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Abstract 

The ridge estimator has been shown to be an effective shrinkage method for 

reducing the impacts of multicollinearity on a number of occasions. When there 

is just little information about the dependent variable for some observations, the 

Tobit regression model is a well-known model. However, it is well known that 

in the presence of multicollinearity, the variance of the maximum likelihood 

estimator (MLE) of the Tobit regression model coefficients can be negatively 

affected. In this research, a new two-parameter estimator is proposed to solve 

the Tobit regression model's multicollinearity problem. In terms of MSE, our 

Monte Carlo simulation results show that the proposed estimate outperforms the 

MLE and ridge estimators. 

Keywords: Multicollinearity; ridge estimator; Tobit regression model; Monte 

Carlo simulation. 

 

1. Introduction 

     Tobit regression is one of the most extensively used statistical approaches for describing the 

relationship between a response variable and a collection of variables among academics. It has been 

widely used in medicine, biology, ecology, economics, and the social sciences since its introduction 

by [1], it has been routinely applied in medicine, ecology, economics, social sciences, ecology, 

economics, and the biology. The (Tobit) model is one of the linear models that falls within the 

scope of the Censored regression models, and it is often called the Limited Regression Model and 

Tobin in 1958 is defined as a process of marriage between the regression model and the (Probir) 

model. 

Tobit models refer to regression models that are characterized by the fact that the response variable 

is specific in some way depending on the nature of the phenomenon, as it differs from the truncated 

regression models, so the model is called a truncated regression model when the observations 

outside a certain range are missing (for the response variable and explanatory variables), while it is 

called A specific regressi The (Tobit) model is one of the linear models that falls within the scope of 

the controlled regression models, and it is often called the Limited Regression Model and Tobin in 

1958 is defined as a process of marriage between the regression model and the (Probir) model [2-4].  

    Due to the nature of these models and the structure of their data, estimating their features is an 

important rhetorical issue, in addition to the accompanying breaches of some classic hypotheses of 

standard regression models accordingly, hence the importance of studying methods for estimating 
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the features of these models and analyzing the characteristics of their capabilities. Also, proposing 

an optimal regression model for the data in question will lead to results that are close to the real 

reality, as for each type of data there is an optimal model that fits with it, for example if we have 

quantitative data for the response variable and assumptions for the model are available, they can be 

dealt with using the traditional regression model, Also, if binary data for the response variable are 

available, it can be dealt with using the logistic regression model. 

    In the case of availability of observations that are restricted (specific) and free in the other part 

(unspecified), where this data is called (censored data), then using the traditional regression model 

with this type of data will lead to biased estimated parameters on the one hand and on the other 

hand that is not. One of these alternatives is the controlled regression model proposed by Tobin in 

1958 [1] known as the Tobit regression model, and it is designed to estimate the linear relationship 

between variables when there is either a left-wing control. Or right-wing in the response variable 

(also known as bottom and top control, respectively), The values that exceed a certain threshold 

level are called the control from the top, while the values less than the threshold value are called the 

control from the bottom. On the other hand, it is said that the multiple linear relationship problem 

exists when there are quasi-linear dependencies between the regression variables, as the Tobit 

model is also used to accommodate the potential correlation between the explanatory variables [5, 

6]. 

 

2. Tobit Model  

    In many areas, such as sociology , medical, and econometrics studies, the Tobit regression model 

(TRM) is often used to evaluate data having left censored outputs. Consider the following latent 

linear regression model to introduce the TRM: 

yi = β′ + xi + εi                                                               … (1) 

where xi = (xi1, · · · , xik) , εi’s are residuals,  β = (β_1, · · · , β_k) which can be estimated by using 

the maximum likelihood method. 

      The mathematical definition of the Tobit model, which is sometimes called the mathematically 

standard Tobit model, is as follows: 

yi
∗ = β′xi + εi                         i = 1,2,3, … , n                                                            (2)      

yi = {
yi

∗                    if     yi
∗ > 0

0                       if   yi
∗ ≤ 0   

                                                                         …     (3)    

In the Tobit model ,  yi
∗ Latent variable is generated by a conventional linear regression model that 

is not seen at  yi
∗ ≤ 0   . 

