Some Results of Character for Finite Groups

$1^{\text {st }}$ Salam Abdulkareem Manthoor
Department of Mathematics, College of
Education for Pure Science
Tikrit University
Tikrit, Iraq
salam.a.manthoor@st.tu.edu.iq
$2^{\text {nd }}$ Sinan O. Al-Salihi
Department of Mathematics, College of
Education for Pure Science
Tikrit University
Tikrit, Iraq
somer@tu.edu.iq
$3^{\text {rd }}$ Taghreed Hur Majeed
Department of Mathematics
Education College
Mustansiriyah University
Baghdad, Iraq
taghreedmajeed@uomustansiriyah.edu.iq

Article Info

Page Number: 3748-3755
Publication Issue:
Vol. 71 No. 4 (2022)

Article History

Article Received: 25 March 2022
Revised: 30 April 2022
Accepted: 15 June 2022
Publication: 19 August 2022

Abstract

The aim of our work is to study some of theories about the character. The character theory is a very important theory within the concept of representation theory, especially in our study of finite groups, like symmetric group. We touched on some basic definitions that we will need in our work, such as the definitions of homomorphism and isomorphism, the definition of character and the definition of class function, in addition to the definitions of tensor product, direct sum, and others. We have proven that the character of direct sum is a class function. From this we came to the conclusion that the character of tensor product of the symmetric group is also a class function. Then we proved that any number of direct sum of representations is an isomorphism if and only if they have the same character. From the above theories, we were able to prove that the sum of three characters equals to the character of direct sum. And by the same way we

also prove that the product of three characters equals to the character of tensor product. Representation theory is concerned with how to write a group as a collection of matrices.
The theory is not only beautiful in and of itself, but it also provides one of the keys to a proper understanding of finite groups. We have reached a critical point in the theory of finite group representation. The characters of a representation that we will study in this work will illustrate a great important about a representation. Also we have seen that a group can be represented by a set of invertible $n \times n$ matrices that show the same relationships as the group. Furthermore, we've seen that character and representation theories of finite
groups are extremely useful for studying and proving a variety of group theory
results. Obtaining the character table of a finite group is a difficult operation in general. This is deeply true when the degree of representation or the order for the finite group is very large, and the character only has one number for every matrix.
Character theory is the fundamental finding in group representation theory that establishes that linear representations of a finite group over the complex numbers disintegrate into irreducible parts. For instance, character table application relies on this essential concept. The theorem describes the excellent situations, for which the requisite behaviour will hold, in terms of the characteristics of the underlying field of scalars as an abstract algebraic construct. The real number field, for instance, has a similar pattern of behaviour; however the representations that are irreducible vary.
Keywords: Character theory, representation theory, tensor product, direct sum

INTRODUCTION

A group K is referred to as finite if its underlying set is finite. Unless K is infinite, in which case we say that K is infinite if its order is infinite, the order $|\mathrm{K}|$ of a finite group K is the order (number of elements) of the underlying set. The representation of a group K over the field F is characterized by the homomorphism $\phi: K \rightarrow G L(n, F)$ for some n. The degree or dimension of has the numerical value n.

If $\mathrm{n}=1$, then there is said to be a linear representation of. If $\phi: \mathrm{K} \rightarrow \mathrm{GL}(\mathrm{V})$ is a representation of a group K in finite dimensions on a vector space V . The character of the representation is the function $\chi_{\phi}: \mathrm{K} \rightarrow \mathrm{C}$ defined by $\chi_{\phi}(\mathrm{k})=\operatorname{tr}(\phi(\mathrm{k}))$. A character is considered to be irreducible if it is provided by an irreducible representation. The character that corresponds to the trivial representation of K is referred to as the trivial character of K. This character has value 1 for every $\mathrm{k} \in \mathrm{K}$, i.e., $\phi(\mathrm{k})=1$, over all the parts of K . A linear character is a character of degree 1 . Often, the K character table, which gives a thorough description of the structure of the group K, is created by first writing down all the linear characters. It is crucial to recognize derived subgroup of K as a first step. The Trace of A, denoted by the symbol $t r$, is the sum of the diagonal components of a square matrix A. When k_{1} and k_{2} are members of the same conjugacy class of K, if $\phi\left(\mathrm{k}_{1}\right)=\phi\left(\mathrm{k}_{2}\right)$ then the function ϕ is called a class function of
K. Assume that K is a group with the elements k_{1} and k_{2} as its members. The two variables k_{1} and k_{2} are said to be conjugate in K if $\mathrm{xk}_{1} \mathrm{x}^{-1}=\mathrm{k}_{2}$ for some x in K . (and refer to k_{2} as the conjugate of k_{1}). Finally, as a reminder we shall use the two important operations in Representation theory, the tensor product and the direct sum of linear representations in our proofs as follows.

