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Abstract 

The region-based descriptors face difficulties representing the complex thematic 

classification of remote sensing images (RSI) with heterogeneous objects and 

backgrounds.  The retrieval task using large archives thus becomes cumbersome 

on these images.  Also, the region-based classification methods cannot 

consistently identify interest points on their boundaries.  This work recommends 

a new object-based image retrieval framework incorporating a region and patch 

feature descriptor (RPFD) for high-resolution remote sensing image retrieval 

(HR-RSIR) tasks.  The method effectively combines local patch and region-based 

features into a region-based framework.  The regional context features (RCF) are 

captured through an efficient seeded region growing segmentation (SRGSeg).  

The RCF integrates the augmented features from patches near the regions for 

better classification.  The proposed integrated region and patch feature descriptor 

framework for RSIR (IRPFD-RSIR) focuses on reliable texture modeling at the 

region level, with an augmented patch-based feature descriptor to get more 

understanding of complex RSI.  A weighted k-nearest neighbor (Wk-NN) 

classifier is incorporated for searching similar classes, utilizing an effective 

feature selection method.  Three benchmark RSI datasets are used for evaluating 

the framework.  The results compared with various feature descriptors and 

frameworks substantiate the overall efficiency of our retrieval model in terms of 

precision, recall, and F1-score. 

Keywords: - Regional Context Feature, Remote Sensing Image Retrieval, Seeded 

Region Growing Segmentation, Patch-based Feature, Weighted k-Nearest 

Neighbor. 

 

I. INTRODUCTION 

With the advancements in high-resolution satellite sensor technology, a significant volume of 

research has been recently devoted to content-based remote sensing image retrieval (CB-RSIR) 

techniques.  The volume of RSI archives is growing dramatically with advanced imaging sensors that 

can generate images with multiple resolutions and scales.  Any successful RSIR model requires an 

automated, efficient data extraction and classification model to learn and retrieve the unstructured, 

complex RSI data.  The large-scale RSI database requires reliable data infrastructure, efficient 

classification frameworks, and retrieval strategies.  The complexity of massive RS data stems from 

the variety of different resolutions like spatial, spectral, and even temporal, which cause significant 

challenges to retrieval tasks.  Hence, techniques that facilitate efficient search and retrieval 
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incorporating the image contents are to be formulated, which provides fast searching in very large 

RSI databases with minimal query specification. 

The CB-RSIR systems follow a paradigm of representing the RSI with collected attributes, like color 

[1,2,3], texture [1,2,3,4], and shape [1,3,5,6].  Here, the retrieval is acquired by matching the feature 

set of the image query with those in the database.  But, recent research in human perception of RSI 

content recommends the importance of semantic cues for efficient retrieval.  The semantic gap 

between high-level perceptions and low-level features is overcome through incorporating relevance 

feedback mechanisms [1,7].  Also, the re-ranking and indexing techniques greatly intensify the 

retrieval performance by filtering out irrelevant classes [8,9,10,11]. 

Segmentation-based feature extraction has been popular in the RS domain [6], which generates a fine-

grained representation of objects that embeds their spatial information.  The segmentation procedure 

pulls out the significant objects-of-interest (OI) from the complex background of RSI.  Several 

segmentation methods like region-based [12], watershed algorithms [13], threshold [14], and cluster-

based [15] have been developed over the last decades.  In practical applications, high-resolution RSI 

is challenging to automate for two reasons: i) their spatial resolution is higher, but their spectral 

resolution is lower, and ii) the surface texture features of small objects are not differentiable.  These 

properties lead to maximized intra-class variability and minimized inter-class separability.  Recent 

studies have proved that deeper networks could provide better solutions for object detection, visual 

recognition, and semantic segmentation tasks [16,17]. 

Object-based or region-based classification is popularizing in the RS domain [18, 19].  These methods 

intend to avoid the global description by representing images at the object level so that they can be 

close to the user's visual perception. The object-based framework offers the possibility of efficient 

computing of the textural features that characterize each class.  The texture object provides added 

knowledge together with spectral data, which enhances the power to discriminate heterogeneous 

classes.  However, the object/region-based methods cannot capture the features residing at the edges.  