As for [5], it has defined the model of Tobit , assuming that the observed response variable yi for 

the observations                    i = 1,2,3, … , n that achieves the following : 

yi = max(yi
∗, 0)                                                                                                         …  (4) 
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The constraint a and h can be formulated as follows ,  yi
∗ > τ and  yi

∗ ≤ τ  ,  respectively, without 

making a fundamental change in the model, whether y or known unknown . For estimation 

purposes, we assume that: 

εi = ~N(0, σ2) 

yi
∗/xi~N(β′X, σε

2) 

di = {
1                      if     yi

∗ > τ

0                       if   yi
∗ ≤ τ   

  

the density function of the  yi
∗ observations is given as follows : 

f (yi
∗ | β, σ2)  = ∏ Pr(yi

∗ < τ)(1−di) 

n

i=0

∏[Pr(yi
∗ > τ)  f(yi

∗/(yi
∗ ≥ τ)]di …      5)

n

i=1

 

The equation (5) can be simplified as follows: 

Pr(yi
∗ < τ) = Pr(β′Xi + εi < τ) = Pr (

β′Xi + εi

σε
2

 <
τ

σε
2

) = Pr (
εi

σε
2

 <
τ − β′Xi 

σε
2

)

= ∅ (
τ − β′Xi 

σε
2

)                      … (6) 

                                                                        

When τ = 0 : 

Pr (yi
∗ < τ) = ∅ (

−β′Xi 

σε
2

) = 1 − ∅ (
β′Xi 

σε
2

)                                                         …  (7) 

Pr(yi
∗ ≥ τ) = 1 − ∅ (

τ − β′Xi 

σε
2

)                                                                             …  (8) 

When τ = 1  

Pr(yi
∗ ≥ τ) = ∅ (

β′Xi 

σε
2

)                                                                                           …   (9) 

f = (yi
∗/yi

∗ > τ) =
1

σ⁄ ϑ[(yi
∗ − β′Xi) σε⁄ ]

Pr (yi
∗ > τ)

=  
1

σ⁄ ϑ[(yi
∗ − β′Xi) σε⁄ ]

1
σ⁄ ∅[(yi

∗ − β′Xi) σε⁄ ]
 

Accordingly: 

L = ∏ ∅ (
τ − β′Xi 

σε
)

n

i=0

∏ [1 − ∅ (
τ − β′Xi 

σε
)]

n

i=0

∏
1

σ⁄ ϑ[(yi
∗ − β′Xi) σε⁄ ]

1
σ⁄ ∅[(yi

∗ − β′Xi) σε⁄ ]

n

i=1

  

L = ∏ ∅ (
τ − β′Xi 

σε
)

n

i=0

 ∏ σ−1ϑ (
yi

∗ − β′Xi 

σε
)                                                 …  (10)

n

i=0
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When τ = 0 : 

L = ∏ [1 − ∅ (
β′Xi 

σε
)]

n

i=0

 ∏ σ−1ϑ (
yi

∗ − β′Xi 

σε
)                                        …  (11)

n

i=0

 

L = ∏
1

σ⁄ ϑ[(yi
∗ − β′Xi) σε⁄ ]

1
σ⁄ ∅[(y − β′Xi) σε⁄ ]

n

i=1

 

 L = ∏ [1 − ∅ (
y−β′Xi 

σε
)]

−1
n
i=0 σ−1ϑ (

yi
∗−β′Xi 

σε
)                                         …  (12) 

When τ = 1 ∶ 

L = ∏ [∅ (
β′Xi 

σε
)]

−1n

i=0

σ−1ϑ (
yi

∗ − β′Xi 

σε
)                                         …  (13) 

The tobit maximum likelihood estimator maximizes the following censored log likelihood function:     

  L(β, σ2/x) = ∏ [1 − ∅ (
β′Xi 

σε
)] ∏ σ−1ϑ (

yi
∗−β′Xi 

σε
)   

And the logarithm takes the Maximum Likelihood function : 

log L(β, σ2/x) = ∑ log [1 − ∅ (
β′Xi 

σε
)] −

n1

2
log σ2 −

1

2σ2
 ∑(yi − β′Xi)

2 …  (14) 

∂ log L

∂β
= −

1

σ
∑

ϑ (
β′Xi 

σε
)

1 − ∅ (
β′Xi 

σε
)

+
1

σ2
∑(yi − β′Xi) Xi                                  …  (15) 

Numerical methods can be used to calculate the parameters of the Tobet model , To estimate the 

coefcient vector β, the derivative S(β) of the tobit log-likelihood function should be equated to zero 

and solved, i.e. 

