Intuitionistic Fuzzy Generalized # α- Connectedness in Intuitionsitic Fuzzy Topological Spaces

¹J. Christy Jenifer and ² V. Kokilavani

¹Research Scholar, ²Assistant Professor & Head, Department of Mathematics, Kongunadu Arts and Science College(Autonomous), Coimbatore-641 029. Email :¹christijeni94@gmail.com

Article Info	Abstract
Page Number: 3732 - 3737 Publication Issue: Vol 71 No. 4 (2022)	The at most aim of this prospectus is to initiate the idea of connectedness in Intuitionistic fuzzy $g^{\#}\alpha$ -closed set and explore its properties.
Article History Article Received: 25 March 2022 Revised: 30 April 2022 Accepted: 15 June 2022 Publication: 19 August 2022	Keywords : IFT, IFG [#] α - CS, IFG [#] α - connected space.

1. INTRODUCTION

The idea of fuzzy sets was initiated by Zadeh[7]. Atanasov[1] generalized this concept to intuitionistic fuzzy sets using the concept of fuzzy sets. In 1997 Coker[2] initiated intuitionistic fuzzy topology using the notion of intuitionistic fuzzy topological spaces also he interpreted C_5 connected space in intuitionistic fuzzy topology. Later in 2011 intuitionistic fuzzy C_5 connected between two sets was explained by Santhi.R[5] and S.S. Thakur[6], initiated the concept of GO connected space in intuitionistic fuzzy topology. In 2012 Santhi.R[3], interpolated intuitionistic fuzzy generalized semi-pre connected space. Kokilavani. V introduced the concept of IFG[#] α - closed sets and IFG[#] α - continuous functions. In this prospectus, we initiated the concept of IFG[#] α - connected space and explore its properties.

2. PRELIMINARIES

Definition 2.2. [2] An intuitionistic fuzzy topology (*IFT* in short) on *X* is a family τ of *IFSs* in *X* satisfying the following axioms.

Vol. 71 No. 4 (2022) http://philstat.org.ph (1) 0_{\sim} , $1_{\sim} \in$ (2) $G_1 \cap G_2 \in \tau$, for any $G_1, G_2 \in \tau$ (3) $\bigcup G_i \in \tau$ for any family $\{G_i \mid i \in J\} \subseteq \tau$

In this case the pair (X, τ) is called an intuitionistic fuzzy topological space. Throughout this section we denote connected space by Cntd space.

Definition 2.2. [2]An IFTS (X, τ) is proposed to be an IFC5-Cntd space if the only IFSs which are both IFOS are 0_{\sim} and 1_{\sim} .

Definition 2.3. [6] An IFTS (X, τ) is proposed to be an IFGO-Cntd space if the only IFSs which are both IFGOS and IFGCS are 0_{\sim} and 1_{\sim} .

Definition 2.4. [5] An IFTS (X, τ) is an IFC5-Cntd among two IFSs A and B if there is no IFOS E in (X, τ) such that A \subseteq E and E_{q^c} B.

١

Definition 2.5. [3] An IFTS (X, τ) is proposed to be an intuitionistic fuzzy generalized semi-pre Cntd space if the only IFSs which are both an IFgsp- open sets and an IFgsp-closed set are 0_{\sim} and G_1 .

Definition 2.6. An IFS C in (E, τ) is proposed to be IFG^{##} α CS if $\alpha cl(C) \subseteq U$, whenever C $\subseteq U$ and U is an IFGOS in (E, τ) .

3. Intuitionistic Fuzzy Generalized $\neq \alpha$ - Cntd in IFTS

In this segment we have initiated IFG#_-Cntd and establish its properties.

Definition 3.1. An IFT S (E, τ) is proposed to be IFG#_(IFG[#] α) Cntd on condition that IFSs has a pair IFG[#] α OS and IFG[#] α CS are 0_~ and J₁.

Theorem 3.2. Every IFG^{##} α -Cntd is IFC5-Cntd but, reverse implication is not possible.