Another popular approach for extracting the image content is by using patches.  Patches are pre-

determined shapes, like rectangles that are overlaid as a grid of specific size onto the irregular regions 

identified in the image.  Recently, various patch-based techniques for high and very high resolution 

(VHR) multispectral image classification and indexing have been designed [20].  A patch-based 

approach is considered to combine deep features with the GEOBIA paradigm [21].  A combined 

patch-wise classification and hierarchical segmentation for multi-source RSI is proposed [22]. 

Motivated by this fact, in this proposed work, a new strategy for RSIR is recommended to retrieve 

similar images from large RSI repositories utilizing an integrated region and patch feature descriptor 

(IRPFD) framework.  A seeded region growing (SRGSeg) segmentation technique is incorporated 

for generating homogeneous texture regions of the RSI.  But no regular textures exist in many 

complex RSIs that discriminate between the object class and the background.  In this view, the 

descriptors defined on pre-determined pixel supports or patches can provide additional internal 

details, which will enhance reliable classification.  It is known that the patch-based descriptors can 

detect and encode the non-repetitive features and their spatial extension in a reliable manner [23].  

The significant contribution of the recommended work is the infusion of local-patch-based features 

augmented into a region-based framework utilizing the regional context features (RCF).  An efficient 

weighted k-nearest neighbor (Wk-NN) classifier performs a nearest neighbor retrieval.  The 

contributions of the proposed IRPFD-RSIR method are outlined as follows. 
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i)A novel integrated region-patch feature descriptor (IRCFD) is derived for object localization-based 

efficient RSIR framework. 

ii)The IRCFD efficiently captures the feature patterns from the complex RSI from the regions 

segmented through a seeded region growing segmentation technique for classification. 

iii)The retrieval incorporates a likelihood-based feature selection, making the classifier efficient in 

learning from large RSI archives.  

iv)The IRPFD-RSIR method remains bounded by the region-based framework with the leverage of 

additional features detected through patches, incorporating location and scale information, and 

achieved better performance using Wk-NN. 

Many reviews are presented in literature by many researchers with respect to ML and IoT in different 

domain.[31][32][33][34]. This analysis will surely enable the researchers with the idea of ML 

technique in different applications. [35-39].The remaining part of the work is structured as follows.  

In Section 2, we detail the proposed IRPFD-RSIR approach for high-resolution RSI. Section 3 

describes the experiments and results, and Section 4 concludes the work. 

II. PROPOSED METHODOLOGY 

The RSI has complex and diverse backgrounds that are not essential in identifying them for a 

respective class.  Hence the IRPFD-RSIR method begins with a seeded region growing segmentation 

phase, which divides the input RSI into semantically meaningful homogeneous texture regions.  The 

second phase is the extraction of the RCF from the segmented regions.  The texture feature descriptors 

(TFD) and RCF vocabularies facilitate discrimination among different object classes from its 

background.  Wk-NN evaluates each feature's discriminative score.  The IRPFD-RSIR finds similar 

images and local regions for matching a query, irrespective of complex background.  The overall 

representation of the IRPFD-RSIR method is shown in Figure 1. 

 

Fig. 1.  Overall Representation of IRPFD-RSIR Framework 

A. Seeded Region Growing Segmentation (SRGSeg) 

Intra-class variation in RSI is often inhomogeneous due to scene characteristics, imaging 

environment, and image noise.  Seeded region growing (SRGSeg) is a hybrid method that starts with 

assigned seeds and grows regions by merging a pixel to its nearest neighboring seeded region.  

SRGSeg is robust because of the characteristics of rapid and free-to-tune parameters.  By performing 
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the seeded region growing algorithm, we intend to have spatially contiguous and homogenous pixels 

and different regions are with a high degree of heterogeneity.  The SRGSeg consists of three major 

steps: seed selection, region growing, and region merging.  The high-level knowledge of semantic 

image components can be leveraged by picking the appropriate seeds for growing more meaningful 

regions, which is an advantage of SRGSeg. 

