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Abstract 

Video captioning refers to the process of predicting a semantically consistent 

textual description from a given video clip. Even though a significant amount of 

research work is present for video captioning in English, for Bengali the field of 

video captioning is nearly unexplored. Therefore, this research aims at 

generating Bengali captions that plausibly describe the gist of a specific short 

video. To accomplish this, Long Short-Term Memory (LSTM) based a 

sequence-to-sequence model is used that takes the video frame features as input 

and generates an analogous textual description. In this study, Microsoft 

Research Video Description Corpus (MSVD) dataset is used which is an 

English dataset. Therefore, a deep learning-based translator and manual labor 

are used to convert English captions into appropriate Bengali ones. Finally, the 

model's performance is evaluated using popular evaluation metrics - BLEU and 

TER. The proposed approach achieves BLEU and TER scores of 0.38 and 0.76 

respectively, establishing a new benchmark for the Bengali video captioning 

tasks. 

 

Keywords: - Bengali Video Captioning, Convolutional Neural Network, 

Recurrent Neural Network, Long Short-Term Memory. 
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I. INTRODUCTION  

In Video captioning Computer Vision (CV) and Natural Language Processing (NLP) techniques 

are incorporated by extracting features from video frames concerning different modalities and then 

aggregating them spatially and temporally to produce a compact representation of what‟s happening 

over the video. With the rapid growth of video content making thanks to social platforms like 

YouTube and Facebook, thousands of hours of videos are uploaded to these social media every 

minute, which may need to be understood right away by local and global communities. The 

automatic generation of captions in order to describe scenes in images or videos can effectively 

confront this challenge. Video curation is another significant area where video captioning is much 

needed. Also, recent development around the accuracy improvement of video captioning and faster 

textual description generation has led to real-life applications like helping the deaf and hard of 

hearing people understand video content. 

Video captioning is one of the most challenging fields of NLP because of multiple temporal 

objects, scenes, actions detection, and identifying salient contents. Despite such challenges, a few 

endeavors have been taken [1, 2], mainly inspired by recent advancements with LSTM. LSTM is 

basically an artificial recurrent neural network (RNN) architecture. Whereas conventional RNNs 

struggle to preserve information over many time steps and suffer from vanishing gradient issues, 

LSTM addresses these concerns by handling long-term dependencies and updating hidden conditions 

by integrating memory units [3]. 

Above mentioned works and a vast amount of the other works in the video captioning field are 

focused on English. There have also been works over Chinese, Hindi, and other languages [4, 5]. 

Although Bengali is one of the most spoken languages with 268 million speakers [6], the number of 

works done for the Bengali language is very limited. Several related studies have pursued image 

captioning in Bengali to extract information from still images and present that in the textual form [7-

8]. To the best of our awareness, recently, only one work on generating video descriptions in the 

Bengali language has been done. The underlying reasons can be the lack of available Bengali 

datasets corresponding to the benchmark video captioning datasets for English or the complexity 

around video captioning in Bengali itself. However, video captioning in Bengali can be highly 

helpful in various application domains, particularly for the large Bengali-speaking community 

worldwide. 

II. RELATED WORK 

Video streams with high Spatio-temporal dependencies and complex video with multiple moving 

objects and actions make captioning very difficult. Despite this, various studies have proposed many 

methods that substantially encouraged research in video captioning and helped overcome these 

difficult situations. 

The early works in video captioning were rule-based, built using predefined frameworks. The 

basic idea was to identify and extract critical features from video frames and represent them using a 

predefined sequence of events. Then these sequences of events may be translated into text using 

templates [9-10]. Nevertheless, these early works only drew on a limited domain of images and later 

were replaced by the enhanced deep neural network and the sequence-to-sequence model [11]. 

These shortcomings led to using the RNN model that constructs an encoder-decoder framework 

with CNN-based architecture. Here, a sequence of video frames is fed into a Convolution Network 
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[12] to extract features that are passed into a deep recurrent network to translate the video into the 

textual form [13]. 

Recent advancements around Different 2D and 3D CNN models were introduced for feature 

extraction and have successfully improved state-of-the-art representation learning [14, 15].  

Nevertheless, feature aggregation for video captioning remains an open challenge. Several 

techniques from different perspectives have been studied for exploring feature aggregation in video 

captioning. To reduce exponential error accumulation for short-term memory issues, researchers 

proposed a video captioning approach which is based on adversarial learning along with LSTM. 