Proof: Consider (E, τ) an IFG[#] α - Cntd. Assume (E, τ) by no means IFC5- Cntd, here we obtain a actual pair of IFOS and IFCS of IFS D in (E, τ) . Here D is the pair of IFG[#] α and IFG[#] α in (E, τ) . This signifies here (E, τ) by no means an IFG[#] α - Cntd. This is a contravention to our assumption. Consequently (E, τ) should be IFC5-Cntd.

Example 3.3. Let $E=\{p,q\}$, $J_1= < e$, $(0.2_p, 0.2_q)$, $(0.8_p, 0.8_q) > and J_2 = < e$, $(0.8_p, 0.7_q)$, $(0.2_p, 0.3_q) >$. Here $\tau = \{0_{\sim}, J_1, J_2, 1_{\sim}\}$ a IFTs on E. We have (E, τ) an IFC5-Cntd but by no means IFG[#] α - Cntd, Considering IFS C = < e, $(0.7_p, 0.6_q)$, $(0.3_p, 0.6_q) >$ is both an IFG[#] α OS and an IFG[#] α CS in (E, τ) .

Theorem 3.4. Every IFG#_-Cntd is IFGO-Cntd but, reverse implication is not possible.

Proof: Consider (E, τ) an IFG[#] α - Cntd. Assume (E, τ) is by no means IFGO- Cntd, here remains a actual IFS D which has the pair IFGOS and IFGCS in (E, τ) . Then D is the pair of IFG[#] α and IFG[#] α in (E, τ) . It signifies here (E, τ) by no means an IFG[#] α - Cntd. This is a contravention to our assumption. Consequently (E, τ) should be IFGO-Cntd.

Example 3.5. Consider $E=\{p,q\}$, $J_1 = \langle e, (0.2_p, 0.2_q), (0.8_p, 0.8_q) \rangle$ and $J_2 = \langle e, (0.8_p, 0.7_q), (0.2_p, 0.3_q) \rangle$. Here $\tau = \{0_{\sim}, J_1, J_2, 1_{\sim}\}$ a IFTs on E. We have (E, τ) an IFGO-Cntd but by no means IFG[#] α - Cntd, Considering IFS $C = \langle e, (0.7_p, 0.6_q), (0.3_p, 0.6_q) \rangle$ is both an IFG[#] α OS and an IFG[#] α CS in (E, τ) .

Theorem 3.6. If h: $(E, \tau) \rightarrow (F, \sigma)$ is IFG[#] α - continuous and (E, τ) is IFG[#] α - Cntd, then (F, σ) is IFC5-Cntd.

Proof: Consider (E, τ) an IFG[#] α -Cntd. Assume (F, σ) by no means an IFC5- Cntd, then we obtain a actual pair of IFOS and IFCS of IFS C in (F, σ) . Considering h an IFG[#] α -continuous, h $^{-1}(C)$ is a pair of IFG[#] α and IFG[#] α in (E, τ) . This is a contravention to our assumption. Consequently (F, σ) is IFC5- Cntd.

Theorem 3.7. If h: $(E, \tau) \rightarrow (F, \sigma)$ is IFG[#] α -irresolute onto mapping and (E, τ) an IFG[#] α - Cntd, then (F, σ) is also an IFG[#] α -Cntd.

Proof: Assume (F, σ) by no means an IFG[#] α -Cntd, then we obtain a actual pair of IFG[#] α OS and IFG[#] α CS IFS D in (F, σ) . Considering h an IFG[#] α - irresolute, h⁻¹(D) is pair of IFG[#] α OS and

IFG[#] α CS in (E, τ). But this is a contravention to our assumption. Consequently (F, σ) is IFG[#] α -Cntd.

Proposition 3.8. An IFT S (E, τ) an IFG[#] α -Cntd on the condition that we obtain no zero IFG[#] α OSs C and D in (E, τ) in order that C = Dc.