In the SRGSeg method, the initial seed selection is crucial because it decides the overall segmentation 

performance.  An automatic seed selection criterion is chosen with some pre-defined conditions. 

i)The seed point candidate is ensured not to be residing on the boundary of two regions.   

ii)The candidate seed point should be inside the selected ROI with the highest similarity between its 

neighbors to represent the region accurately. 

iii)The distance from the seed pixel to its neighbors should be inside the extracted region to allow 

continuous growth. 

For a given set of seeds, S1, S2, … . , Sn each iteration of SRGSeg involves one additional pixel to one 

of the seed sets and is then replaced by the centroids of generated homogeneous regions, 

R1, R2, … . , Rn by incorporating the added pixels step by step.  The pixels from the same region are 

labeled, and the others are unlabeled pixels.  Let H be the set of unlabeled pixels adjacent to at least 

one of the labeled regions. 

H = {(x, y) ∉ ⋃ Ri|N(x, y) ∩ ⋃ Ri ≠ ∅n
i=1

n
i=1 } (1) 

where N(x, y) is the second order neighborhood of the pixel (x, y).  For the unlabeled pixel (x, y) ∈

H, N(x, y) meets one of the labeled image regions Ri and define φ(x, y) ∈ {1,2, … . , n} to be that index 

such that N(x, y) ∩ Rφ(x,y) ≠ ∅.  The difference between the testing pixel at (x, y) and its adjacent 

labeled region Ri is defined as δ(x, y, Ri) and calculated as: 

δ(x, y, Ri) = |g(x, y) − g(Xi
c, Yi

c)|  (2) 

where g(x, y) represents the values of the color components of the testing pixel (x, y).   g(Xi
c, Yi

c) 

represents the average values of three color components of the homogeneous region Ri, with the 

centroid (Xi
c, Yi

c).  If N(x, y) meets two or more labeled regions, φ(x, y) takes a value of i such that 

N(x, y)meets Ri and δ(x, y, Ri) is minimized as: 

φ(x, y) = min
(x,y)∈H

{δ(x, y, Rj)|j ∈ {1,2, … , n}} (3) 

SRGSeg procedure for each boundary pixel will stop if the boundary pixels for the neighboring 

regions are connected or the color similarity distance is above an optimal threshold value.  The 

stopping criterion of region growing is the choice of an optimal threshold value, which maintains the 

contour of the identified object regions.  The threshold value kept being higher enough to extract the 

whole region from the entire scene image.  The SRGSeg grows regions by recursively including 

similar neighboring and connected pixels to the seed pixel.  The objective function aims to measure 

the quality of the resulting segmentation concerning maximized intra-segment homogeneity and 

inter-segment heterogeneity.  The intersegment heterogeneity is measured using the Moran's I 
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autocorrelation index (MAI) [24].  It measures the degree of spatial correlation as reflected in the 

dataset altogether. 

 MAI =
n ∑ ∑ wij(yi−y̅)n

j=1
n
i=1 (yj−y̅)

(∑ (yi−y̅)2n
i=1 )(∑ ∑ wiji≠j )

  (4) 

MAI is measured for the total number of regions, with spatial proximity wij for the mean color value 

of the region and the image.  If regions Ri and Rj are adjacent, the value of wij is equal to one, 

otherwise zero.  Two criteria are considered: the color similarity and the region size.  The color 

features are determined using the L*u*v* color space for the texture feature extraction.  The SRGSeg 

extracts the regions irrespective of their rotation, scale, or spatial relations to bring about a possible 

object region without low-level spatial information.  Each region generated is expressed as a texture 

portion once it has been segmented concerning a particular scale.  Then, K-means clustering is applied 

on the TFD for all the input images at all three scales to derive a vocabulary of texture words T =

 {Ti}i=1
NT  and assign the respective regions to their nearest texture word. 

B. Regional Context Features (RCF) Generation 

A model that represents the relationships among each region and its neighborhood is to be established 

from the segmented regions.  Even though the regions are comprised of a homogeneous group of 

pixels in color-texture space, their size and shape are not repeated across the instances of similar 

classes.  Two regions are optimally separated using patches as local descriptors to generate a potential 

discriminative score.  Patches are created by partitioning the object region into N𝗑N grids.  The grid 

size is adaptively defined based on the boundary area of the regions.  Only those patches covering the 

region boundary are used for the feature extraction.  Each patch covers an internal and external region, 

and the patches in which any of these regions have an area more than 15% of the patch area are 

considered. 

