end{array}\right) \quad B_{20}=\left(\begin{array}{l}
\xi \\
\xi \\
\xi
\end{array}\right) \\
& A_{0}=\left(\begin{array}{lll}
\lambda & 0 & 0 \\
0 & \lambda & 0 \\
0 & 0 & \lambda
\end{array}\right) \\
& A_{1}=\left(\begin{array}{ccc}
-\left(\lambda+\mu+\xi+\alpha_{0}\right) & 0 & \alpha_{0} \\
0 & -\left(\lambda+\mu+\xi+\alpha_{1}\right) & \alpha_{1} \\
\beta_{0} & \beta_{1} & -\left(\lambda+\mu_{1}+\xi+\beta_{0}+\beta_{1}\right)
\end{array}\right) \\
& A_{2}=\left(\begin{array}{ccc}
\mu & 0 & 0 \\
0 & \mu & 0 \\
0 & 0 & \mu_{1}
\end{array}\right)
\end{aligned}
$$

2.1. Matrix Geometric Method and Stability Condition

$\mathrm{P}_{\mathrm{k}, \mathrm{n}}(\mathrm{t})=\operatorname{Prob} .[\mathrm{K}(\mathrm{t})=\mathrm{k}, \mathrm{N}(\mathrm{t})=\mathrm{n}], 0 \leq \mathrm{n} \leq \mathrm{N}$
where

$$
\mathrm{K}(\mathrm{t})=\left\{\begin{array}{l}
0, \text { when the system attains its capacity one time } \\
1, \text { when } \text { the system attains its capacity } \mathrm{t} \text { wo time } \\
2, \text { when the server is partial breakdown }
\end{array}\right.
$$

and $\mathrm{N}(\mathrm{t})=$ the number of customers in the system at time t .
The static probability row matrix is $\mathrm{PQ}=0---1$

$$
\text { Where } \mathrm{P}=\left(\mathrm{P}_{0}, \mathrm{P}_{1}, \mathrm{P}_{2}, \ldots .\right), \mathrm{P}_{0}=\mathrm{P}_{00} \& \mathrm{P}_{\mathrm{i}}=\left(\mathrm{P}_{0 \mathrm{i}}, \mathrm{P}_{1 \mathrm{i}}, \mathrm{P}_{2 \mathrm{i}}\right)
$$

From the equation 1, we have

$$
\begin{gathered}
\mathrm{B}_{00} \mathrm{P}_{0}+\mathrm{B}_{10} \mathrm{P}_{1}+\mathrm{B}_{20}\left(\mathrm{P}_{2}+\mathrm{P}_{3}+\ldots\right)=0 \\
\mathrm{~B}_{01} \mathrm{P}_{0}+\mathrm{A}_{1} \mathrm{P}_{1}+\mathrm{A}_{2} \mathrm{P}_{2}=0 \\
\mathrm{~A}_{0} \mathrm{P}_{1}+\mathrm{A}_{1} \mathrm{P}_{2}+\mathrm{A}_{2} \mathrm{P}_{3}=0 \\
\mathrm{~A}_{0} \mathrm{P}_{2}+\mathrm{A}_{1} \mathrm{P}_{3}+\mathrm{A}_{2} \mathrm{P}_{4}=0
\end{gathered}
$$

In general, we have,

$$
\mathrm{A}_{0} \mathrm{P}_{\mathrm{i}-1}+\mathrm{A}_{1} \mathrm{P}_{\mathrm{i}}+\mathrm{A}_{2} \mathrm{P}_{\mathrm{i}+1}=0
$$

We arrive at the geometric relation

$$
\mathrm{P}_{\mathrm{i}}=\mathrm{P}_{1} \mathrm{R}_{\mathrm{i}-1}
$$

By using the relation 3 in the equation 2,

$$
R_{n+1}=-A_{1}^{-1}\left(A_{0}+A_{2} R_{n}^{2}\right)
$$

The condition of the normality is

$$
\mathrm{P}_{0} \mathrm{e}+\mathrm{P}_{1}(\mathrm{I}-\mathrm{R})^{-1} \mathrm{e}=1
$$

where e is the column vector with all its elements equal to one.
The static condition of such a QBD, (See Neuts (1981)) can be obtained by the drift condition P
$\mathrm{A}_{0} \mathrm{e}<\mathrm{P} \mathrm{A}_{2} \mathrm{e}$
Where $P==\left(P_{0}, P_{1}, P_{2}\right)$ is got from the generator A and A is given by A
$=\mathrm{A}_{0}+\mathrm{A}_{1}+\mathrm{A}_{2}$ and so
$A=\left(\begin{array}{ccc}-L & 0 & \alpha_{0} \\ 0 & -M & \alpha_{1} \\ \beta_{0} & \beta_{1} & -N\end{array}\right)$
where $L=\left(\xi+\alpha_{0}\right), M=\left(\xi+\alpha_{1}\right) \& N=\left(\xi+\beta_{0}+\beta_{1}\right)$
A is irreducible and P can be shown to be unique such that $P A=0$ and $\mathrm{Pe}=1---6$
By using the equation 6, we have
$P_{0}=\left(1+\frac{L N}{\alpha_{0} \beta_{1}}-\frac{\alpha_{0}}{\alpha_{1}}+\frac{L}{\beta_{0}}\right)^{-1}$
$P_{1}=\left(\frac{L N}{\alpha_{0} \beta_{1}}-\frac{\alpha_{0}}{\alpha_{1}}\right) P_{0}$
$P_{2}=\frac{L}{\beta_{0}} P_{0}$

The static condition takes the format

$$
\lambda\left(P_{0}+P_{1}+P_{2}\right)<\mu\left(P_{0}+P_{1}\right)+\mu_{1} P_{2}
$$

The equation 7 is the static probability of A and the probability vectors are obtained by utilizing the equations $3 \& 4$ and the rate matrix.

3. Numerical Illustrations

The numerical illustrations are done by the mathematical concepts explained above. By varying the values of arrival rate λ, the service rate μ, the partial breakdown while the system reached its capacity zero time α_{0} and the corresponding repair time β_{0}, we have arrived at eighteen illustrations.