Proof: Necessity: Consider C and D be IFG[#] α OSs in (E, τ) in order that $C \neq 0_{\sim}$, $D \neq 0_{\sim}$ and $C=D^{c}$. Consequently D^{c} is IFG[#] α CS. Considering $D \neq 0_{\sim}$, $C=D^{c} \neq 1_{\sim}$. Considering C an actual IFS with a pair of IFG[#] α OS and IFG[#] α CS in (E, τ). Consequently (E, τ) by no means an IFG[#] α -Cntd. But this is contravention to our assumption. Thus we obtain no non-zero IFG[#] α OS C and D in (E, τ) in order that $C = D^{c}$.

Sufficiency: Let C be both an IFG[#] α OS and IFG[#] α CS in (E, τ) such that $1_{\sim} \neq C \neq 0_{\sim}$. Now let D = C^c . Then D is an IFG[#] α OS and D $\neq 1_{\sim}$. Considering $D^c = C \neq 0_{\sim}$, which is a contravention to our assumption. Consequently (E, τ) is an IFG[#] α -Cntd.

Proposition 3.9. An IFT S (E, τ) is IFG[#] α - Cntd on the condition that we obtain no non-zero IFG[#] α OSs C and D in (E, τ) in order that D = C^c , D = (α cl(C))^c and C = D^c .

Proof: Necessity: Suppose that we obtain IFSs C and D in order that $C \neq 0_{\sim}$, $D \neq 0_{\sim}$, $D=C^{c}$, $D=(\alpha cl(C))^{c}$ and $C = (\alpha cl(D))^{c}$. Since $(\alpha cl(C))^{c}$ and $(\alpha cl(D))^{c}$ are IFG[#] α OSs in (E, τ), C and D are IFG[#] α -Cntd, which is a contravention. Consequently we obtain no non-zero IFG[#] α OSs C and D in (E, τ) in order that $D = C^{c}$, $D = (\alpha cl(C))^{c}$ and $C = (\alpha cl(D))^{c}$.

Sufficiency: Consider C be a pair of IFG[#] α OS and IFG[#] α CS in (E, τ) in order that $1_{\sim} \neq C \neq 0_{\sim}$. Here we use D = C^c , thus remains an contravention to our assumption. Consequently (E, τ) an IFG[#] α - Cntd.

Definition 3.10. An IFTS (E, τ) is an IFC₅-Cntd among both IFS C and D if there is no IFTS G in (E, τ) in order that C \subseteq G and GqD.

Definition 3.11. An IFTS () is an IFG[#] α -Cntd among two IFS C and D if there is no IFG[#] α CS H in (E, τ) in order that C \subseteq H and HqD.

Example 3.12. Let $E = \{p, q\}, J_1 = \langle e, (0.6_p, 0.4_q), (0.4_p, 0.1_q) \rangle$. Here $\tau = \{0_{\sim}, J_1, 1_{\sim}\}$ be IFT on E. We have (E, τ) on IFG[#] α -Cntd amon the IFS $C = \langle e, (0.6_p, 0.5_q), (0.4_p, 0.2_q) \rangle, D = \langle e, (0.6_p, 0.5_q), (0.4_p, 0.4_q) \rangle$ is pair of IFG[#] α OS and IFG[#] α CS in (E, τ) .

Theorem 3.13. If an IFTS (E, τ) is an IFG[#] α -Cntd among two IFS C and D, then it is an IFC₅-Cntd among C and D but, reverse implication is not possible.

Proof: Assume (E, τ) by no means an IFC₅ Cntd among C and D, then we obtain an IFOS H in (E, τ) in order that C⊆H and HqD. Considering IFOS an IFG[#] α OS, we obtain an IFG[#] α OS H in (E, τ) in order that C⊆H and HqD. This signifies (E, τ) by no means IFG[#] α -Cntd among C and D. That is we get a contravention to our assumption. Consequently, the IFTS (E, τ) should be IFC₅- Cntd among C and D.