The 128-D SIFT extraction [25] is incorporated for the local-descriptors {di}, for points, P =  {Pi}i=1
NP , 

with scale values, {σi} to define proximity to regions.  By clustering the descriptors from the training 

samples, a vocabulary of local-descriptor words of size 𝑁𝑊 is formed.  Let 𝑤𝑖 be the nearest word to 

the descriptor 𝑑𝑖; for each region of the local words that is at most 𝑘𝜎𝑖 pixels away, a histogram is 

constructed.  The histograms are then appended and weighted inversely proportional to their 𝑘 values 

to generate regional context Histograms (RCH). 

Histograms are constructed for a generated region 𝑅 with its member pixels, {𝑟𝑗}𝑗=1
𝑁𝑅 , with ℎ𝑘 be the 

𝑘th histogram for that region with 𝑁𝑊 bins.  K-means clustering is applied on the RCH for all training 

samples for all the image scales for constructing the vocabularies.  The RCF is the cluster center, with 

regions assigned to the RCF nearest to their RCH.  The TFD and RCF vocabularies discriminate 

between the object class and the RSI background.  The TFDs and RCFs are combined into an 

integrated feature vector and used for learning with positive and negative regions.  Here, any relevant 

feature, possibly lost or diminished in the region-based representation, will be reinforced by 

introducing the local patch-based descriptors. 

C. Feature Selection 
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In order to effectively reduce the complexity of performing the nearest neighbor search on the IRPFD, 

the discriminative feature score (DFS) for each feature has been evaluated using a feature selection 

technique based on the likelihood ratio where the images are labeled as positive object class or 

negative.  The discriminative score of the feature 𝐹𝑖 is given as: 

�̃�(𝐹𝑖) =  
𝑃(𝐹𝑖|𝑂)

𝑃(𝐹𝑖|𝑂)+𝑃(𝐹𝑖|�̅�)
   (5) 

Where 𝑃(𝐹𝑖|𝑂), is the conditional probability of a descriptor from an object image to be assigned to 

a specific feature cluster 𝑖 and 𝑃(𝐹𝑖|�̅�) is the non-object images.  The features are ranked similarly 

to the likelihood ratio by the score. 

𝑅(𝐹𝑖) =
𝑃(𝐹𝑖|𝑂)

𝑃(𝐹𝑖|�̅�)
   (6) 

The descriptors of the image with a high probability give a strong indication of the presence of an 

object, which enhances the performance of the classifier framework used. 

D. Weighted k-Nearest Neighbor Classification 

The conventional KNN is computationally expensive as it searches the nearest neighbors for the new 

point at the prediction stage.  When the 𝐾 value is high, it is sensitive to outliers.  The KNN method 

can be adapted in high-dimensional RSI classification for fast-finding the nearest samples with 

reduced complexity by using the higly discriminative feature samples selected based on the 

likelihood.  Hence, the overall performance of the weighted k-nearest neighbor (Wk-NN) classifier 

is improved with less complexity. 

The Wk-NN classification algorithm has received increased attention recently.  The insight behind 

Wk-NN is to give more weight to the nearby points and less weight to the farther away points.  Let 

𝐿 = {(𝑥𝑖, 𝑦𝑖)}𝑖=1
𝑁 , be the training set of observations 𝑥𝑖 with a given class label 𝑦𝑖 and let 𝑥′  be a 

new query point whose class label 𝑦′ has to be predicted.  The Wk-NN measures the distance 

between the query point and every other point in the training set.  Then a set 𝐿′ of 𝑘-nearest training 

data points to the query points are selected. The set 𝐿′ = {(𝑥𝑖
𝑁𝑁 , 𝑦𝑖

𝑁𝑁)}𝑖=1
𝑘  is arranged in increasing 

order in terms of Euclidean distance.  The closest neighbors are weighted more than the farther ones, 

using the distance-weighted function. The classification prediction of the query point is made by the 

majority weighted voting as in (7). 