S(β) = 
∂ log L

∂β
=−

1

σ
∑

ϑ(
β′Xi 

σε
)

1−∅(
β′Xi 

σε
)

+
1

σ2
∑(yi − β′Xi) Xi   = 0                              …  (16) 

The Newton-Raphson method is used to solve Equation (16) such that the iterations of the method 

is given as : 

βr = βr−1 + F−1(βr−1)S(βr−1)                                                                 …   (17)          

where F(βr−1) is the Fisher information matrix computed using βr−1 at the    (r − 1) the step of the 

algorithm, namely, it is defined by : 

F(βr−1) = E (
− ∂2L(β, σ2/x

∂β ∂β′
) = X′Ŵ(βr−1)X                                         …   (18) 
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where W(βr−1) =  diag[ẑi(βr − 1)]  such that letting ω =
xi  

′ β

σ
, ẑi is defined to be : 

ẑi =  σ2∅(ω) [1 − (
ϑ(ω)

∅(ω)
)

2

] − ω (
ϑ(ω)

∅(ω)
) + (ω +

ϑ(ω)

∅(ω)
)

2

(1 − ∅(ω))    …  (19) 

The vector of coefficients is updated until some convergence criterion is satisfied. At the final step 

of the algorithm, the vector of coefficients becomes the (mle) denoted by β̂mle  [5]. 

The covariance matrix of the Tobit (mle) estimator is obtained as : 

Cov(β̂mle) = E (
− ∂2L(β, σ2/x

∂β ∂β′
)

−1

= (X′ŴX)
−1

                                        …   (20) 

and the scalar mean squared error (mle) of (mle) equals : 

MSE(β̂mle) = tr(X′ŴX)
−1

= ∑
1

λi

p+1

i=1

                                                               …   (21) 

where Λ = diag(λi) is the diagonal matrix consisting of the eigenvalues of the matrix X′ŴX =

Q′ŴQ = such that the matrix Q is composed of the eigenvectors of ( X′ŴX) as its columns [6]. 

       It can be easily observed from Equation (21) that the MSE of (mle) is inflated when there is 

near-linear dependencies in the design matrix or in the weighted matrix of cross products ( X′ŴX) 

[7] . As a result of this problem , (mle) becomes unstable and its variance is inflated [3-5, 7]. In this 

case, it is very difficult to interpret the estimated parameters. So, in the presence of 

multicollinearity, alternative methods such as biased estimators can be used instead of the 

asymptotically unbiased estimator (mle) .                                                                        

 

3. Two-Parameter Estimator for the Tobit Regression (TTE)  

     Khalaf, Månsson [4] proposed the Tobit ridge estimator (TRE) as follows:  

β̂TRE = ( X′ŴX + kIp)
−1

  X′ŴX (β̂mle)     ,     k > 0                            …         (22)   

where Ip is the p × p identity matrix. The Tobit Maximum likelihood estimator (TML) as: β̂TME =

( X′ŴX + Ip)
−1

 ( X′ŴX +  dIp) β̂mle    ,    0 < d < 1                …    (23)   

The following two-parameter estimator (TTE): 

β̂TTE = ( X′ŴX + kIp)
−1

 ( X′ŴX +  kdIp) β̂mle                   …    (24)   

where    k > 0     and  0 < d < 1 . It can be noted that TTE is a general estimator such that if  k =

1 , then we obtain β̂TTE = β̂TME = ( X′ŴX + Ip)
−1

 ( X′ŴX +  dIp) β̂mle  . if  k = 0 , then  β̂TTE =

β̂mle , if  d = 0  then we get  TRE.  
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Some theorems are needed. The MSE and MMSE being the trace of an estimator β̂∗ of the proposed 

estimators are derived so that MSE (βTRE) < MSE (βTME) [8, 9]. The MMSE and MSE of an 

estimator β̂∗ are, respectively, define as: 

MMSE(β̂∗ ) = E [(β̂∗ − β)(β̂∗ − β)
′
] = var(β̂∗) + bias(β̂∗)bias(β̂∗)

′
… (25)     

MSE(β̂∗ ) = tr (MMSE(β̂∗ )) = E [(β̂∗ − β)
′
(β̂∗ − β)]                             …   (26) 

where var(β̂∗) is the variance covariance matrix of the estimator, bias(β̂∗) = E(β̂∗ ) − β is the bias 

vector of the estimator β̂∗ , where E(β̂∗ )  is the expected value of (β̂∗ ) , such that tr(. ) is the trace 

and E(. ) is the expected value operators. 

we now that if  β̂1
∗  and  β̂2

∗  are two estimators of the coefficient vector , then β̂2
∗  superior to β̂1

∗  if and 

only if   MMSE(β̂1
∗) − MMSE(β̂2

∗ ) ≥ 0. 