SOME RESULTS OF CHARACTER FOR FINITE GROUPS

Definition2.1: If the underlying set of a group K is finite, then the group is said to be finite. The order $|\mathrm{K}|$ of a finite group K is the order (number of elements) of the underlying set unless K is infinite, in which case we say that K is infinite if its order is infinite. [4]

Definition2.2: The homomorphism $\mathrm{K} \rightarrow \mathrm{GL}(\mathrm{n}, \mathrm{F})$ for some n characterizes the representation of a group K over the field F . The degree or dimension of is an integer with the symbol n . A linear representation of is said to exist if $\mathrm{n}=1$. [7]

Definition 2.3: Let $\phi: \mathrm{K} \rightarrow \mathrm{GL}(\mathrm{V})$ be a finite dimensional representation of the group K on a vector space V . The function $\chi_{\phi}: \mathrm{K} \rightarrow \mathrm{C}$ defined by
$\chi_{\phi}(\mathrm{k})=\operatorname{tr}(\phi(\mathrm{k}))$ is called the character of the representation. [1]
Definition 2.4: If a character χ_{ϕ} is provided by an irreducible representation ϕ, that character is said to be irreducible. [2]

Definition 2.5: It is referred to as the trivial character of K to identify the character that corresponds to the trivial representation of K . Over all the components of K , this character has value 1 , for every $k \in K$, i. e. $\chi(k)=1$. [2]

Definition 2.6: character of degree 1 is called a linear character. Writing down all the linear characters is frequently the first step in creating the K character table, which contains a detailed description of the group K's structure. It is important to identify the derived subgroup of K as a first step. [2]

Definition 2.7: The Trace of A is the total of a square matrix A's diagonal elements, and it is represented by the symbol $\operatorname{tr}(\mathrm{A})$. [4]

Definition 2.8: Let K be a group and let $k_{1}, k_{2} \in K$. The function $\phi: K \rightarrow C$ is called a class function of K if $\phi\left(k_{1}\right)=\phi\left(k_{2}\right)$ whenever k_{1} and k_{2} are in the same conjugacy class of K. [5]

Definition 2.9: A one-to-one mapping (or function) from K onto K that maintains the group operation is known as an isomorphism ϕ from a group K to a group K^{\prime}. In other words, for any k_{2} and k_{2} in $\mathrm{K}, \phi\left(\mathrm{k}_{1} \mathrm{k}_{2}\right)=\phi\left(\mathrm{k}_{1}\right) \phi\left(\mathrm{k}_{2}\right)$. We assert that K and K^{\prime} are isomorphic and write K $\approx \mathrm{K}^{\prime}$ if there is an isomorphism from K onto K^{\prime}. [4]

Definition 2.10: Suppose that K is a group and k_{1} and k_{2} be its elements. If $x k_{1} x^{-1}=k_{2}$ for some x in K, we say that the two variables k_{1} and k_{2} are conjugate in K (and refer to k_{2} as the conjugate of $\left.k_{1}\right)$. The conjugacy class for k_{1} is represented by the set $c l\left(k_{1}\right)=\left\{x_{1} x^{-1} \mid x \in K\right\}$. [4]

Definition 2.11: Let $\phi_{1}: K_{1} \rightarrow G L\left(V_{1}\right), \phi_{2}: K_{2} \rightarrow G L\left(V_{2}\right)$ are linear representations. We are defined a linear representation $\phi_{1} \otimes \phi_{2}: K_{1} \times K_{2} \rightarrow G L\left(V_{1} \otimes V_{2}\right)$ into the tensor product of V_{1} and V_{2} by $\phi_{1} \otimes \phi_{2}\left(k_{1}, k_{2}\right)=\phi_{1}\left(k_{1}\right) \otimes \phi_{2}\left(k_{2}\right)$, in which $k_{1} \in K_{2}, k_{2} \in K_{2}$ This is called the tensor product of ϕ_{1} and ϕ_{2}. [6], [7]