𝑦′ = 𝑎𝑟𝑔𝑚𝑎𝑥
𝑦

∑ wi × δ(y = yi
NN)=(xi

NN,yi
NN)∈L′  (7) 

where,  

wi = {

d(x′, xk
NN) − d(x′, xi

NN)

d(x′, xk
NN) − d(x′, x1

NN)
, if d(x′, xk

NN) ≠ d(x′, x1
NN)

1                      , if d(x′, xk
NN) = d(x′, x1

NN)

 

(8) 

The Dirac delta function δ(y = yi
NN) takes a value of one if (y = yi

NN) and zero otherwise.  The 

overall classification performance is considering the k-nearest neighbors; hence an optimum value of 
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K or the number of nearest neighbors is to be determined.  The optimal K value and the ranking of 

discriminative feature scores improve the voting by reducing the impact of irrelevant features. 

III. EXPERIMENTAL RESULTS 

This section reports the results obtained for the proposed IRPFD-RSIR framework on three 

benchmark RSI datasets with a comparative analysis with few other available methods.  The total 

performance of the model has been validated using different metrics. 

A. RSI Datasets and Validation Protocols 

Three benchmark RSI datasets, the UCMD [26], RS-19 [27], and SIRI-WHU [28], are utilized for 

evaluating the overall efficiency of the IRPFD-RSIR framework.  The UCMD contains 21 Land-

Use/Land-Cover (LULC) categories of HR Aerial images.  Each class contains 100 image samples 

with a pixel resolution of 0.3 m. and size 256 × 256.  The RS-19 dataset contains 19 classes of satellite 

scenes with 50 RGB images having size 600 × 600.  The SIRI-WHU contains 12 classes of HR satellite 

images gathered from the Google Earth imagery.  Each class has about 200 RGB images of size 200 

x 200 with a spatial resolution of 2 m.  All the datasets are challenging with overlapping classes and 

complex backgrounds.  The test-train split selected are i) UCMD – 80/20; ii) RS-19 – 60/40 and iii) 

SIRI-WHU – 50/50, respectively.  The proposed model's retrieval performance is evaluated using the 

precision (P), recall (R), and F1-Score. 

Precision =
TP

TP+FP
    (9) 

Recall =
TP

TP+FN
    (10) 

where TP is the number of true positive values, FP is the number of false-positive values, and FN is 

the number of false negatives.  F1-Score is the weighted average of P and R and takes both false 

positives and false negatives into account. 

F1 =
2×Precision×Recall

Precision+Recall
    (11) 

The performance evaluations conducted for the proposed retrieval method are detailed in the 

following sections. 

B. Impact of K value on Wk-NN 

The selection of the neighborhood size K has a consequential impact on the overall performance of 

the Wk-NN.  Results considering different values for K are performed in all three datasets, and the 

respective accuracy values obtained for the values from 5 to 14 are plotted in Figure 2. 
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Fig. 2. Precision values obtained for different values for K 

We got a reasonable precision value from 94% to 90% for the K values 5 to 10 with minimum 

validation errors.  While choosing K values 11 to 14, the UCMD and SIRI-WHU datasets show 

significantly less accuracy.  The RS-19 shows better accuracy than the other two datasets for all the 

K values.  A degradation of precision for some classes in SIRI-WHU is noted due to the high 

overlapping nature, which is reflected in the total performance of the model.  Also, some classes are 

influenced by the size and number of patches utilized to extract the local descriptors.  

C. Evaluating Retrieval Performance 

The overall performance of the IRPFD-RSIR framework achieved a better response in P, R, and F1 

for all three datasets.  Better precision values for the combined region-patch feature descriptor for 

all RSI datasets are observed than using the single feature descriptors.  We compared the proposed 

IRPF descriptors for RSIR with other descriptors extracted for evaluation—the comparative measures 

given in Table 1 are for the precision for P@K=5. 

TABLE I. COMPARATIVE ANALYSIS OF VARIOUS FEATURE     DESCRIPTORS USED 

Method UCMD RS-19 
SIRI-

WHU 

Texture (Alone) 
81.02 

% 
87.3 % 76.49 % 

RCF (Alone) 
74.29 

% 
80.16 % 73.88 % 

Texture + RCF 

(IRPFD) 

95.23 

% 
94.11 % 90.31 % 

Most of the classes from the three datasets achieved better retrieval accuracies.  The average 

precision, recall, and F1 scores obtained for the three RSI datasets are plotted in Table 2. 