3.1 Illustration I:

It is assumed that $\lambda=0.1, \mu=0.7, \mu_{1}=0.3, \xi=0.05, \gamma=0.06, \alpha_{0}=0.01, \alpha_{1}=0.02, \beta_{0}=0.06$ and $\beta_{1}=0.07$. The rate matrix is $\left(\begin{array}{lll}0.130336 & 0.000334 & 0.003043 \\ 0.000572 & 0.128813 & 0.005979 \\ 0.016278 & 0.018693 & 0.192751\end{array}\right)$

Table I.The Probability Vectors				
	$\mathrm{P}_{0 \mathrm{i}}$	$\mathrm{P}_{1 \mathrm{i}}$	$\mathrm{P}_{2 \mathrm{i}}$	Total
P_{00}	0.507802			0.507802
P_{1}	0.120998	0.121716	0.164149	0.406863
P_{2}	0.018512	0.018787	0.032736	0.070035
P_{3}	0.002956	0.003038	0.006478	0.012472
P_{4}	0.000492	0.000513	0.001276	0.002281
P_{5}	0.000085	0.000090	0.000250	0.000425
P_{6}	0.000015	0.000016	0.000049	0.000080
P_{7}	0.000003	0.000003	0.000009	0.000015
P_{8}	0.000000	0.000001	0.000002	0.000003
				Total
			0.999976	

The probability vectors are given by $\mathrm{P}=\left(\mathrm{P}_{0}, \mathrm{P}_{1}, \mathrm{P}_{2}, \ldots\right)$. The vectors $\mathrm{P}_{0}=0.507802$ and $\mathrm{P}_{1}=(0.120988$, $0.121716,0.164149$) are found by using the condition 4 . The balance probability vectors are acquired by using the relation given in the equation 3 and the rate matrix. Therefore, the last column comprises of three columns and the total probability is validated to be $0.999976 \cong 1$

3.2 Illustration II:

It is assumed that $\lambda=0.2, \mu=0.7, \mu_{1}=0.3, \xi=0.05, \gamma=0.06, \alpha_{0}=0.01, \alpha_{1}=0.02, \beta_{0}=0.06$ and $\beta_{1}=0.07$
The rate matrix is $\left(\begin{array}{llll}0.256951 & 0.000866 & 0.006569\end{array}\right)$
$\left(\begin{array}{lll}0.001477 & 0.253703 & 0.012827 \\ 0.031212 & 0.035729 & 0.350513\end{array}\right)$
Table II.The Probability Vectors

	$\mathrm{P}_{0 \mathrm{i}}$	$\mathrm{P}_{1 \mathrm{i}}$	$\mathrm{P}_{2 \mathrm{i}}$	Total
P_{00}	0.348010			0.348010
P_{1}	0.133947	0.134614	0.169518	0.438079
P_{2}	0.039907	0.040325	0.062025	0.142257
P_{3}	0.012250	0.012481	0.022520	0.047251
P_{4}	0.003869	0.003982	0.008134	0.015985
P_{5}	0.001254	0.001304	0.002927	0.005485
P_{6}	0.000415	0.000436	0.001051	0.001902
P_{7}	0.000140	0.000149	0.000377	0.000666
P_{8}	0.000048	0.000051	0.000135	0.000234
P_{9}	0.000016	0.000018	0.000048	0.000082
P_{10}	0.000006	0.000006	0.000017	0.000029
P_{11}	0.000002	0.000002	0.000006	0.000010
P_{12}	0.000001	0.000001	0.000002	0.000004
P_{13}	0.000000	0.000000	0.000001	0.000001
			Total	0.999995

The probability vectors are given by $\mathrm{P}=\left(\mathrm{P}_{0}, \mathrm{P}_{1}, \mathrm{P}_{2}, \ldots\right)$. The vectors $\mathrm{P}_{0}=0.348010$ and $\mathrm{P}_{1}=(0.133947$, $0.134614,0.169518)$ are found by using the condition 4 . The balance probability vectors are acquired by using the relation given in the equation 3 and the rate matrix. Therefore, the last column comprises of three columns and the total probability is validated to be $0.999995 \cong 1$

3.3 Illustration III:

It is assumed that $\lambda=0.3, \mu=0.7, \mu_{1}=0.3, \xi=0.05, \gamma=0.06, \alpha_{0}=0.01, \alpha_{1}=0.02, \beta_{0}=0.06$ and $\beta_{1}=0.07$

The rate matrix is $\left(\begin{array}{lll}0.378177 & 0.001606 & 0.010285 \\ 0.002727 & 0.372957 & 0.019928 \\ 0.043722 & 0.049872 & 0.474253\end{array}\right)$

Table III.The Probability Vectors

	$\mathrm{P}_{0 \mathrm{i}}$	$\mathrm{P}_{1 \mathrm{i}}$	$\mathrm{P}_{2 \mathrm{i}}$	Total
P_{00}	0.242676			0.242676
P_{1}	0.127445	0.127852	0.151719	0.407016
P_{2}	0.055179	0.055454	0.075812	0.186445
P_{3}	0.024333	0.024551	0.037626	0.086510
P_{4}	0.010914	0.011072	0.018584	0.040570
P_{5}	0.004970	0.005074	0.009146	0.019190
P_{6}	0.002293	0.002356	0.004490	0.009139
P_{7}	0.001070	0.001106	0.002200	0.004376
P_{8}	0.000504	0.000524	0.001076	0.002104
P_{9}	0.000239	0.000250	0.000526	0.001015
P_{10}	0.000114	0.000120	0.000257	0.000491
P_{11}	0.000055	0.000058	0.000125	0.000238
P_{12}	0.000026	0.000028	0.000061	0.000115
P_{13}	0.000013	0.000013	0.000030	0.000056
P_{14}	0.000006	0.000006	0.000014	0.000026
P_{15}	0.000003	0.000003	0.000007	0.000013
P_{16}	0.000001	0.000001	0.000003	0.000005
P_{17}	0.000001	0.000001	0.000001	0.000003
P_{18}	0.000000	0.000000	0.000001	0.000001
			Total	0.999989

The probability vectors are given by $\mathrm{P}=(\mathrm{P} 0, \mathrm{P} 1, \mathrm{P} 2, \ldots)$. The vectors $\mathrm{P} 0=0.242676$ and $\mathrm{P} 1=$ $(0.127445,0.127852,0.151719)$ are found by using the condition 4 . The balance probability vectors are acquired by using the relation given in the equation 3 and the rate matrix. Therefore, the last column comprises of three columns and the total probability is validated to be $0.999989 \cong 1$

3.4 Illustration IV:

It is assumed that $\lambda=0.4, \mu=0.7, \mu_{1}=0.3, \xi=0.05, \gamma=0.06, \alpha_{0}=0.01, \alpha_{1}=0.02, \beta_{0}=0.06$ and $\beta_{1}=0.07$