In order to obtain the MMSE and MSE of the estimators, we use the spectral decomposition of the 

matrix D such that , D = φ′Λφ . 

MMSE and MSE of  (mle)are obtained as follow: 

 MMSE(β̂mle
∗ ) = φ′Λ−1φ                                                                                        …  (27)  

MSE(β̂mle
∗ ) = ∑

1

λi

p+1

i=1

                                                                                                …  (28) 

The MMSE and MSE of TTE  as follows: 

var(β̂TTE
∗ ) = φΛk

−1ΛkdΛ−1ΛkdΛk
−1φ′                                                               …   (29) 

  bTTE = bias(β̂TTE
∗ ) = k(d − 1)φΛk

−1δ                                                      …        (30)  

  δ = φ′β         ,    Λk = diag(λ1 + k , λ2 + k , … , λp+1 + k) 

Λkd = diag(λ1 + kd , λ2 + kd , … , λp+1 + kd) 

Now compute MMSE and MSE of TTE: 

MMSE(β̂TTE
∗ ) = φ  Λk

−1ΛkdΛ−1ΛkdΛk
−1φ′ + bTTE bTTE

′                                 …   (31) 

and MSE(β̂TTE
∗ ) = ∑ (

(λi+kd)2

λi(λi+k)2
+

k2(d−1)2δi
2

(λi+k)2
)                                            …  (32)  

p+1
i=1  

To compare the MMSEs of the estimators, we use the following theorem1: 

Theorem 1 
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Let ψ be a positive definite (p.d.) matrix , a be vector of nonzero constants and v 

be a positive constant. Then  vψ −  δδ′ > 0  if and only if  δ′ψ δ < v  [12]. 

 

Theorem 2 

Let k > 0   ,   0 < d < 1      and  bTTE = bias(β̂TTE
∗ ) .  

Then  MMSE(β̂mle
∗ ) − MMSE(β̂TTE

∗ ) > 0     if  bTTE
′  (Λ−1Λk

−1ΛkdΛ−1ΛkdΛk
−1)

−1
 bTTE < 1  

Proof The difference between MMSE functions of MLE and TTE is obtained by 

MMSE(β̂mle
∗ ) − MMSE(β̂TTE

∗ ) = φ  (Λ−1 − Λk
−1ΛkdΛ−1ΛkdΛk

−1)φ′ + bTTE bTTE
′

= φdiag [
1

λi
−

(λi + kd)2

λi(λi + k)2
]

i=1

p+1

  ψ′ −   bTTE bTTE
′                                     …  (33)       

The matrix (Λk
−1ΛkdΛk

−1ΛkdΛk
−1) is probability density function if (λi + k)2 − (λi + kd) > 0 which 

is equivalent to [(λi + k) − (λi + kd)][(λi + k) + (λi + kd) > 0] simplifying the last inequality ,  

one gets k (?) (2λi − k(1 + d)) > 0 . Thus if  0 < d < 1 , then the proof is done by theorem 1. 

4.  Estimating the Parameters k  

To estimate the k and d, a derivative of Equation (32) with respect to k is considered, and solving 

for the parameter k. 

ki =
λi

λi δ̂i
2(1 − d) − d

          , i = 1,2, … , p + 1                                              …      (34) 

The upper bound for the parameter d because each individual parameter must be positive. so that 

ki > 0 : 

d < min (
λi δ̂i

2

1 + λi δ̂i
2

)
i=1

p+1

                                                                                        …   (35) 

Therefore, we propose to estimate the parameter d by : 

d = min
1

2
(

λi δ̂i
2

1 + λi δ̂i
2

)
i=1

p+1

                                                                                    …   (36) 

After estimating the parameter d using (36), the estimating value of k can be as  

k = median (
λi

λi δ̂i
2(1 − d) − d

)
i=1

p+1

                                                                …  (37) 

5. Simulation results 
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A Monte Carlo simulation study is designed to evaluate the performances of the estimators. 

