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Abstract 

Poisson regression model is the standard statistical method for analyzing count 

data. Its parameters are usually estimated using maximum likelihood (ML) 

method. However, the ML method is very sensitive to multicollinearity. Ridge 

estimator was proposed in Poisson regression model. A restricted ridge estimator 

is proposed. Simulation and real data example results demonstrate that the 

proposed estimator is outperformed ML and Poisson ridge estimator. 

 

Keywords: Multicollinearity; ridge regression; restricted estimator; shrinkage; 

Monte Carlo simulation. 

 

1. Introduction 

In regression modeling, data in the form of counts are usually common. Count data regression 

modeling has received much attention in medicine, behavioral sciences, psychology, and 

econometrics (Zakariya Y Algamal, 2012; Asar & Genç, 2017a; Coxe, West, & Aiken, 2009). The 

Poisson regression model is the most basic models under count data regression models (Wang et al., 

2014).  

In dealing with the Poisson regression model, it is assumed that there is no correlation among the 

explanatory variables. In practice, however, this assumption often not holds, which leads to the 

problem of multicollinearity. In the presence of multicollinearity, when estimating the regression 

coefficients for Poisson regression model using the maximum likelihood (ML) method, the estimated 

coefficients are usually become unstable with a high variance, and therefore low statistical 

significance with incorrect signs (ALheety & Kibria, 2014; Batah, Özkale, & Gore, 2009; Jou, Huang, 

& Cho, 2014).  

Numerous remedial methods have been proposed to overcome the problem of multicollinearity. The 

ridge regression method (Hoerl & Kennard, 1970) has been consistently demonstrated to be an 

attractive and alternative to the ML estimation method. 
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Ridge regression is a shrinkage method that shrinks all regression coefficients toward zero to reduce 

the large variance (Asar & Genç, 2015). The ridge regression performance greatly relies on the choice 

of shrinkage parameter. Consequently, choosing a suitable value of the shrinkage parameter is an 

important part of ridge regression model fitting (Söküt Açar & Özkale, 2015). Several methods, which 

they are based on the original ridge regression of   (Hoerl & Kennard, 1970), are available for 

estimating the ridge shrinkage parameter in the literature (Alkhamisi, Khalaf, & Shukur, 2006; Asar, 

Karaibrahimoğlu, & Genç, 2014; Hamed, Hefnawy, & Farag, 2013; Hefnawy & Farag, 2014; Khalaf 

& Shukur, 2005; Kibria, 2003; Muniz & Kibria, 2009).  

2. Poisson ridge regression model  

Count data often arise in epidemiology, social, and economic studies. This type of data consists of 

positive integer values. Poisson distribution is a well-known distribution that fit to such type of data. 

Poisson regression model is used to model the relationship between the counts as response variable 

and potentially explanatory variables (Zakariya Yahya Algamal & Alanaz, 2018; Zakariya Y. 

Algamal & Lee, 2015; Alkhamisi et al., 2006; Alkhateeb & Algamal, 2020; Asar, 2015a, 2015b; 

Hemmerle & Boulanger Carey, 2007; KaÇiranlar & Dawoud, 2017; Kibria, 2012; Kibria, Månsson, 

& Shukur, 2013; Rashad & Algamal, 2019).  

Let iy  be the response variable and follows a Poisson distribution with mean i , then the probability 

density function is defined as 

 ( ) , 0,1, ; 1,2, , .
!

i iy

i
i i

i

e
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In a Poisson regression model, ln( ) T
i i = x β  is expressed as a linear combination of explanatory 

variables 1( ,..., )Ti i ipx x=x . The ln( )i  is called as canonical link function which making the 

relationship between explanatory variables and response variable linear. The most common method 

of estimating the coefficients of Poisson regression model is to use the maximum likelihood method. 