Definition 2.12: If $\left(\phi_{1}, V_{1}\right)$ and $\left(\phi_{2}, V_{2}\right)$ be a representation of K_{1} and K_{2}, respectively then the direct sum of the representations is a linear representation and define as. [1]

$$
\forall k_{1} \in K_{1}, k_{2} \in K_{2}, v_{1} \in V_{1}, v_{2} \in V_{2}:\left\{\begin{array}{c}
\phi_{1} \oplus \phi_{2}: K_{1} \times K_{2} \rightarrow G L\left(V_{1} \oplus V_{2}\right) \\
\left(\phi_{1} \oplus \phi_{2}\right)\left(k_{1}, k_{2}\right)\left(v_{1}, v_{2}\right)=\phi_{1}\left(k_{1}\right) v_{1} \oplus \phi_{2}\left(k_{2}\right) v_{2}
\end{array}\right\}
$$

Proposition 2.13: A Character is a class function for a group. [2]
Proposition 2.14: A character of a direct sum of groups is class function
Proof: suppose that χ_{ϕ} is a character accorded by a representation ϕ, then for all $k_{1}, k_{2}, g \in K$, we have:

$$
\begin{aligned}
\phi\left(\mathrm{g}\left(\mathrm{k}_{1} \oplus \mathrm{k}_{2}\right) \mathrm{g}^{-1}\right) & =\phi(\mathrm{g}) \phi\left(\mathrm{k}_{1} \oplus \mathrm{k}_{2}\right) \phi\left(\mathrm{g}^{-1}\right) \\
& =\phi(\mathrm{g}) \phi\left(\mathrm{k}_{1} \oplus \mathrm{k}_{2}\right)(\phi(\mathrm{g}))^{-1}
\end{aligned}
$$

Since $\chi_{\phi}\left(\mathrm{g}\left(\mathrm{k}_{1} \oplus \mathrm{k}_{2}\right) \mathrm{g}^{-1}\right)$
$=\operatorname{tr}\left(\phi(\mathrm{g}) \phi\left(\mathrm{k}_{1} \oplus \mathrm{k}_{2}\right)(\phi(\mathrm{g}))^{-1}\right.$
$=\operatorname{tr}\left(\phi\left(\mathrm{k}_{1} \oplus \mathrm{k}_{2}\right)\right)$
$=\chi_{\phi}\left(\mathrm{k}_{1} \oplus \mathrm{k}_{2}\right)$
Proposition 2.15: A character of tensor product of symmetric groups is a class function.
Proof: suppose that χ_{ϕ} is character accorded by the representation of ϕ then, for all $k_{1}, k_{2}, g \epsilon$ K, we have

$$
\begin{aligned}
\phi\left(\mathrm{g}\left(\mathrm{k}_{1} \otimes \mathrm{k}_{2}\right) \mathrm{g}^{-1}\right) & =\phi(\mathrm{g}) \phi\left(\mathrm{k}_{1} \otimes \mathrm{k}_{2}\right) \phi(\mathrm{g})^{-1} \\
= & \phi(\mathrm{g}) \phi\left(\mathrm{k}_{1} \otimes \mathrm{k}_{2}\right)(\phi(\mathrm{g}))^{-1}
\end{aligned}
$$

Since $\chi_{\phi}\left(g\left(k_{1} \otimes k_{2}\right) g^{-1}\right)$
$=\operatorname{tr}\left(\phi(\mathrm{g}) \phi\left(\mathrm{k}_{1} \otimes \mathrm{k}_{2}\right)(\phi(\mathrm{g}))^{-1}\right)$
$=\operatorname{tr}\left(\phi\left(\mathrm{k}_{1} \otimes \mathrm{k}_{2}\right)\right)$
$=\chi_{\phi}\left(\mathrm{k}_{1} \otimes \mathrm{k}_{2}\right)$
Proposition 2.16: any numbers of direct sum of representations are isomorphic if and only if they have the same characters.