Also, an improvement of the same model, Bidirectional LSTM (Bi-LSTM) [16], was introduced, 

which profoundly captures the bidirectional global temporal structure of the video. For this purpose, 

an approach of joint visual modelling was devised which combines a forward LSTM pass and a 

backward LSTM pass with visual features from CNNs in order to encode video data. 

Also, the Transformer model [17] opened new areas to significantly enhance the performance of 

video captioning models. The transformer model is a simple network architecture based solely on the 

attention mechanism. It is an encoder-decoder-based neural network on which the encoder side 

implements self-attention while encoder-decoder attention in addition to the self-attention on the 

decoder side. Different hybrid models are introduced, recombined with the transformer model, 

showing sophisticated performance. A notable addition in the NLP field is the Bidirectional Encoder 

based Transformers (BERT) model [18], a machine learning technique for NLP pre-training using 

Semi-Supervised Learning which incorporates the transformer mechanism. BERT is essentially an 

Encoder stack of transformer architecture, meant to condition both left and correct context in all 

stack layers to pre-train deep bidirectional representations from the unlabeled text. 

Moreover, few recent studies have proposed different deep learning-based models concerning 

Bengali description generation. A study conducted by Khan et al. [8] has presented an end-to-end 

image captioning system using a multimodal architecture. A pre-trained ResNet-50 image encoder 

combined with a one-dimensional CNN is used to encode a sequence of information for extracting 

region-based visual features. This study was performed on the BanglaLekhaImageCaptions dataset 

consisting of 9,154  images. In another recent study [19], a Transformer based Encoder-Decoder 

Network combined with a pre-trained ResNet-101 CNN model or feature extraction was outlined for 

Bangla Image Caption Generation. It was done over the BanglaLekhaImageCaptions dataset. This 

approach outperformed all existing Bengali Image Captioning works and set a new benchmark over 

BLEU and METEOR. 
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Fig. 1.  Video Captioning using encoder-decoder LSTM 

 

In the video captioning field, the Bengali language has seen too little work. The only work 

regarding Bengali video captioning was done by Raj et al. [20]. Here the proposed architecture is 

based on the encoder-decoder mechanism that combines various 2D and 3D-CNN along with 

BiLSTM as the encoder while the decoder comprises of two-layer LSTM. This paper had introduced 

a new road towards the Bengali video captioning field. They had trained and performed evaluation of 

the model on the converted MSVD dataset with the help of google translator API. When compared 

to the closely relatable Bengali image captioning works, they successfully accomplished the existing 

state-of-the-art result with 32.6 percent on BLEU and 51.2 percent on CIDEr. 

 

III. PROPOSED METHODOLOGY 

This research aims to design a model that generates Bengali captions from videos of short length 

where the video will be taken as input, and textual description will be developed as output. In this 

scenario, both input and output are sequences, as the video contains a sequence of frames while the 

caption is sequence of words. For this purpose, LSTM, a many-to-many sequence model, is used. 

Unlike many RNN, to avoid vanishing gradient problems, this network provides internal gates 

allowing the model to implement backpropagation through time successfully. It comprises two 

portions, encoder LSTM, and decoder LSTM. The encoder portion takes video frame features as 

input, and based on the encoder‟s result; the decoder generates textual descriptions (see “Fig. 1”). 

A. Word Embedding 

It is done to represent a text in such a way so that the words that have the same meaning have an 

equal representation. This is required to bridge the human understanding of a text to a computer or 

machine. Therefore, each word is represented in a dictionary which is a vector collection of integers. 

We used the tokenizer class of Keras to create a vocabulary of 1500 in size. Individual words in this 

vocabulary are represented as real-valued vectors in this 1500-word-long vector space. 

B. Feature Extraction 

To extract features, each video is split into 80 frames irrespective of their length which are then 

passed to a pre-trained CNN model to extract the feature vector. VGG16, a deep convolutional 

network for large-scale image recognition, was adopted for this research. This model is quite 

advanced since it maintains 92.7 percent top-5 test accuracy in ImageNet which is a dataset 
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comprises of 14 million images. Before passing to the CNN model, frames are scaled to size 

224x224. Almost all the videos use RGB color. Therefore, a tensor of (224x224x3) is used as input 

for the CNN model. After processing each frame, the model provides an output vector of 4096 

values. As a result, a NumPy array of size 80x4096 is obtained for each video that contains the 

desired extracted features. 