Given the assumption that the observations are independent, the log-likelihood function is defined as 

  
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The ML estimator is then obtained by computing the first derivative of the Eq. (3) and setting it equal 

to zero, as 
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Because Eq. (4) is nonlinear in β , the iteratively weighted least squares (IWLS) algorithm can be 

used to obtain the ML estimators of the Poisson regression parameters (PR) as  

 
1ˆ ˆ ˆ ˆ( ) ,T T

ML
−=β X WX X Wv   (4) 
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where ˆˆ diag( )i=W  and v̂  is a vector where ith element equals to ˆ ˆ ˆˆ ln( ) (( ) / )i i i i iv y  = + − . The 

ML estimator is asymptotically normally distributed with a covariance matrix that corresponds to the 

inverse of the Hessian matrix 

 

1
2

1( )ˆ ˆcov( ) ( ) .T
ML

i k

E
 

−

−
  

= − =  
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β
β X WX   (5) 

The mean squared error (MSE) of Eq. (5) can be obtained as 
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where j  is the eigenvalue of the ˆT
X WX  matrix.  

In the presence of multicollinearity, the matrix ˆT
X WX  becomes ill-conditioned leading to high 

variance and instability of the ML estimator of the Poisson regression parameters. As a remedy, 

Månsson and Shukur (2011) proposed the Poisson ridge estimator (PRE) as 
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where 0k  . The ML estimator can be considered as a special estimator from Eq. (7) with 0h = . 

Regardless of h value, the MSE of the ˆ
PREβ is smaller than that of ˆ

MLβ because the MSE of  ˆ
PREβ is 

equal to (Kibria, Månsson, & Shukur, 2015) 

 2

2 2
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j j
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 where j  is defined as the jth element of ˆ
ML β and   is the eigenvector of  the ˆT

X WX  matrix. 

Comparing with the MSE of Eq. (6), ˆMSE( )PREβ  is always small for 0h  . 

 

3. The proposed estimator 

In addition to the sample information, there are some exact or restrictions for the unknown parameter 

of the model exist which may help to reduce the multicollinearity problem. Therefore, suppose that 

we have some prior information about β  in the form of independent linear restrictions as: 

 ,h=Hβ  (9)                      
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where Hdenotes a ( ) ( ) 1  1q p q p +  + known matrix and h  shows a   q x I vector of pre-

specified know constants. Considering such a restriction, Duffy and Santner (1989) defined the 

restricted maximum likelihood estimator (RMLE) with the following from: 

 
1 1 1ˆ ˆ ˆˆ ˆ( ) ( ( ) ) ( )T T T T

RMLE MLE MLE h− − −= − −β β X WX H H X WX H Hβ  (10) 

Based on the Eq. (10) and Eq. (7), we propose a restricted Poisson ridge estimator (RPRE) which is 

given as follows: 
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It is easy to see that when the biasing parameter, 0k = , Eq. (11) becomes the RMLE in Eq. (10). The 

restricted ridge estimator was studied by several authors, such as (ALheety & Kibria, 2014; Asar, 

Arashi, & Wu, 2016; Duffy & Santner, 1989; Kurtoğlu, Özkale, & Computation, 2019; Nagarajah & 

Wijekoon, 2015; Najarian, Arashi, & Kibria, 2013). The MSE of  ˆ
RPREβ is defined as  

 

2
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4. Simulation results  

In this section, a Monte Carlo simulation experiment is used to examine the performance of the new 

estimator with different degrees of multicollinearity. The response variable of n  observations is 

generated from Poisson regression model by  

 exp( ),T
i i = x β   (13) 

where 0 1( , ,..., )p  =β  with 
2

1

1
p

j

j


=

=  and 1 2 ... p  = = =   (Kibria, 2003; Månsson & Shukur, 

2011). In addition, because the value of intercept, 0 , has an effect on i , three values are chosen 

 0 1,0, 1  − , where decreasing the value of 0  leads to lower average value of i , which leads to 

less variation (Asar & Genç, 2017b; Månsson & Shukur, 2011). 

The explanatory variables 1 2( , ,..., )T
i i i inx x x=x  have been generated from the following formula  

 
2 1 2(1 ) , 1,2,..., , 1,2,..., ,l

ij ij ipx w w i n j p = − + = =   (14) 

where   represents the correlation between the explanatory variables and ijw ’s are independent 

standard normal pseudo-random numbers. Because the sample size has direct impact on the prediction 

accuracy, three representative values of the sample size are considered: 30, 50 and 100. In addition, 

the number of the explanatory variables is considered as 4p =  and 7p =  because increasing the 

number of explanatory variables can lead to increase the MSE. Further, because we are interested in 
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the effect of multicollinearity, in which the degrees of correlation considered more important, three 

values of the pairwise correlation are considered with {0.90,0.95,0.99} = . According to Asar et al. 