The rate matrix is $\left(\begin{array}{lll}0.490986 & 0.001820 & 0.008671 \\ 0.003111 & 0.482830 & 0.016778 \\ 0.047874 & 0.054178 & 0.439155\end{array}\right)$

Table IV.The Probability Vectors

	$\mathrm{P}_{0 \mathrm{i}}$	$\mathrm{P}_{1 \mathrm{i}}$	$\mathrm{P}_{2 \mathrm{i}}$	Total
P_{00}	0.171289			0.171289
P_{1}	0.112060	0.112143	0.126669	0.350872
P_{2}	0.062280	0.062207	0.076512	0.200999
P_{3}	0.034938	0.034884	0.045996	0.115818
P_{4}	0.019763	0.019749	0.027550	0.067062
P_{5}	0.011261	0.011271	0.016456	0.038988
P_{6}	0.006456	0.006477	0.009808	0.022741
P_{7}	0.003722	0.003743	0.005835	0.013300
P_{8}	0.002155	0.002173	0.003467	0.007795
P_{9}	0.001252	0.001267	0.002058	0.004577
P_{10}	0.000730	0.000740	0.001221	0.002691
P_{11}	0.000427	0.000434	0.000724	0.001585
P_{12}	0.000250	0.000255	0.000429	0.000934
P_{13}	0.000147	0.000150	0.000254	0.000551
P_{14}	0.000086	0.000088	0.000150	0.000324
P_{15}	0.000051	0.000052	0.000089	0.000192
P_{16}	0.000030	0.000031	0.000053	0.000114
P_{17}	0.000017	0.000018	0.000031	0.000066
P_{18}	0.000010	0.000011	0.000018	0.000039
P_{19}	0.000006	0.000006	0.000011	0.000023
P_{20}	0.000003	0.000004	0.000006	0.000013
P_{21}	0.000002	0.000002	0.000004	0.000008
P_{22}	0.000001	0.000001	0.000002	0.000004
P_{23}	0.000001	0.000001	0.000001	0.000003
P_{24}	0.000000	0.000000	0.000001	0.000001

Total 0.999989

The probability vectors are given by $\mathrm{P}=(\mathrm{P} 0, \mathrm{P} 1, \mathrm{P} 2, \ldots)$. The vectors $\mathrm{P} 0=0.171289$ and $\mathrm{P} 1=$ $(0.112060,0.112143,0.126669)$ are found by using the condition 4 . The balance probability vectors are acquired by using the relation given in the equation 3 and the rate matrix. Therefore, the last column comprises of three columns and the total probability is validated to be $0.999989 \cong 1$

3.5 Illustration V:

It is assumed that $\lambda=0.5, \mu=0.7, \mu_{1}=0.3, \xi=0.05, \gamma=0.06, \alpha_{0}=0.01, \alpha_{1}=0.02, \beta_{0}=0.06$ and $\beta_{1}=0.07$
The rate matrix is $\left(\begin{array}{lll}0.593050 & 0.002676 & 0.010894 \\ 0.004569 & 0.582604 & 0.020943 \\ 0.058943 & 0.066354 & 0.519968\end{array}\right)$

Table V.The Probability Vectors

	$\mathrm{P}_{0 \mathrm{i}}$	$\mathrm{P}_{1 \mathrm{i}}$	$\mathrm{P}_{2 \mathrm{i}}$	Total
P_{00}	0.122301			0.122301
P_{1}	0.093734	0.093553	0.101597	0.288884
P_{2}	0.062173	0.061732	0.069413	0.193318
P_{3}	0.041357	0.040894	0.047327	0.129578
P_{4}	0.027577	0.027181	0.032214	0.086972
P_{5}	0.018427	0.018118	0.021897	0.058442
P_{6}	0.012335	0.012105	0.014868	0.039308
P_{7}	0.008269	0.008104	0.010086	0.026459
P_{8}	0.005550	0.005434	0.006838	0.017822
P_{9}	0.003730	0.003649	0.004632	0.012011
P_{10}	0.002508	0.002453	0.003137	0.008098
P_{11}	0.001688	0.001650	0.002123	0.005461
P_{12}	0.001137	0.001111	0.001437	0.003685
P_{13}	0.000766	0.000749	0.000972	0.002487
P_{14}	0.000516	0.000505	0.000657	0.001678
P_{15}	0.000348	0.000340	0.000444	0.001132
P_{16}	0.000235	0.000230	0.000300	0.000765

P_{17}	0.000158	0.000155	0.000203	0.000516
P_{18}	0.000107	0.000104	0.000137	0.000348
P_{19}	0.000072	0.000071	0.000093	0.000236
P_{20}	0.000049	0.000048	0.000063	0.000160
P_{21}	0.000033	0.000032	0.000042	0.000107
P_{22}	0.000022	0.000022	0.000029	0.000073
P_{23}	0.000015	0.000015	0.000019	0.000049
P_{24}	0.000010	0.000010	0.000013	0.000033
P_{25}	0.000007	0.000007	0.000009	0.000023
P_{26}	0.000004	0.000004	0.000006	0.000014
P_{27}	0.000003	0.000003	0.000004	0.000010
P_{28}	0.000002	0.000002	0.000003	0.000007
P_{29}	0.000001	0.000001	0.000002	0.000004
P_{30}	0.000001	0.000001	0.000001	0.000003
P_{31}	0.000001	0.000000	0.000001	0.000002
			Total	0.999986

The probability vectors are given by $\mathrm{P}=\left(\mathrm{P}_{0}, \mathrm{P}_{1}, \mathrm{P}_{2}, \ldots\right)$. The vectors $\mathrm{P}_{0}=0.122301$ and $\mathrm{P}_{1}=(0.093734$, $0.093553,0.101597)$ are found by using the condition 4 . The balance probability vectors are acquired by using the relation given in the equation 3 and the rate matrix. Therefore, the last column comprises of three columns and the total probability is validated to be $0.999986 \cong 1$

3.6 Illustration VI:

It is assumed that $\mu=0.8, \lambda=0.1, \mu_{1}=0.6, \xi=0.05, \gamma=0.06, \alpha_{0}=0.01, \alpha_{1}=0.02, \beta_{0}=0.06$ and $\beta_{1}=0.07$ The rate matrix is $\left(\begin{array}{lll}0.115337 & 0.000121 & 0.000163 \\ 0.000271 & 0.114078 & 0.003198 \\ 0.009431 & 0.010850 & 0.124590\end{array}\right)$