Proof: Let $\phi_{1}: \mathrm{K} \rightarrow \mathrm{GL}\left(\oplus_{i=1}^{n} \mathrm{~V}_{\mathrm{i}}\right)$,

$$
\phi_{2}: \mathrm{K} \rightarrow \mathrm{GL}\left(\oplus_{i=1}^{n} \mathrm{~W}_{\mathrm{i}}\right),
$$

and let $\phi_{1}=\oplus_{i=1}^{n} \mathrm{~A}_{\mathrm{i}}, \phi_{2}=\oplus_{i=1}^{n} \mathrm{~B}_{\mathrm{i}}$.
Since ϕ_{1} and ϕ_{2} have same characters, i. e. $\chi_{\phi_{1}}=\chi_{\phi_{2}}$
then $\operatorname{tr}\left(\mathrm{P}^{-1} \oplus_{i=1}^{n} \mathrm{~B}_{\mathrm{i}} \mathrm{P}\right)=\operatorname{tr}\left(\mathrm{P}^{-1} \oplus_{i=1}^{n} \mathrm{~A}_{\mathrm{i}} \mathrm{P}\right)$

$$
\begin{aligned}
& \operatorname{tr}\left(\oplus_{i=1}^{n} \mathrm{~B}_{\mathrm{i}}\right)=\operatorname{tr}\left(\oplus_{i=1}^{n} \mathrm{~A}_{\mathrm{i}}\right) \\
& \chi\left(\oplus_{i=1}^{n} \mathrm{~B}_{\mathrm{i}}\right)=\chi\left(\oplus_{i=1}^{n} \mathrm{~A}_{\mathrm{i}}\right)
\end{aligned}
$$

that means $A_{i}=B_{i}$, for all i.
Thus ϕ_{1} is isomorphic to ϕ_{2}.
Conversely, let ϕ_{1} isomorphic ϕ_{2}. That means $A_{i}=B_{i}$ for all i.
Hence $\chi\left(\oplus_{i=1}^{n} \mathrm{~A}_{\mathrm{i}}\right)=\chi\left(\oplus_{i=1}^{n} \mathrm{~B}_{\mathrm{i}}\right)$, therefore $\operatorname{tr}\left(\oplus_{i=1}^{n} \mathrm{~A}_{\mathrm{i}}\right)=\operatorname{tr}\left(\oplus_{i=1}^{n} \mathrm{~B}_{\mathrm{i}}\right)$.
Suppose there is P a vector space isomorphism such that
$\operatorname{tr}\left(\mathrm{P}^{-1} \oplus_{i=1}^{n} \mathrm{~A}_{\mathrm{i}} \mathrm{P}\right)=\operatorname{tr}\left(\mathrm{P}^{-1} \oplus_{i=1}^{n} \mathrm{~B}_{\mathrm{i}} \mathrm{P}\right)$
this implies that $\chi_{\phi_{1}}=\chi_{\phi_{2}}$.
Proposition 2.17: Let $\phi_{1}: \mathrm{K} \rightarrow \mathrm{GL}\left(\mathrm{V}_{1}\right)$,

$$
\begin{aligned}
& \phi_{2}: \mathrm{K} \rightarrow \mathrm{GL}\left(\mathrm{~V}_{2}\right), \\
& \phi_{3}: \mathrm{K} \rightarrow \mathrm{GL}\left(\mathrm{~V}_{3}\right),
\end{aligned}
$$

are three representations of K and let $\chi_{1}, \chi_{2}, \chi_{3}$ are their characters respectively, then we have
i. $\chi_{\left(V_{1}\right)} \chi_{\left(V_{2}\right)} \chi_{\left(V_{3}\right)}=\chi_{\left(V_{1} \oplus V_{2} \oplus V_{3}\right)}$
ii. $\chi_{\left(V_{1}\right)} \cdot \chi_{\left(V_{2}\right)} \cdot \chi_{\left(V_{3}\right)}=\chi_{\left(V_{1} \otimes V_{2} \otimes V_{3}\right)}$

Proof:
i. By proposition 2.14

Let $\chi_{\left(V_{1}\right)}+\chi_{\left(V_{2}\right)}+\chi_{\left(V_{3}\right)}=\operatorname{tr}\left(\phi_{1}\left(V_{1}\right)\right)+\operatorname{tr}\left(\phi_{2}\left(V_{2}\right)\right)+\operatorname{tr}\left(\phi_{3}\left(V_{3}\right)\right)$

$$
\begin{aligned}
& =\operatorname{tr}\left(\phi_{1}\left(V_{1}\right)+\phi_{2}\left(V_{2}\right)+\phi_{3}\left(V_{3}\right)\right) \\
& =\chi_{\left(V_{1} \oplus V_{2} \oplus V_{3}\right)}
\end{aligned}
$$