C. Encoder 

The encoder LSTM is used to input the video frame features. Each frame is passed to one encoder 

cell which comprises an internal cell state „c‟ and provides a hidden output state „s.‟ As each video is 

divided into 80 frames, therefore, the encoder architecture has 80 cells (time steps of the encoder), 

each of which takes an input vector of size 4096. In this research, we used an encoder with 512 

hidden layers. As a result, each encoder cell maps these 4096 video frame features to a vector of size 

512 in a step. As LSTM is a many-to-many sequence model, we are only concerned with the last 

state of the encoder, discarding all other outputs. Finally, the previous states (state-c and state-h) are 

sent to the decoder as their initial state. 

D. Decoder 

The decoder LSTM is used to output the textual description of the video. Using the word 

embedding and the last states of the encoder, the decoder predicts the words. Each word embedding 

is passed to a decoder cell as input. This work uses ten words as the maximum length for a sentence. 

Thus a total of ten decoder cells are used, making the time step for the decoder to ten. The first cell 

of the decoder takes the <bos> (beginning of a sentence) token as input along with the last state of 

the encoder and predicts the first word. The second cell takes the first-word embedding from the 

input caption and predicts the second word, then the third cell takes the second-word embedding 

from the caption and predicts the third word, and so on. The cycle continues until the <eos> (end of a 

sentence) token is reached. 

E. Optimization 

Neural networks have weights and biases which determine the performance of the model. 

However, these weights and biases cannot be calculated using an analytical method. Instead, they are 

calculated using an iterative optimization procedure. Adam optimization is used for this research, a 

different class to stochastic gradient descent. Unlike stochastic gradient descent, it uses an adaptive 

estimation of first-order and second-order moments. 

 

IV. EXPERIMENTAL SETUP 

The experiment for this research is conducted in Google Colaboratory, a python development 

environment. Colab provides various pre-installed python and deep learning libraries. Some of the 

notable libraries used in this research are NumPy, TensorFlow, and Keras. Numpy is a python library 

that supports large multidimensional arrays and matrices. TensorFlow is an open-source library for 

various machine learning-related applications whereas Keras provides an interface for artificial 

neural networks accessible using python. 

A. Training 

The purpose of training is to make a model learn a mapping function. In our case, the mapping is 

between a video and a corresponding textual description. . To establish that, we used encoder-

decoder LSTM. Both encoder and decoder have total hidden features of 512. The batch size is set to 

320, i.e., 320 videos from the dataset will be trained at each batch. For training, another critical 
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hyperparameter is the epoch. A large number of epochs can cause overfitting of the model, while too 

few can lead to underfitting. 

To avoid this problem, we used a callback approach known as early stopping. This enables 

defining an arbitrarily large number of epochs (100) and automatically stops the training when the 

performance stops improving. In this research, early stopping is implemented for five epochs, which 

will check five epochs before triggering early stopping. In addition, another callback is used when 

there is no change for a given number of training epochs, known as a plateau. In this situation, 

ReduceLROnPlateau is used, which adjusts the learning rate whenever a plateau is detected among 2 

epochs. Finally, training with all these configurations, we got an accuracy of 0.7842 (see “Fig. 2”). 

 
Fig. 2. Training and validation accuracy and loss 

 

B. Hyperparameter Selection 

Hyperparameters are configurations of the model that are assigned externally. Some significant 

hyperparameters are epoch, learning rate, batch size, etc. These parameters are crucial to the model's 

success. Firstly, to avoid the issue of overfitting and underfitting, we used early stopping on an 

arbitrarily large epoch. The model in this research was trained with various patience (5, 10, and 15) 

for two epoch sizes of 50 and 100. Patience determines the number of epochs it will check for early 

stopping. Another important hyperparameter is the learning rate as a large learning rate drives the 

model towards a suboptimal solution by quick convergence towards it, where a small one would 

bring the process to a standstill. We introduced our model on two different learning rates, .0003 and 

.00003, to find the optimal one. Furthermore, we trained with both a factor of 0.1 and 0.01 for 

ReduceLROnPlateau. ReduceLROnPlateau is a call-back used to reduce the learning rate by the 

specified factor value if the model stops improving. A summary of the combination of the 

hyperparameters and their respective training accuracy is presented in Table 1. 