Table VI.The Probability Vectors

	$\mathrm{P}_{0 \mathrm{i}}$	$\mathrm{P}_{1 \mathrm{i}}$	$\mathrm{P}_{2 \mathrm{i}}$	Total
P_{00}	0.528156			0.528156
P_{1}	0.111424	0.112283	0.169856	0.393563
P_{2}	0.015339	0.015650	0.033609	0.064598

P_{3}	0.002257	0.002344	0.006597	0.011198
P_{4}	0.000356	0.000377	0.001289	0.002022
P_{5}	0.000060	0.000064	0.000251	0.000375
P_{6}	0.000010	0.000011	0.000049	0.000070
P_{7}	0.000002	0.000002	0.000009	0.000013
P_{8}	0.000000	0.000000	0.000002	0.000002
			Total	0.999997

The probability vectors are given by $\mathrm{P}=\left(\mathrm{P}_{0}, \mathrm{P}_{1}, \mathrm{P}_{2}, \ldots\right)$. The vectors $\mathrm{P}_{0}=0.528156$ and $\mathrm{P}_{1}=(0.111424$, $0.112283,0.169856)$ are found by using the condition 4 . The balance probability vectors are acquired by using the relation given in the equation 3 and the rate matrix. Therefore, the last column comprises of three columns and the total probability is validated to be $0.999997 \cong 1$

3.7 Illustration VII:

It is assumed that $\mu=0.9, \lambda=0.1, \mu_{1}=0.6, \xi=0.05, \gamma=0.06, \alpha_{0}=0.01, \alpha_{1}=0.02, \beta_{0}=0.06$ and $\beta_{1}=0.07$
The rate matrix is $\left(\begin{array}{lll}0.103530 & 0.000125 & 0.001458 \\ 0.000214 & 0.102499 & 0.002879 \\ 0.008381 & 0.009658 & 0.124573\end{array}\right)$
Table VII.The Probability Vectors

	$\mathrm{P}_{0 \mathrm{i}}$	$\mathrm{P}_{1 \mathrm{i}}$	$\mathrm{P}_{2 \mathrm{i}}$	Total
P_{00}	0.545022			0.545022
P_{1}	0.103135	0.104074	0.174576	0.381785
P_{2}	0.012939	0.013262	0.034346	0.060547
P_{3}	0.001781	0.001867	0.006705	0.010353
P_{4}	0.000270	0.000290	0.001303	0.001863
P_{5}	0.000045	0.000049	0.000253	0.000347
P_{6}	0.000008	0.000009	0.000049	0.000066
P_{7}	0.000001	0.000001	0.000009	0.000011
P_{08}	0.000000	0.000000	0.000001	0.000001
				Total
			0.999995	

The probability vectors are given by $\mathrm{P}=\left(\mathrm{P}_{0}, \mathrm{P}_{1}, \mathrm{P}_{2}, \ldots\right)$. The vectors $\mathrm{P}_{0}=0.545022$ and $\mathrm{P}_{1}=(0.103135$, $0.104074,0.174576$) are found by using the condition 4 . The balance probability vectors are acquired by using the relation given in the equation 3 and the rate matrix. Therefore, the last column comprises of three columns and the total probability is validated to be $0.999995 \cong 1$

3.8 Illustration VIII:

It is assumed that $\mu=1, \lambda=0.1, \mu_{1}=0.6, \xi=0.05, \gamma=0.06, \alpha_{0}=0.01, \alpha_{1}=0.02, \beta_{0}=0.06$ and $\beta_{1}=0.07$
The rate matrix is $\left(\begin{array}{lll}0.093878 & 0.000101 & 0.001323 \\ 0.000173 & 0.093036 & 0.002615 \\ 0.007538 & 0.008698 & 0.124530\end{array}\right)$
Table VIII.The Probability Vectors

	$\mathrm{P}_{0 \mathrm{i}}$	$\mathrm{P}_{1 \mathrm{i}}$	$\mathrm{P}_{2 \mathrm{i}}$	Total
P_{00}	0.559226			0.559226
P_{1}	0.095923	0.096903	0.178544	0.371370
P_{2}	0.011082	0.011403	0.034975	0.057460
P_{3}	0.001445	0.001526	0.006801	0.009772
P_{4}	0.000214	0.000232	0.001318	0.001764
P_{5}	0.000035	0.000039	0.000255	0.000329
P_{6}	0.000006	0.000007	0.000049	0.000062
P_{7}	0.000001	0.000001	0.000009	0.000011
P_{8}	0.000000	0.000000	0.000002	0.000002
				Total

The probability vectors are given by $\mathrm{P}=(\mathrm{P} 0, \mathrm{P} 1, \mathrm{P} 2, \ldots)$. The vectors $\mathrm{P} 0=0.559226$ and $\mathrm{P} 1=$ $(0.095923,0.096903,0.178544)$ are found by using the condition 4 . The balance probability vectors are acquired by using the relation given in the equation 3 and the rate matrix. Therefore, the last column comprises of three columns and the total probability is validated to be $0.999996 \cong 1$

3.9 Illustration IX:

It is assumed that $\mu=1.1, \lambda=0.1, \mu_{1}=0.6, \xi=0.05, \gamma=0.06, \alpha_{0}=0.01, \alpha_{1}=0.02, \beta_{0}=0.06$ and $\beta_{1}=0.07$
The rate matrix is $\left(\begin{array}{lll}0.085863 & 0.000084 & 0.001211 \\ 0.000143 & 0.085163 & 0.002396 \\ 0.006849 & 0.007911 & 0.124496\end{array}\right)$
Table IX.The Probability Vectors

Table 1X.The Probability Vectors				
	$\mathrm{P}_{0 \mathrm{i}}$	$\mathrm{P}_{1 \mathrm{i}}$	$\mathrm{P}_{2 \mathrm{i}}$	Total
P_{00}	0.571347			0.571347
P_{1}	0.089608	0.090606	0.181925	0.362139
P_{2}	0.009614	0.009927	0.035518	0.055059
P_{3}	0.001198	0.001275	0.006887	0.009360
P_{4}	0.000175	0.000192	0.001332	0.001699
P_{5}	0.000029	0.000032	0.000257	0.000318
P_{6}	0.000005	0.000006	0.000049	0.000060
P_{7}	0.000001	0.000001	0.000009	0.000011
P_{08}	0.000000	0.000000	0.000002	0.000002
				Total
			0.999995	