(2016), two restricted matrices are explained as 

4

1 0 3 2

1 2 1 1
p=

− 
=  

− − 
H  and 

7

1 0 3 1 1 2 1

1 2 1 1 0 1 1
p=

− − 
=  

− − 
H  with (0,0)h = . In 

addition, the method of determining the value of k is defined as 2

max
ˆ(1/ )k = . For a combination of 

these different values of 0, ,n p  , and   the generated data is repeated 1000 times and the averaged 

mean squared errors (MSE) is calculated as  

 
1000

1

1ˆ ˆ ˆMSE( ) ( ) ( ),
1000

T

i =

= − −β β β β β   (15) 

where β̂  is the estimated coefficients for the used estimator.   

The estimated MSE of Eq. (15) for ML, PRE, and our proposed estimator, RPRE, for the combination 

of 0, ,n p  , and  , are respectively summarized in Tables 1, 2, and 3. Several observations can be 

made.   

First, in terms of   values, there is increasing in the MSE values when the correlation degree 

increases regardless the value of 0, ,n p  . However, RPRE performs better than PRE and ML. For 

instance, in Table 1, when 7p = , 100n = , and 0.99 = , the MSE of MCV was about 26.72% and 

23.38% lower than that of ML and PRE respectively.  

Second, regarding the number of explanatory variables, it is easily seen that there is increasing in the 

MSE values when the p  increasing from four variables to seven variables. Although this increasing 

can affected the quality of an estimator, RPRE is achieved the lowest MSE comparing with ML and 

PRE, for different 0, ,n   . 

Third, with respect to the value of n , The MSE values decreases when n  increases, regardless the 

value of 0, ,p  . However, RPRE still consistently outperforms PRE by providing the lowest MSE.   

Fourth, in terms of the value of the intercept and for a given values of , ,p n , RPRE is always show 

smaller MSE comparing with the other methods.  

To summary, all the considered values of 0, , ,n p  , RPRE is superior to PRE, clearly indicating that 

the new proposed estimator is more efficient. 

Table 1: MSE values when 0 1 = −  

   ML PRE RPRE 

        

4p =  30n =  0.9 6.2814 6.0344 5.1671 

  0.95 6.9094 6.6624 5.7954 

  0.99 7.3074 7.0604 6.1933 

 50n =  0.9 4.6524 4.4054 3.5384 
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  0.95 5.7274 5.4804 4.6130 

  0.99 5.9194 5.6724 4.8054 

 100n =  0.9 4.4954 4.2484 3.3811 

  0.95 4.7054 4.4582 3.5914 

  0.99 5.4604 5.2130 4.3464 

7p =  30n =  0.9 6.3864 6.1394 5.2724 

  0.95 7.0054 6.7584 5.8914 

  0.99 7.4204 7.1731 6.3064 

 50n =  0.9 4.9214 4.6744 3.8074 

  0.95 6.0644 5.8174 4.9504 

  0.99 6.3894 6.1424 5.2754 

 100n =  0.9 4.8314 4.5844 3.7174 

  0.95 5.1064 4.8594 3.9924 

  0.99 5.6644 5.4174 4.1504 

 

Table 2: MSE values when 0 0 =  

   ML PRE RPRE 

        

4p =  30n =  0.90 6.3051 6.0581 5.1913 

  0.95 6.9331 6.6862 5.8191 

  0.99 7.3311 7.0841 6.2171 

 50n =  0.90 4.6761 4.4291 3.5621 

  0.95 5.7511 5.5041 4.6371 

  0.99 5.9431 5.6962 4.8291 

 100n =  0.90 4.5191 4.2721 3.4051 

  0.95 4.7291 4.4821 3.6151 

  0.99 5.4841 5.2371 4.3701 

7p =  30n =  0.90 6.4101 6.1632 5.2961 

  0.95 7.0291 6.7821 5.9151 

  0.99 7.4441 7.1971 6.3301 

 50n =  0.90 4.9451 4.6981 3.8311 
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  0.95 6.0881 5.8411 4.9741 

  0.99 6.4131 6.1661 5.2991 

 100n =  0.90 4.8551 4.6081 3.7411 

  0.95 5.1301 4.8831 4.0161 

  0.99 5.6881 5.4411 4.5741 

 