Example 3.14. Consider $E = \{p, q\}, J_1 = \langle e, (0.3_p, 0.3_q), (0.2_p, 0.3_q), \tau = \{0_{\sim}, J_1, 1_{\sim}\}$ be IFT on E. We have (E, τ) an IFC₅-Cntd among the IFS $C = \langle e, (0.3_p, 0.4_q), (0.6_p, 0.6_q) \rangle$ and $D = \langle e, (0.5_p, 0.4_q), (0.5_p, 0.6_q) \rangle$. But (E, τ) is not an IFG[#] α -Cntd among C and D, Considering IFS H= $\langle e, (0.4_p, 0.4_q), (0.6_p, 0.5_q) \rangle$ an IFG[#] α OS such that C⊆H and H⊆D^c.

Theorem 3.15. An IFT S (E, τ) is IFG[#] α -Cntd among two IFSs C and D on condition that there is no IFG[#] α OS and IFG[#] α CS H in (E, τ) in order that C \subseteq H \subseteq D^c.

Proof: Necessity: Consider (E, τ) an IFG[#] α -Cntd among C and D. Assume that we obtain IFG[#] α OS and IFG[#] α CS H in (E, τ) in order that C \subseteq H \subseteq D^c, we have HqD and C \subseteq H. This signifies (E, τ) by no means IFG[#]_-Cntd among C and D, by the de_nition, C contravention to our assumption. Therefore, then we obtain no IFG[#] α OS and IFG[#] α CS H in (E, τ) in order that C \subseteq H \subseteq D^c.

Sufficiency: Assume (E, τ) by no means IFG[#] α -Cntd among C and D. Then we obtain an IFG[#] α OS H in (E, τ) in order that C⊆H and HqD. This signifies that we obtain an IFG[#] α OS H in (E, τ) in order that C⊆H⊆D^c. But a contravention to our assumption. Consequently (E, τ) should be IFG[#] α -Cntd among C and D.

Theorem 3.16. If an IFT S (E, τ) is IFG[#] α -Cntd among C and D and C \subseteq C₁, D \subseteq D₁, then (E, τ) is an IFG[#] α -Cntd among C₁ and D₁.

Vol. 71 No. 4 (2022) http://philstat.org.ph **Proof**: Assume (E, τ) by no means IFG[#] α -Cntd among C₁ and D₁, by known Definition, we obtain IFG[#] α OS H in (E, τ) in order that C₁ \subseteq H and HqD₁. This signifies H \subseteq D^c₁ and C₁ \subseteq H. That is C \subseteq C₁ \subseteq H. Hence C \subseteq H. Since H \subseteq D^c₁, D₁ \subseteq H^c. That is D \subseteq D₁ \subseteq H^c. Hence H \subseteq D^c. Therefore (E, τ) by no means an IFG[#] α -Cntd among C and D. Consequently a contravention to our assumption Thus E should be IFG[#] α -Cntd among C₁ and D₁.

References

- [1] Atanassov. K, Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20(1986), (87-96).
- [2] Coker. D, An introduction to fuzzy topological space, Fuzzy sets and systems, 88, (1997), (81-89).
- [3] Santhi.R and Jayanthi.D, Generalized semi-pre connectedness in intuitionistic fuzzy topological spaces, Ann.Fuzzy Math. Inform. 3(2), (2012), (243-253).
- [4] christy Jenifer J and Kokilavani.V, Intuitionistic Fuzzy Generalized $^{\#}\alpha$ -Closed Sets and Generalized $^{\#}\alpha$ -Continuous Mappings in Intuitionistic Fuzzy Topological Spaces, (Communicated).
- [5] Santhi.R, and Sakthivel.D, Intuitionistic fuzzy alpha generalized connectedness in fuzzy topological spaces, International Journal of Applied Mathematics and Physics, 3(1), (2011), (1-5).
- [6] Thakur,S.S and Rekha Chaturvedi, Generalized continuity in intuitionistic fuzzy topological spaces, Notes on Intuitionistic Fuzzy Sets,12(1), (2006),(38-44).
- [7] Zadeh.L.A, Fuzzy sets, Information and control, 8(1965), (338-353).