The probability vectors are given by $\mathrm{P}=(\mathrm{P} 0, \mathrm{P} 1, \mathrm{P} 2, \ldots)$. The vectors $\mathrm{P} 0=0.571347$ and $\mathrm{P} 1=$ $(0.089608,0.090606,0.181925)$ are found by using the condition 4 . The balance probability vectors are acquired by using the relation given in the equation 3 and the rate matrix. Therefore, the last column comprises of three columns and the total probability is validated to be $0.999995 \cong 1$

3.10 Illustration X :

It is assumed that $\mu=1.2, \lambda=0.1, \mu_{1}=0.6, \xi=0.05, \gamma=0.06, \alpha_{0}=0.01, \alpha_{1}=0.02, \beta_{0}=0.06$ and $\beta_{1}=0.07$
The rate matrix is $\left(\begin{array}{lll}0.079103 & 0.000070 & 0.001116 \\ 0.000120 & 0.078512 & 0.002210 \\ 0.006274 & 0.007254 & 0.124467\end{array}\right)$

Table X.The Probability Vectors

	$\mathrm{P}_{0 \mathrm{i}}$	$\mathrm{P}_{1 \mathrm{i}}$	$\mathrm{P}_{2 \mathrm{i}}$	Total
P_{00}	0.581946			0.581946
P_{1}	0.084052	0.085037	0.185077	0.354166
P_{2}	0.008413	0.008695	0.035810	0.052918
P_{3}	0.001006	0.001074	0.006886	0.008966
P_{4}	0.000145	0.000160	0.001321	0.001626
P_{5}	0.000024	0.000027	0.000253	0.000304
P_{6}	0.000004	0.000005	0.000048	0.000057
P_{7}	0.000001	0.000001	0.000009	0.000011
P_{08}	0.000000	0.000000	0.000002	0.000002
			Total	0.999996

The probability vectors are given by $\mathrm{P}=(\mathrm{P} 0, \mathrm{P} 1, \mathrm{P} 2, \ldots)$. The vectors $\mathrm{P} 0=0.581946$ and $\mathrm{P} 1=$ $(0.084052,0.085037,0.185077)$ are found by using the condition 4 . The balance probability vectors are acquired by using the relation given in the equation 3 and the rate matrix. Therefore, the last column comprises of three columns and the total probability is validated to be $0.999996 \cong 1$

3.11 Illustration XI:

It is assumed that $\alpha_{0}=0.02, \lambda=0.1, \mu=0.7, \mu_{1}=0.6, \xi=0.05, \gamma=0.06, \alpha_{1}=0.02, \beta_{0}=0.06$ and $\beta_{1}=0.07$
The rate matrix is $\left(\begin{array}{lll}0.128505 & 0.000398 & 0.003613 \\ 0.000512 & 0.126919 & 0.005333 \\ 0.010647 & 0.012226 & 0.125037\end{array}\right)$

Table XI.The Probability Vectors

	$\mathrm{P}_{0 \mathrm{i}}$	$\mathrm{P}_{1 \mathrm{i}}$	$\mathrm{P}_{2 \mathrm{i}}$	Total
P_{00}	0.506097			0.506097
P_{1}	0.118542	0.121716	0.167067	0.407325
P_{2}	0.018282	0.018889	0.033728	0.070899
P_{3}	0.002949	0.003078	0.006740	0.012767
P_{4}	0.000497	0.000525	0.001338	0.002360
P_{5}	0.000087	0.000093	0.000265	0.000445

P_{6}	0.000016	0.000017	0.000052	0.000085
P_{7}	0.000003	0.000003	0.000010	0.000016
P_{08}	0.000000	0.000000	0.000002	0.000002
			Total	0.999996

The probability vectors are given by $\mathrm{P}=\left(\mathrm{P}_{0}, \mathrm{P}_{1}, \mathrm{P}_{2}, \ldots\right)$. The vectors $\mathrm{P}_{0}=0.506097$ and $\mathrm{P}_{1}=$ $(0.118542,0.121716,0.167067)$ are found by using the condition 4 . The balance probability vectors are acquired by using the relation given in the equation 3 and the rate matrix. Therefore, the last column comprises of three columns and the total probability is validated to be $0.999996 \cong 1$

3.12 Illustration XII:

It is assumed that $\alpha_{0}=0.03, \lambda=0.1, \mu=0.7, \mu_{1}=0.6, \xi=0.05, \gamma=0.06, \alpha_{1}=0.02, \beta_{0}=0.06$ and $\beta_{1}=0.07$
The rate matrix is $\left(\begin{array}{lll}0.126836 & 0.000588 & 0.005341 \\ 0.000504 & 0.126920 & 0.005341 \\ 0.010496 & 0.012245 & 0.125195\end{array}\right)$
Table XII.The Probability Vectors

Table XII.The Probability Vectors				
	$\mathrm{P}_{0 \mathrm{i}}$	$\mathrm{P}_{1 \mathrm{i}}$	$\mathrm{P}_{2 \mathrm{i}}$	Total
P_{00}	0.505631			0.505631
P_{1}	0.117468	0.121794	0.168337	0.407599
P_{2}	0.017673	0.018966	0.034358	0.070997
P_{3}	0.002802	0.003106	0.006921	0.012829
P_{4}	0.000468	0.000533	0.001383	0.002384
P_{5}	0.000082	0.000095	0.000275	0.000452
P_{6}	0.000015	0.000017	0.000054	0.000086
P_{7}	0.000003	0.000003	0.000011	0.000017
P_{08}	0.000000	0.000000	0.000002	0.000002
				Total

The probability vectors are given by $\mathrm{P}=(\mathrm{P} 0, \mathrm{P} 1, \mathrm{P} 2, \ldots)$. The vectors $\mathrm{P} 0=0.505631$ and $\mathrm{P} 1=$ $(0.117468,0.121794,0.168337)$ are found by using the condition 4 . The balance probability vectors are acquired by using the relation given in the equation 3 and the rate matrix. Therefore, the last column comprises of three columns and the total probability is validated to be $0.999997 \cong 1$

3.13 Illustration XIII:

It is assumed that $\alpha_{0}=0.04, \lambda=0.1, \mu=0.7, \mu_{1}=0.6, \xi=0.05, \gamma=0.06, \alpha_{1}=0.02, \beta_{0}=0.06$ and $\beta_{1}=0.07$
The rate matrix is $\left(\begin{array}{lll}0.125213 & 0.000772 & 0.007020 \\ 0.000496 & 0.126921 & 0.005349 \\ 0.010349 & 0.012263 & 0.125347\end{array}\right)$
Table XIII.The Probability Vectors