Table 3: MSE values when 0 1 =  

   ML PRE RPRE 

        

4p =  30n =  0.90 6.503 6.256 5.389 

  0.95 7.131 6.884 6.017 

  0.99 7.529 7.282 6.415 

 50n =  0.90 4.874 4.627 3.76 

  0.95 5.949 5.702 4.835 

  0.99 6.141 5.894 5.027 

 100n =  0.90 4.717 4.47 3.603 

  0.95 4.927 4.68 3.813 

  0.99 5.682 5.435 4.568 

7p =  30n =  0.90 6.608 6.361 5.494 

  0.95 7.227 6.98 6.113 

  0.99 7.642 7.395 6.528 

 50n =  0.90 5.143 4.896 4.029 

  0.95 6.286 6.039 5.172 

  0.99 6.611 6.364 5.497 

 100n =  0.90 5.053 4.806 3.939 

  0.95 5.328 5.081 4.214 

  0.99 5.886 5.639 4.772 

 

5. Real application 

To investigate the usefulness of reviewed biased estimators, an application related to the football 

English league, season 2016-2017 is employed. This data contains twenty teams, where the response 
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variable represents the number of won matches. The six considerable predictors included the number 

of yellow cards ( 1x ), the number of red cards ( 2x ), the total number of substitutions ( 3x ), the number 

of matches with 2.5 goals on average ( 4x ), the number of matches that ended with goals ( 5x ), and 

the ratio of the goal scores to the number of matches ( 6x ).  

First, the deviance test (Montgomery, Peck, & Vining, 2015) is used to check whether the Poisson 

regression model is fit well to this data or not. The result of the residual deviance test is equal to 8.373 

with 14 degrees of freedom and the p-value is 0.869. It is indicated form this result that the Poisson 

regression model fits very well to this data.  

Second, to check whether there are relationships between the explanatory variables or not, Figure 1 

displays the correlation matrix among the six explanatory variables. It is obviously seen that there are 

correlations greater than 0.86 between 1x  and 6x , 1x  and 4x , 2x  and 4x , and, 4x  and 6x . 

Third, to test the existence of multicollinearity, the eigenvalues of the matrix ˆT
X WX  are obtained as 

993.758, 142.907, 75.560, 38.999, 21.424, and 1.016. The determined condition number 

max minCN / =  of the data is 31.274 indicating that the multicollinearity issue is exist. 

The estimated Poisson regression coefficients, standard errors which are computed by using bootstrap 

with 500 replications, and MSE values for the ML, PRE and RPRE estimators are listed in Table 4. 

According to Table 4, it is clearly seen that the RPRE estimator shrinkages the value of the estimated 

coefficients efficiently. Additionally, in terms of the calculated standard errors, the RPRE and PRE 

show substantial decreasing comparing with ML.  

 

Figure 1: The correlation matrix among the six explanatory variables. 

Table 4: The estimated coefficients and MSE values for the used estimators 

    

 ML PRE RPRE 

1̂   -1.219 

(0.151) 

-1.016 

(0.007) 

-0.813 

(0.125) 

2̂  0.441 0.510 0.031 
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(0.151) (0.001) (0.132) 

3̂  0.575 

(0.175) 

0.416 

(0.008) 

0.224 

(0.103) 

4̂  -3.476 

(0.313) 

-2.034 

(0.008) 

-0.131 

(0.229) 

5̂  -2.432 

(0.160) 

-2.12 

(0.004) 

-1.007 

(0.132) 

6̂  5.121 

(0.387) 

0.004 

(0.003) 

0.173 

(0.225) 

    

MSE 3.681 2.108 1.548 

6. Conclusion 

In this paper, a restricted ridge estimator of Poisson regression model was proposed. This proposed 

estimator allows us to handle multicollinearity. According to Monte Carlo simulation studies, the 

restricted estimator has better performance than maximum likelihood estimator and Poisson ridge 

estimator, in terms of MSE. Additionally, a real data application is also considered to illustrate 

benefits of using the new estimator in the context of Poisson regression model. The superiority of the 

new estimator based on the resulting MSE was observed and it was shown that the results are 

consistent with Monte Carlo simulation results. 
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