ii. By proposition 2.15

Let $\chi_{\left(V_{1}\right)} \cdot \chi_{\left(V_{2}\right)} \cdot \chi_{\left(V_{3}\right)}=\operatorname{tr}\left(\phi_{1}\left(V_{1}\right)\right) \cdot \operatorname{tr}\left(\phi_{2}\left(V_{2}\right)\right) \cdot \operatorname{tr}\left(\phi_{3}\left(V_{3}\right)\right)$

$$
\begin{aligned}
& =\operatorname{tr}\left(\phi_{1}\left(V_{1}\right) \cdot \phi_{2}\left(V_{2}\right) \cdot \phi_{3}\left(V_{3}\right)\right) \\
& =\chi_{\left(V_{1} \otimes V_{2} \otimes V_{3}\right)}
\end{aligned}
$$

Definition 2.18: Assume that ϕ_{1} and ϕ_{2} are functions from $\mathrm{K} \rightarrow \mathrm{C}$. Then we define the inner product of ϕ_{1} and ϕ_{2}, which denoted by < ,

$$
\left\langle\phi_{1}, \phi_{2}\right\rangle=\frac{1}{|K|} \sum_{k \in K} \phi_{1}(k) \overline{\phi_{2}(k)}
$$

Proposition 2.19: Let K has precisely n conjugacy classes. If ϕ_{1}, ϕ_{2} and ϕ_{3} are three functions from $\mathrm{K} \quad$ into C , then $\left\langle\phi_{1} \oplus \phi_{2}, \phi_{3}\right\rangle=\left\langle\phi_{3}, \phi_{1} \oplus \phi_{2}\right\rangle$
Proof: By the property of inner product $\quad\left\langle\phi_{1} \oplus \phi_{2}, \phi_{3}\right\rangle=\left\langle\phi_{1}, \phi_{3}\right\rangle \oplus\left\langle\phi_{2}, \phi_{3}\right\rangle$

$$
\frac{1}{|K|} \sum_{k \in K} \phi_{1}(k) \overline{\phi_{3}(K)} \oplus \frac{1}{|K|} \sum_{k \in K} \phi_{2}(k) \overline{\phi_{3}(k)}
$$

since $\overline{\phi(k)}=\phi\left(k^{-1}\right), \forall k \in K$ then,

$$
\begin{aligned}
& \frac{1}{|K|} \sum_{k \in K} \phi_{1}(k) \phi_{3}\left(k^{-1}\right) \oplus \frac{1}{|K|} \sum_{k \in K} \phi_{2}(k) \phi_{3}\left(k^{-1}\right) \\
& =\frac{1}{|K|} \sum_{k \in K} \phi_{1}\left(k^{-1}\right) \phi_{3}(k) \oplus \frac{1}{|K|} \sum_{k \in K} \phi_{2}\left(k^{-1}\right) \phi_{3}(k) \\
& =\frac{1}{|K|} \sum_{k \in K} \phi_{3}(k) \phi_{1}\left(k^{-1}\right) \oplus \frac{1}{|K|} \sum_{k \in K} \phi_{3}(k) \phi_{2}\left(k^{-1}\right) \\
& =\frac{1}{|K|} \sum_{k \in K} \phi_{3}(k) \overline{\phi_{1}(K)} \oplus \frac{1}{|K|} \sum_{k \in K} \phi_{3}(k) \overline{\phi_{2}(k)} \\
& =\left\langle\phi_{3}, \phi_{1}\right\rangle \oplus\left\langle\phi_{3}, \phi_{2}\right\rangle \\
& =\left\langle\phi_{3}, \phi_{1} \oplus \phi_{2}\right\rangle
\end{aligned}
$$

Proposition 2.20: Let K has precisely n conjugacy classes. If $\chi_{\phi_{1}}, \chi_{\phi_{2}}$, and $\chi_{\phi_{3}}$ are characters of K, then $\left\langle\chi_{\phi_{1}}+\chi_{\phi_{2}}, \chi_{\phi_{3}}\right\rangle \quad\left\langle\chi_{\phi_{3}}, \chi_{\phi_{1}}+\chi_{\phi_{2}}\right\rangle$
Proof: By the properties of inner product $\quad\left\langle\chi_{\phi_{1}}+\chi_{\phi_{2}}, \chi_{\phi_{3}}\right\rangle=\left\langle\chi_{\phi_{1}}, \chi_{\phi_{3}}\right\rangle+\left\langle\chi_{\phi_{2}}, \chi_{\phi_{3}}\right\rangle$
and by the fact that character is class function, we get