Following [9-30]., the formula which enables us to vary the strength of the correlation is used to 

generate the explanatory variables as: 

xij = (1 − ρ2)
1
2 ωij + ρωip+1     i = 1,2, … n  , j = 1,2, … , p                   … (38) 

where ωij are independent standard normal pseudo-random numbers, and ρ is specified so that the 

correlation between any two explanatory variables is given by ρ2 . 

The slope parameters are decided such that p j=1 βj2 = 1, which is a commonly used restriction in 

the feld. n observations of the dependent variable are produced as follows: 

yi
∗ = β0 + β1xi1 + β2xi2 + ⋯ + β1xip + ei   , i = 1,2, … , n                       … (39)     

where ei are random numbers generated from N~(0, σ2)distribution .Then the dependent variable is 

censored as : 

yi = {
yi

∗                    if     yi
∗ > 0

0                       if   yi
∗ ≤ 0   

    

Furthermore, because we are interested in the effects of multicollinearity, where higher degrees of 

correlation are deemed more important, pairwise correlations are taken into consideration, with, ρ = 

{0.90, 0.95, 0.99}. Because sample size has a direct impact on prediction accuracy, three 

representative sample sizes of 50, 100, and 200. To study the effect of the number of explanatory 

variables on the estimate process, the number of explanatory variables is considered to be 4, 8, and 

12. Furthermore, the value of is assumed to be 1.n1000 times the simulation is run.. The simulated 

MSE of an estimator MSE of an estimator β̂∗ is computed by: 

MSE(β̂∗) =
1

1000
∑ (β̂∗ − β)

k

′
(β̂∗ − β)

1000

k=1

                               … (39) 

where (β̂∗ − β)
k
 shows the difference between the estimated and true parameter vectors at the kth 

iteration of the simulation. All the computations are carried out using the R programming language.  

Tables 1–3 summarize the averaged MSE results. The averaged MSE's best value is indicated in 

bold. The following are some of the observations that can be made: 

1- The MSE of TRE is generally lower than that of MLE.  

2- Obviously, TTE had a lower MSE than TRE, independent of the values of n ,  , and p . 

3- In terms of values, the MSE values rise as the correlation degree rises, regardless of the 

value of and with the superiority of the TTE estimator. 

4- In terms of the number of explanatory variables, it is clear that there is a negative impact on 

MSE, as their values rise as the number of explanatory factors rises. 

5- When the value of n, increases, the MSE values fall, regardless the value of   and p . 

 

Table 1: MSE values, on average, when 50n =  
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p      MLE TTE TRE 

4 0.90 6.19 2.512 3.517 

 0.95 9.408 7.608 7.873 

 0.99 12.305 8.07 8.308 

8 0.90 5.628 1.95 2.955 

 0.95 8.846 7.046 7.311 

 0.99 11.743 7.508 7.746 

12 0.90 5.411 1.733 2.738 

 0.95 8.629 6.829 7.094 

 0.99 11.526 7.291 7.529 

 

Table 2: MSE values, on average, when 100n =  

p      MLE TTE TRE 

4 0.90 6.997 3.319 4.324 

 0.95 10.215 8.415 8.68 

 0.99 13.112 8.877 9.115 

8 0.90 6.435 2.757 3.762 

 0.95 9.653 7.853 8.118 

 0.99 12.55 8.315 8.553 

12 0.90 6.218 2.54 3.545 

 0.95 9.436 7.636 7.901 

 0.99 12.333 8.098 8.336 

Table 3: MSE values, on average, when 200p =  

p      MLE TTE TRE 

4 0.90 7.849 4.171 5.176 

 0.95 11.067 9.267 9.532 

 0.99 13.964 9.729 9.967 

8 0.90 7.287 3.609 4.614 

 0.95 10.505 8.705 8.97 

 0.99 13.402 9.167 9.405 

12 0.90 7.07 3.392 4.397 

 0.95 10.288 8.488 8.753 

 0.99 13.185 8.95 9.188 

 

6. Conclusion 

In this research, a new two-parameter estimator is proposed to solve the Tobit regression model's 

multicollinearity problem. In terms of MSE, Monte Carlo simulation results show that the two-

parameter estimator outperforms the MLE and ridge estimators. In conclusion, the use of the TTE 

estimator is recommended when multicollinearity is present in the Tobit regression model. 
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