	$\mathrm{P}_{0 \mathrm{i}}$	$\mathrm{P}_{1 \mathrm{i}}$	$\mathrm{P}_{2 \mathrm{i}}$	Total
P_{00}	0.504591			0.504591
P_{1}	0.115786	0.121831	0.170338	0.407955
P_{2}	0.017278	0.019050	0.035122	0.071450
P_{3}	0.002731	0.003137	0.007128	0.012996
P_{4}	0.000456	0.000542	0.001433	0.002431
P_{5}	0.000080	0.000097	0.000286	0.000463
P_{6}	0.000014	0.000018	0.000057	0.000089
P_{7}	0.000003	0.000003	0.000011	0.000017
P_{08}	0.000000	0.000001	0.000002	0.000003
				Total
				0.999995

The probability vectors are given by $\mathrm{P}=(\mathrm{P} 0, \mathrm{P} 1, \mathrm{P} 2, \ldots)$. The vectors $\mathrm{P} 0=0.504591$ and $\mathrm{P} 1=$ $(0.115786,0.121831,0.170338)$ are found by using the condition 4 . The balance probability vectors are acquired by using the relation given in the equation 3 and the rate matrix. Therefore, the last column comprises of three columns and the total probability is validated to be $0.999995 \cong 1$

3.14 Illustration XIV:

It is assumed that $\alpha_{0}=0.05, \lambda=0.1, \mu=0.7, \mu_{1}=0.6, \xi=0.05, \gamma=0.06, \alpha_{1}=0.02, \beta_{0}=0.06$ and $\beta_{1}=0.07$

The rate matrix is $\left(\begin{array}{lll}0.123636 & 0.000950 & 0.008652 \\ 0.000489 & 0.126922 & 0.005357 \\ 0.010206 & 0.012281 & 0.125496\end{array}\right)$

Table XIV.The Probability Vectors				
	$\mathrm{P}_{0 \mathrm{i}}$	$\mathrm{P}_{1 \mathrm{i}}$	$\mathrm{P}_{2 \mathrm{i}}$	Total
P_{00}	0.503585			0.503585
P_{1}	0.114155	0.121867	0.172282	0.408304
P_{2}	0.016898	0.019130	0.035857	0.071885
P_{3}	0.002662	0.003168	0.007327	0.013157
P_{4}	0.000445	0.000550	0.001481	0.002476
P_{5}	0.000028	0.000099	0.000297	0.000424
P_{6}	0.000014	0.000018	0.000059	0.000091
P_{7}	0.000003	0.000003	0.000012	0.000018
P_{08}	0.000000	0.000001	0.000002	0.000003
				Total
			0.999943	

The probability vectors are given by $\mathrm{P}=\left(\mathrm{P}_{0}, \mathrm{P}_{1}, \mathrm{P}_{2}, \ldots\right)$. The vectors $\mathrm{P}_{0}=0.503585$ and $\mathrm{P}_{1}=(0.114155$, $0.121867,0.172282$) are found by using the condition 4 . The balance probability vectors are acquired by using the relation given in the equation 3 and the rate matrix. Therefore, the last column comprises of three columns and the total probability is validated to be $0.999943 \cong 1$

3.15 Illustration XV:

It is assumed that $\beta_{0}=0.07, \lambda=0.1, \mu=0.7, \mu_{1}=0.6, \xi=0.05, \gamma=0.06, \alpha_{0}=0.01, \alpha_{1}=0.02$ and $\beta_{1}=0.07$
The rate matrix is $\left(\begin{array}{lll}0.130250 & 0.000202 & 0.001800 \\ 0.000405 & 0.128555 & 0.003547 \\ 0.012396 & 0.012197 & 0.123029\end{array}\right)$

Table XV.The Probability Vectors

	$\mathrm{P}_{0 \mathrm{i}}$	$\mathrm{P}_{1 \mathrm{i}}$	$\mathrm{P}_{2 \mathrm{i}}$	Total
P_{00}	0.508901			0.508901
P_{1}	0.123412	0.121577	0.160748	0.405737
P_{2}	0.019226	0.018708	0.032099	0.070033
P_{3}	0.003129	0.003016	0.006360	0.012505
P_{4}	0.000531	0.000508	0.001254	0.002293
P_{5}	0.000093	0.000089	0.000246	0.000428
P_{6}	0.000017	0.000016	0.000048	0.000081
P_{7}	0.000003	0.000003	0.000009	0.000015
P_{08}	0.000000	0.000000	0.000002	0.000002
			Total	0.999995

The probability vectors are given by $\mathrm{P}=(\mathrm{P} 0, \mathrm{P} 1, \mathrm{P} 2, \ldots)$. The vectors $\mathrm{P} 0=0.508901$ and $\mathrm{P} 1=$ $(0.123412,0.121577,0.160748)$ are found by using the condition 4 . The balance probability vectors are acquired by using the relation given in the equation 3 and the rate matrix. Therefore, the last column comprises of three columns and the total probability is validated to be $0.999995 \cong 1$

3.16 Illustration XVI:

It is assumed that $\beta_{0}=0.08, \lambda=0.1, \mu=0.7, \mu_{1}=0.6, \xi=0.05, \gamma=0.06, \alpha_{0}=0.01, \alpha_{1}=0.02$ and $\beta_{1}=0.07$
The rate matrix is $\left(\begin{array}{lll}0.130276 & 0.000199 & 0.001776 \\ 0.000455 & 0.128548 & 0.003495 \\ 0.013962 & 0.012021 & 0.121413\end{array}\right)$

Table XVI.The Probability Vectors

	$\mathrm{P}_{0 \mathrm{i}}$	$\mathrm{P}_{1 \mathrm{i}}$	$\mathrm{P}_{2 \mathrm{i}}$	Total
P_{00}	0.510903			0.510903
P_{1}	0.125897	0.121615	0.158399	0.405911
P_{2}	0.019793	0.018532	0.030342	0.068667
P_{3}	0.003224	0.002935	0.005772	0.011931
P_{4}	0.000542	0.000482	0.001093	0.002117
P_{5}	0.000094	0.000082	0.000200	0.000376
P_{6}	0.000016	0.000014	0.000039	0.000069

P_{7}	0.000003	0.000002	0.000007	0.000012
P_{08}	0.000000	0.000000	0.000001	0.000001
			Total	0.999987