$$
\frac{1}{|K|} \sum_{k \in K} \chi_{\phi_{1}}(k) \overline{\chi_{\phi_{3}}(k)}+\frac{1}{|K|} \sum_{k \in K} \chi_{\phi_{2}}(k) \overline{\chi_{\phi_{3}}(k)}
$$

since $\overline{\chi(k)}=\chi\left(k^{-1}\right), \forall k \in K$ then,

$$
\frac{1}{|K|} \sum_{k \in K} \chi_{\phi_{1}}(k) \chi_{\phi_{3}}\left(k^{-1}\right)+\frac{1}{|K|} \sum_{k \in K} \chi_{\phi_{2}}(k) \chi_{\phi_{3}}\left(k^{-1}\right)
$$

since this sum is unaltered, we replacing k instead of k^{-1}, so

$$
\begin{aligned}
& \frac{1}{|K|} \sum_{k \in K} \chi_{\phi_{1}}\left(k^{-1}\right) \chi_{\phi_{3}}(k)+\frac{1}{|K|} \sum_{k \in K} \chi_{\phi_{2}}\left(k^{-1}\right) \chi_{\phi_{3}}(k) \\
& =\frac{1}{|K|} \sum_{k \in K} \chi_{\phi_{3}}(k) \chi_{\phi_{1}}\left(k^{-1}\right)+\frac{1}{|K|} \sum_{k \in K} \chi_{\phi_{3}}(k) \chi_{\phi_{2}}\left(k^{-1}\right) \\
& =\left\langle\chi_{\phi_{3}}, \chi_{\phi_{1}}\right\rangle+\left\langle\chi_{\phi_{3}}, \chi_{\phi_{2}}\right\rangle \\
& =\left\langle\chi_{\phi_{3}}, \chi_{\phi_{1}}+\chi_{\phi_{2}}\right\rangle
\end{aligned}
$$

ACKNOWLEDGEMENTS

The authors (Salam A. Manthoor, Sinan O. AL-Salihi, Taghreed H. Majeed) should be grateful to thank Tikrit University (www.tu.edu.iq) in Tikrit, Iraq for its collaboration and support in the present work.

CONCLUSION

The character theories that we were examining and proving in this work will serve as excellent examples of something very significant. We've also seen that a group can be represented by a collection of n-by-n invertible matrices that exhibit the same relationships as the group as a whole. Additionally, it has been demonstrated that character and representation theories of finite groups are very helpful for understanding and demonstrating a number of group theory conclusions.

In general, it is challenging to obtain a finite group's character table.

This is especially true if the character only has one number in each matrix and there is a very high degree of representation or order for the finite group. Basic proof that linear representations of a finite group over complex numbers disintegrate into irreducible parts is provided by character theory. This is essential, for instance, to the use of character tables. The theorem, which is a piece of abstract algebra, describes the good cases those in which the requisite behaviour will hold in terms of the characteristics of the underlying field of scalars. The real number field, for instance, yields the same kind of conclusion; however the representations that are irreducible change.

FUTURE WORKS

- \quad Studying the representation theory of topological group.
- \quad Studying the representation theory of topological groupoid.
- \quad Studying the representation theory of Lie group.

REFERENCES

1. Alcock-Zeilinger, J. M. The Symmetric Group, its Representations, and Combinatorics. Lecture Notes, Tubingen, 2018
2. Basheer, A. M., Representation Theory of Finite Groups. AIMS, South Africa, 2006.
3. Cheng, C., A character theory for projective representations of finite groups. Linear Algebra and its applications, Volume 469, 2015, pp. 230-242,
4. Gallian, Joseph A. Contemporary abstract algebra. Chapman and Hall/CRC, 2021.
5. Majeed,Taghreed H., On The Tensor Product of Representations for The Symmetric Groups S_{n}, IOSR Journal of Mathematics (IOSR-JM) e-ISSN: 2278-5728, p-ISSN: 2319765X. Volume 12, Issue 2 Ver. II (Mar. - Apr. 2016), pp. 1-2.
6. Majeed, Taghreed H., On Some Results of Topological Groupoid, Journal of Physics: Conference Series. Vol. 1003. No.1. IOP Publishing, 2018, pp. 1-2.
7. Tiep, P. H., Representations of finite groups and applications. In Proceedings of the International Congress of Mathematicians: Rio de Janeiro, 2018, pp. 223-248.