Figure 3 is the graphical representation of Table1. The figure provides a clear picture of the 

difference in accuracy based on mentioned hyperparameters where the best accuracy of 0.7842 is 

obtained for 100 Epochs, 0.0003 Learning Rate, and 0.1 ReduceLROnPleatue. 

C. Dataset 

To train the proposed video captioning model and evaluate it accordingly, a widely used dataset 

named MSVD is used. Video snippets from this dataset are divided into training categories and 

testing categories consisting of 1450 and 100 videos, respectively, with an 85% split ratio for 

training and validation purposes. The first outcome of our research is a semantically consistent 

Bengali video captioning dataset consisting of more than 32 thousand captions for 1450 video 

snippets altered from the original MSVD dataset. We converted the dataset into Bengali using a deep 

learning-based translator [21] and manual labor to achieve this goal. Some participants evaluated the 
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machine-translated captions to compare the consistency depending on human perception, ensuring 

the dataset‟s relevance with the Bengali language culture as closely as possible. 
 

TABLE I. EFFECTIVENESS OF HYPERPARAMETERS ON TRAINING ACCURACY 

Epochs Learning Rate Early Stopping 
Reduce-LROn-

Pleatue 
Accuracy Val-Accuracy 

100 0.0003 5 0.1 0.7842 0.6912 

100 0.00003 15 0.1 0.6327 0.6149 

50 0.0003 5 0.1 0.7527 0.6990 

50 0.00003 15 0.1 0.6582 0.6279 

100 0.0003 10 0.01 0.7701 0.7086 

50 0.0003 10 0.01 0.7517 0.6988 

 

 
Fig. 3. Comparison of accuracy between various combinations of significant hyper parameters 

 

V. RESULT AND EVALUATION 

This section summarizes our results over testing and evaluating our proposed video captioning 

model. 

A. Quantitative Analysis 

When evaluating video captioning models, some consistent evaluation protocols are used. 

Comparing results from different approaches can be very enlightening for assessing the performance 

of the proposed model; Since numerous evaluation metrics exist around that have distinct methods to 

evaluate: BLEU, TER. 

We evaluated the candidate captions generated from our model with the given set of reference 

captions for video clips to check the quality against some fixed standards. In this research, BLEU is 

used as one of the evaluating metrics. The study [22] found that BLEU performs well for corpus-

level comparisons over which many n-gram matches exist. However, the n-gram match rarely occurs 

at the sentence level, specifically when the value of n is higher (e.g., n=4). We used BLEU-1 (uni-

gram), BLEU-2 (bi-gram), BLEU-3 (tri-gram), and BLEU-4 (four-gram) to evaluate the proposed 

model and compare the performance over the sentence length. Among all these, BLEU-4 is 

considered the most appreciable BLEU metric for the qualitative analysis part of this study. 

In order to assess the proposed model from a different outlook Translation Error Rate (TER) [23] 

is used, which evaluates the performance by giving the amount of work that a human needs to cover 

for matching the system output precisely to the reference translation. In terms of human perceptions 

of MT quality, the single-reference variant of TER coincides with the four-reference variant of 
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BLEU. Compared to BLEU, TER focuses on achieving higher correlations with human assessments 

than n-gram-based methods by assigning lower costs to phrasal shifts. In Table 2 the results of this 

study are presented, based on the altered MSVD dataset, using the evaluation metrics mentioned 

earlier. 

 

TABLE II.  PERFORMANCE SCORES OF PROPOSED MODEL USING DIFFERENT SEARCH TECHNIQUES 

Evaluation Metrics Beam Search Greedy Search 

BLEU-1 0.635 0.650 

BLEU-2 0.632 0.568 

BLEU-3 0.479 0.426 

BLEU-4 0.382 0.3486 

TER 0.76 0.84 

 

 
Fig. 4-1. 

 
Fig. 4-2. 

 

 
Fig. 4-3. 

 

 
Fig. 4-4. 
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Fig. 4-5. 

Fig. 4. Sample captions generated by our approach along with corresponding reference captions 

 

B. Qualitative Analysis 

The sample outputs of our model in terms of the generated caption‟s quality can be visualized for 

five videos tested in real-time. 