The probability vectors are given by $\mathrm{P}=\left(\mathrm{P}_{0}, \mathrm{P}_{1}, \mathrm{P}_{2}, \ldots\right)$. The vectors $\mathrm{P}_{0}=0.510903$ and $\mathrm{P}_{1}=(0.125897$, $0.121615,0.158399)$ are found by using the condition 4 . The balance probability vectors are acquired by using the relation given in the equation 3 and the rate matrix. Therefore, the last column comprises of three columns and the total probability is validated to be $0.999987 \square 1$

3.17 Illustration XVII:

It is assumed that $\beta_{0}=0.09, \lambda=0.1, \mu=0.7, \mu_{1}=0.6, \xi=0.05, \gamma=0.06, \alpha_{0}=0.01, \alpha_{1}=0.02$ and $\beta_{1}=0.07$
The rate matrix is $\left(\begin{array}{lll}0.130301 & 0.000196 & 0.001750 \\ 0.000504 & 0.128542 & 0.003444 \\ 0.015483 & 0.011850 & 0.119842\end{array}\right)$
Table XVII.The Probability Vectors

	$\mathrm{P}_{0 \mathrm{i}}$	$\mathrm{P}_{1 \mathrm{i}}$	$\mathrm{P}_{2 \mathrm{i}}$	Total
P_{00}	0.512335			0.512335
P_{1}	0.128195	0.121566	0.155682	0.405443
P_{2}	0.020376	0.018416	0.029250	0.068042
P_{3}	0.003341	0.002889	0.005460	0.011690
P_{4}	0.000563	0.000468	0.001015	0.002046
P_{5}	0.000097	0.000078	0.000189	0.000364
P_{6}	0.000017	0.000013	0.000035	0.000065
P_{7}	0.000003	0.000002	0.000006	0.000011
P_{08}	0.000000	0.000000	0.000001	0.000001
				Total
				0.999997

The probability vectors are given by $\mathrm{P}=(\mathrm{P} 0, \mathrm{P} 1, \mathrm{P} 2, \ldots)$. The vectors $\mathrm{P} 0=0.512335$ and $\mathrm{P} 1=$ ($0.128195,0.121566,0.155682$) are found by using the condition 4 . The balance probability vectors are
acquired by using the relation given in the equation 3 and the rate matrix. Therefore, the last column comprises of three columns and the total probability is validated to be $0.999997 \square 1$

3.18 Illustration XVIII:

It is assumed that $\beta_{0}=0.1, \lambda=0.1, \mu=0.7, \mu_{1}=0.6, \xi=0.05, \gamma=0.06, \alpha_{0}=0.01, \alpha_{1}=0.02$ and $\beta_{1}=0.07$
The rate matrix is $\left(\begin{array}{lll}0.130325 & 0.000193 & 0.001725 \\ 0.000551 & 0.128536 & 0.003395 \\ 0.016962 & 0.011684 & 0.118316\end{array}\right)$

Table XVIII.The Probability Vectors				
	$\mathrm{P}_{0 \mathrm{i}}$	$\mathrm{P}_{1 \mathrm{i}}$	$\mathrm{P}_{2 \mathrm{i}}$	Total
P_{00}	0.513737			0.513737
P_{1}	0.130403	0.121522	0.153028	0.404953
P_{2}	0.020923	0.018306	0.028213	0.067442
P_{3}	0.003447	0.002846	0.005171	0.011464
P_{4}	0.000581	0.000456	0.000944	0.001981
P_{5}	0.000099	0.000075	0.000172	0.000346
P_{6}	0.000017	0.000012	0.000031	0.000060
P_{7}	0.000003	0.000002	0.000006	0.000011
P_{08}	0.000000	0.000000	0.000001	0.000001
				Total

The probability vectors are given by $\mathrm{P}=\left(\mathrm{P}_{0}, \mathrm{P}_{1}, \mathrm{P}_{2}, \ldots\right)$. The vectors $\mathrm{P}_{0}=0.513737$ and $\mathrm{P}_{1}=(0.130403$, $0.121522,0.153028)$ are found by using the condition 4 . The balance probability vectors are acquired by using the relation given in the equation 3 and the rate matrix. Therefore, the last column comprises of three columns and the total probability is validated to be $0.999995 \square 1$

4. Performance Measures:

The performance analysis is done by utilizing the probability vectors obtained below.
Probability of the system to be empty $\mathrm{P}(\mathrm{E})=\mathrm{P}_{0}$

Probability of mean number of customers to be present in the system when it is reaching its capacity one time, $\mathrm{P}(\mathrm{OTR})=\sum_{i=1}^{\infty} i P_{0 i}$

Probability of mean number of customers to be present in the system when it is reaching its capacity second time, $\mathrm{P}(\mathrm{TTR})=\sum_{i=1}^{\infty} i P_{1 i}$
Probability of mean number of customers to be present in the system when the server is under partial breakdown, $\mathrm{P}(\mathrm{BD})=\sum_{i=1}^{\infty} i P_{2 i}$

Probability of mean number of customers to be present in the system,

$$
\mathrm{P}(\mathrm{~N})=\mathrm{P}(\mathrm{E})+\mathrm{P}(\mathrm{OTR})+\mathrm{P}(\mathrm{TTR})+\mathrm{P}(\mathrm{BD})
$$

4.1 Performance Analysis of Arrival rate:

λ	$\mathrm{P}(\mathrm{E})$	$\mathrm{P}(\mathrm{OTR})$	$\mathrm{P}(\mathrm{TTR})$	$\mathrm{P}(\mathrm{BD})$	$\mathrm{P}(\mathrm{N})$
0.1	0.505782	0.169394	0.171023	0.255782	1.101981
0.2	0.348010	0.276349	0.279478	0.419029	1.322866
0.3	0.242676	0.409127	0.412896	0.597420	1.662119
0.4	0.171289	0.590176	0.590887	0.790374	2.142726
0.5	0.122301	0.847139	0.835315	0.994113	2.798868

4.2 Performance Analysis of Service rate:

μ	$\mathrm{P}(\mathrm{E})$	$\mathrm{P}(\mathrm{OTR})$	$\mathrm{P}(\mathrm{TTR})$	$\mathrm{P}(\mathrm{BD})$	$\mathrm{P}(\mathrm{N})$
0.8	0.528156	0.150671	0.152523	0.263649	1.094999
0.9	0.545022	0.135716	0.137665	0.270225	1.088628
1.0	0.559226	0.123496	0.125459	0.275817	1.083998
1.1	0.571347	0.113312	0.115256	0.280608	1.080523
1.2	0.581946	0.104627	0.106461	0.284271	1.077305