TABLE II. PRECISION, RECALL & F1-SCORE OBTAINED FOR ALL DATASETS 

Dataset Precision  Recall  F1-Score 

UCMD 0.95 0.91 0.93 

RS-19 0.94 0.93 0.93 



Mathematical Statistician and Engineering Applications 
ISSN: 2094-0343 

2326-9865 

 
119 

Vol. 71 No. 3s2 (2022) 

http://philstat.org.ph 

 

SIRI-

WHU 
0.90 0.86 0.88 

Figures 3 (a) and 3 (b) represent the average precision of each retrieval after each iteration with K =

5 and K = 10, respectively.  The proposed IRPFD-RSIR framework achieved the highest accuracy 

using the UCMD, RS-19, and SIRI-WHU datasets for the K =  5 compared to K =  10. 

 

Fig. 3 (a). Precision for K=5 & 3 (b). Precision for K=10 

The Wk-NN is highly responsive to the selection of K value, and it generates different accuracy 

measures with the respective choice of K.  For a too small K value, the model becomes sensitive to 

outliers, and for a large K value, the neighborhood includes too many points from other classes.  

Hence a reasonable value has been chosen from K =  5 to K =  14, for which the model achieved 

a good precision metric for K = 5.  The clustered DFS reduced the influence of the sensitivity of the 

selection of K to some degree and achieved better performance. 

D. Comparison with other Methods 

We compared the IRPFD-RSIR framework with a few methods, those incorporating classical 

methods for evaluation.  We did not consider the methods implemented using deep learning 

architectures, which are computationally complex and expensive, with higher precision rates when 

compared to the conventional methods.  Table 3 shows the comparative measures for the average 

precision obtained using the UCMD dataset. 

TABLE III. COMPARATIVE ANALYSIS WITH OTHER METHODS 

Method 
Average 

Precision 

Ensemble-Color [29] 0.65 

Ensemble-Texture [29] 0.83 

Ensemble All [29] 0.86 

Multi-Color [29] 0.57 

Multi-Texture [29] 0.74 

Multi All [29] 0.75 

Circular Relevance 

Feedback-BoW [30] 
0.83 

Wk-NN-TFD (Ours) 0.81 

Wk-NN-RCF (Ours) 0.74 

Wk-NN-IRPFD 

(Proposed) 
0.95 
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The proposed IRPFD-RSIR model showed statistically significant performance over the frameworks 

compared.  The combined efficiencies of both the regional as well as patch-based feature descriptors 

are successful in providing better performance.  The Wk-NN classifier efficiently searches for the 

nearest neighbors using the clustered discriminative features scores of the IRPFD.  Also, the weight 

computing decision rule overcomes the influence of the sensitivity and enhances the classification 

performance of Wk-NN. 

IV. CONCLUSION 

We proposed an efficient RSIR framework using a combined region-patch feature descriptor.  Using 

a patch-based approach bounded by a region-based framework, we aim to extract descriptors that 

capture both spectral and structural information for better retrieval results.  The proposed IRPFD-

RSIR performs object-based classification and localization within a region-based framework 

incorporating both texture feature descriptors and regional context features.  The highly complex 

objects with repetitive patterns can be modeled using the texture and spatial information into an 

encapsulated regional context feature.  The Wk-NN classifier for the proposed IRPFD-RSIR 

framework achieves better precision, recall, and F1-Score for the three RSI datasets.  Different K 

values are validated for all datasets, and it is evident that the K value 5 obtained the highest precision.  

The average precision values obtained for the UCMD, RS-19, and SIRI-WHU datasets are; 95.23 %, 

94.11 %, and 90.31 %, respectively.  The results proved that: 

• The integrated region-patch feature descriptor efficiently captures the essential feature 

representations from the complex RSI datasets. 

• The IRPFD-RSIR method is bounded by a region-based framework taking favor of the supportive 

features generated through the patches, along with location and scale information. 

• The high DFS likelihood improved the performance of the Wk-NN retrieval model. 
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