This evaluation process is pursued with 30 participants, providing a single reference caption for 

each video. A subset (i.e., most appropriate) of those reference captions is selected for evaluation 

purposes. Example reference captions for each video are shown in Figure 4. A comprehensive 

qualitative analysis of the predicted captions against reference captions in terms of evaluation 

metrics for the tested videos is represented in “Fig. 5”. 

 

 
Fig. 5-1.    Using Greedy Search 

 

 
 

Fig. 5-2. Using Beam search 

Fig. 5.  Qualitative analysis of the performance Achieved by the proposed approach in terms of 

BLEU and TER 
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In “Fig. 5-1”, using greedy search, the BLEU-4 gram has a lower score while TER has higher 

scores representing the poor performance of the greedy search. “Fig. 5-2” illustrates the evaluation of 

the beam search approach using BLEU 4-gram and TER, where it is seen that the BLEU score is 

higher than TER, which indicates the effectiveness of beam search. 

For generating the caption in Bengali, the most likely output sequences have to be decoded by 

searching all possible output sequences. Two different searching algorithms were used for this 

purpose, beam search and greedy search. The greedy search uses the local optimality to select a word 

for each stage to generate the caption. In contrast, the beam search algorithm, a heuristic search 

method, selects k possible alternatives at each location for decoding an input sequence. “Fig. 6” 

presents a comparative analysis of the above-mentioned tested videos using these searching methods. 

 
Fig. 6-1 

 

 
Fig. 6-2 

 

 
Fig. 6-3 

 



Mathematical Statistician and Engineering Applications 

ISSN: 2094-0343 

2326-9865 

 

 

11 

 
Vol. 71 No. 3s2 (2022) 

http://philstat.org.ph 

 

 

 

 
Fig. 6-4 

 

 
Fig. 6-5 

 

Fig. 6. Comparative analysis between greedy and beam search techniques for captioning the five 

test videos in terms of different evaluation metrics - (1) BLEU-1, (2) BLEU-2, (3) BLEU-3, (4) 

BLEU-4, and (5) TER. 

 

The figure reflects that the beam search (Blue Curve) performs better than the greedy search 

(Orange Curve) as the bleu curve overtakes the orange curve for BLEU scores (n=1 to 4), and the 

reverse happens for TER score. We find that the error rate in TER for our model is slightly higher 

than expected. This may be attributed to the fact that we have used several reference captions in 

BLEU measures while TER is evaluated using only one reference caption. 

Finally, Table 3 presents a comparison between our proposed approach with the only other 

existing model [20] for video captioning in Bengali. This illustrates the proposed model's higher 

performance for both BLEU-3 and BLEU-4 scores. In our research along with a deep-learning-based 

translator, manual labor was incorporated in order to translate the English captions from the MSVD 

dataset into Bengali. This led to the better performance of the proposed model. 

 

TABLE III. PERFORMANCE COMPARISON WITH EXISTING VIDEO CAPTIONING MODEL WITH PROPOSED 

MODEL 

Model BLEU-3 BLEU-4 

Raj et al. [20] 0.432 0.326 

Proposed Model 0.479 (11% ↑) 0.382 (17% ↑) 

 

VI. CONCLUSION AND FUTURE WORK 

This paper has developed a dataset for Bengali video captioning from the MSVD dataset. We 

employed a pre-trained CNN model, specifically VGG16, for feature extraction and then used our 

prepared dataset to train the LSTM model. The soundness of LSTM layers in the case of sequential 
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data made it possible for the generated captions to be more natural. Finally, a comparative analysis is 

performed on the model‟s performance for two different search techniques in terms of two popular 

evaluation metrics - BLEU and TER with a score of 0.38 and 0.76 respectively.  

The proposed system is basically developed using CNN and LSTM architecture. In the future, the 

system‟s performance can be further improved by exploring other RNN-based architectures or the 

BERT model [24-26]. A comprehensive comparative analysis is yet to be performed among different 

machine learning models for video captioning in Bengali [26]. Moreover, to enhance the use of 

automatic video captioning in real life, we plan to convert the generated captions to audio format 

using NLP techniques so that it can serve blind people in various purposes (e.g., education, 

navigation guidance, etc.), which we leave as a potential future work. 
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