4.3 Performance Analysis of Breakdown Rate:

α_{0}	$\mathrm{P}(\mathrm{E})$	$\mathrm{P}(\mathrm{OTR})$	$\mathrm{P}(\mathrm{TTR})$	$\mathrm{P}(\mathrm{BD})$	$\mathrm{P}(\mathrm{N})$
0.02	0.506097	0.166493	0.171416	0.261818	1.105824
0.03	0.505631	0.163613	0.171774	0.265140	1.106158
0.04	0.504591	0.160864	0.172132	0.269563	1.107150
0.05	0.503585	0.157962	0.172463	0.273840	1.107850

4.4 Performance Analysis for Repair Time

β_{0}	$\mathrm{P}(\mathrm{E})$	$\mathrm{P}(\mathrm{OTR})$	$\mathrm{P}(\mathrm{TTR})$	$\mathrm{P}(\mathrm{BD})$	$\mathrm{P}(\mathrm{N})$
0.07	0.508901	0.173963	0.170635	0.250639	1.104138
0.08	0.510903	0.177910	0.169920	0.242062	1.100795
0.09	0.512335	0.181830	0.169419	0.235827	1.099411
0.10	0.513737	0.185532	0.168957	0.229839	1.098065

Fig.2. Variation of λ Fig. 3 Variation of μ

Fig.4. Variation of α_{0} Fig.5. Variation of β_{0}

By using the probability vectors, the performance measures such as Probability of the system to be empty $P(E)$,Probability of mean number of customers to be present in the system when it reaches its capacity one time, $P(O T R)$, Probability of mean number of customers to be present in the system when it reaches its capacity two times, P (TTR),Probability of mean number of customers to be present in the system when the server is under partial breakdown, P (BD), Probability of mean number of customers to be present in the system, $\mathrm{P}(\mathrm{N})$ is being obtained. While varying the arrival rate λ from 0.1 to 0.5 , the $\mathrm{P}(\mathrm{E})$ gradually decreases whereas the other probabilities $(\mathrm{P}(\mathrm{OTR}), \mathrm{P}(\mathrm{TTR}), \mathrm{P}(\mathrm{BD})$) are increasing steadily and $\mathrm{P}(\mathrm{N})$ increases rapidly. This has been shown in the Fig 2. The probability $\mathrm{P}(\mathrm{E})$ slowly increases, while the other probabilities are moderately falling down when varies the service rate from 0.8 to 1.2. The graphical representation of service rate is given in the Fig.3. The variation of partial breakdown shows slight decrease in the probabilities ($\mathrm{P}(\mathrm{E}) \& \mathrm{P}(\mathrm{OTR})$) and increase in the other ones which is shown by the graphical representation in Fig. 4 . While varying the repair time, it has been analyzed that the probability $\mathrm{P}(\mathrm{E}) \& \mathrm{P}(\mathrm{OTR})$ increases gradually whereas the other ones are falling down slowly.

Conclusion:

We have considered the single server queue with catastrophe, restoration and partial breakdown. The matrix geometric method has been employed to find the probability vectors. Performance analysis such as Probability of the system to be empty, Probability of mean number of customers to be present in the system when it reaches its capacity one time, Probability of mean number of customers to be present in the system when it reaches its capacity two time, Probability of mean number of customers to be present in the system when the server is under partial breakdown, Probability of mean number of customers to be present in the system is done and numerical results are presented with graphical representation.

References:

1. Chao.X, A queueing network model with catastrophes and product from solution, Operations research Letters 18, 75-79 (1995).
2. Balasubramanian.A, A finite markovian queue with catastrophe and bulk service, International Journal of Advanced Information Science and Technology Vol. 4, No. 8, 129-133,(2015).
3. Jain.N.K , Kumar, R. Transient solution of a catastrophic-cum-restorative queueing problem with correlated arrivals and variable service capacity, Information and Management Sciences, Vol18(4), Pp.461-465,(2007).
4. Dicrescenzo, Giorno.V, Nobil A.G.,Ricciardi. L.M.,On the M/M/1 Queue with catastrophes and it's continuous approximation, Queueing Systems, vol.43, pp. 329-347, (2003).
5. Kumar.B.K.,Arivudainambi. D, Transient solution of an $M / M / 1$ queue with catastrophes, Computers and Math with Applications, 40, 1233-1240, (2000).
6. Rakesh Kumar,A catastrophic-cum-restorative queueing system with correlated batch arrivals and variable capacity, Pakistan Journal of Statistics and operations Research ,Vol 4 No.2,4(2), (2008).
7. M. Seenivasan, R. Senthilkumar, K. S. Subasri, M/M/2 Heterogeneous queueing system having unreliable server with catastrophes and restoration, Materials Today: Proceedings Vol. 51(8) Pp. 2332-2338, December 2021.
8. M. Seenivasan, R. Abinaya, Markovian queueing model with single working vacation and catastrophe, Materials Today: Proceedings Vol. 51(8) Pp. 2348-2354, Dec. 2021.
9. Danesh Garg, Performance Analysis Of Number Of Times A System Reaches Its Capacity With Catatrophe And Restoration, American Journal of Operations Research Vol 3(3),75-82, (2013).
10. Kalidass K, Kasturi R., A queue with working breakdowns. ,Comput. Ind. Eng.;63: 779-83,(2012).
11. Kalidas K, Pavithra K. ,An M/M/1/N queue with working breakdowns and Bernoulli feedbacks, Int. J. Appl. Math.; 6:113-8,(2016).
12. Kim C, Klimenok VI, Dudin AN. ,Analysis of unreliable BMAP/PH/n type queue with markovian flow of breakdowns ,Appl. Math. Comput.;314:154-72,(2017).
13. Kim BK, Lee DH., The M/G/1 queue with disasters and working breakdowns, Appl.Math. Model.; 38:1788-98,(2014).
14. Yang D-Y, Wu YY, Analysis of a finite-capacity system with working breakdowns and retention of impatient customers. J. Manufacture. Syst.; 44:207-16,(2017).
15. Ye Q, Liu L, Analysis of MAP/M/1 queue with working breakdowns, Commun. Stat.Theory Methods ; 47:3073-84,(2018).
16. Wartenhosrt.P,N parallel Queueing systems with server breakdowns and repair, in European Journal of Operational Research, 82, pp. 302-322 (1995)
17. Neuts, M.F., Matrix-Geometric solutions in stochastic models, vol. 2 of johns Hopkins's series in the mathematical series, Johns Hopkins University Press, Baltimore, USA, (1981).
