
Mathematical Statistician and Engineering Applications 

ISSN: 2094-0343 

2326-9865 

 

248 Vol. 71 No. 3s2 (2022) 

http://philstat.org.ph 

 

A Liu estimator in inverse Gaussian regression model with application in 

chemometrics 

Nawal  Mahmood Hammood 

Department of management Information systems, College of Administration and 

Economics, University of Mosul, Mosul, Iraq 

E-mail: nawal_almamary@uomosul.edu.iq 

Dhafer Myasar Jabur 

Department of Community Health, Al Mousl Technical Institute, Northern Technical University, 

Mosul, Iraq 
Email: thafer.allela@ntu.edu.iq 

Zakariya Yahya Algamal * 

Department of Statistics and Informatics, University of Mosul, Mosul, Iraq 

E-mail: zakariya.algamal@uomosul.edu.iq 

ORCID: 0000-0002-0229-7958 

*Corresponding Author 

Zakariya Yahya Algamal 

E-mail: zakariya.algamal@uomosul.edu.iq 

Telephone number: +964 7701640834 
 

Article Info 

Page Number: 248-266 

Publication Issue: 

Vol 71 No. 3s2 (2022) 

 

 

 

 

 

 

 

 

 

 

Article History 

Article Received: 28 April 2022 

Revised: 15 May 2022 

Accepted: 20 June 2022 

Publication: 21 July 2022 

Abstract 

The presence of multicollinearity among the explanatory variables has 

undesirable effects on the maximum likelihood estimator (MLE). Liu estimator 

(LE) is a wide used estimator in overcoming this issue. The LE enjoys the 

advantage that its mean squared error (MSE) is less than MLE. The inverse 

Gaussian regression (IGR) model is a well-known model in application when 

the response variable positively skewed. The purpose of this paper is to derive 

the LE of the IGR under multicollinearity problem. In addition, the performance 

of this estimator is investigated under numerous methods for estimating the Liu 

parameter. Monte Carlo simulation results indicate that the suggested estimator 

performs better than the MLE estimator in terms of MSE. Furthermore, a real 

chemometrics dataset application is utilized and the results demonstrate the 

excellent performance of the suggested estimator when the multicollinearity is 

present in IGR model. 

Keywords: Multicollinearity; Liu estimator; inverse Gaussian regression 

model; shrinkage; Monte Carlo simulation. 
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1. Introduction 

In many applications of regression model, there exists a natural correlation among the explanatory 

variables. When the correlations are high, it causes unstable estimation of the regression parameters 

leading to difficulties in interpreting the estimates of the regression coefficients [Månsson and 

Shukur (2011)]. When the problem of multicollinearity exists, it is difficult to estimate the 

individual effects of each explanatory variable in the regression model. Moreover, the sampling 

variance of the regression coefficients will inflate affecting both inference and prediction. There are 

numerous methods that have been proposed to solve multicollinearity problem in the literature. In 

linear regression model, Hoerl and Kennard (1970) proposed a ridge estimator to deal with 

multicollinearity. This proposed estimator is biased, but it gives smaller mean squared error (MSE) 

than ordinary least squares (OLS) estimator. Nevertheless, ridge estimator has drawbacks that the 

estimated parameters are nonlinear functions of the ridge parameter and that the small ridge 

parameter chosen in the process may not be large enough to overcome multicollinearity [Asar and 

Genç (2015), Algamal (2018, (2018, (2018), Algamal and Alanaz (2018), Algamal and Asar (2018), 

Algamal (2018), Yahya Algamal (2018), Rashad and Algamal (2019), Shamany et al. (2019), Al-

Taweel et al. (2020), Algamal (2020), Alkhateeb and Algamal (2020), Abdulazeez and Algamal 

(2021), Algamal and Abonazel (2021), Alobaidi et al. (2021), Lukman, Algamal, et al. (2021), 

Lukman, Dawoud, et al. (2021), Mohammed and Algamal (2021), Rashad et al. (2021)]. 

 Liu (1993) proposed an estimator, which is called Liu estimator, combining the Stein estimator 

with the ridge estimator. Comparing with ridge estimator, the Liu estimator is a linear function of 

the shrinkage parameter, therefore it is easy to choose the shrinkage parameter than to choose ridge 

parameter. 

The inverse Gaussian regression (IGR) has been widely used in industrial engineering, life testing, 

reliability, marketing, and social sciences [Folks and Davis (1981), Bhattacharyya and Fries (1982), 
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Fries and Bhattacharyya (1986), Ducharme (2001), Heinzl and Mittlböck (2002), Lemeshko et al. 

(2010), Malehi et al. (2015)]. Specifically, IGR model is used when the response variable under the 

study is positively skewed [Babu and Chaubey (1996), Chaubey (2002), Wu and Li (2011)]. When 

the response variable is extremely skewness, the IGR is preferable than gamma regression model 

[De Jong and Heller (2008)]. 

The purpose of this paper is to drive the Liu estimator for the inverse Gaussian regression model 

when the multicollinearity issue exists. Furthermore, several methods of estimating the Liu 

shrinkage parameter are explored and investigated. This paper is organized as follows. The model 

specification and estimation is given in Section 2. Section 3 contains the theoretical aspects of the 

Liu inverse Gaussian estimator. In Sections 4 and 5, the simulation and the real application results 

are presented. Finally, Section 6 covers the conclusion of this paper. 

2. Model Specification and estimation 

The inverse Gaussian distribution is a continuous distribution with two positive parameters: 

location parameter,  , and scale parameter,  , denoted as ( , )IG   . Its probability density function 

is defined as 

 

2

3

1 1
( , , ) exp , 0.

22

y
f y y

yy


 

  

  −
 = −  
   

  (1) 

The mean and variance of this distribution are, respectively, ( )E y =  and 
3var( )y  = . 

Inverse Gaussian regression model is considered a member of the generalized linear models (GLM) 

family, extending the ideas of linear regression to the situation where the response variable is 

following the inverse Gaussian distribution. Following the GLM methodology, Eq. (1) can re-write 

in terms of exponential family function as 



Mathematical Statistician and Engineering Applications 

ISSN: 2094-0343 

2326-9865 

 

251 Vol. 71 No. 3s2 (2022) 

http://philstat.org.ph 

 

 3

2

1 1 1 1
( , , ) ln(2 ) ln( ) ,

2 22

y
f y y   

 

   
= − + + − −   

  
  (2) 

where 
3( , ) (1/ 2) ln(2 ) (1/ 2) ln( )C y y  = − −  and  

2
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 −
= − + 

 
. Here,   

represents the dispersion parameter and 
21/   represents the canonical link function. 

 In GLM, a monotonic and differentiable link function connects the mean of the response variable 

with the linear predictor T
i i = x β , where ix  is the ith row of X  and β  is a ( 1) 1p +   vector of 

unknown regression coefficients. Because i depends on β  and the mean of the response variable is 

a function of i , then 1 1( ) ( ) ( )T
i i i iE y g g − −= = = x β . Related to the IGR, the 1/ T

i = x β . 

Another possible link function for the IGR is log link function,  exp( )T
i = x β .  

The model estimation of the IGR is based on the maximum likelihood method (ML). The log 

likelihood function of the IGR under the canonical link function is defined as 

 
3

1

1 1 ln
( ) ln(2 ) .

2 2 2

Tn
Ti i
i i

i i
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y
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 =

   
= − − − −  

   


x β
β x β   (3) 

The ML estimator is then obtained by computing the first derivative of the Eq. (3) and setting it 

equal to zero, as 

 
1

( ) 1 1
0.

2

n

i i
T

i i

y
=

 
 = − =

  
 


β

x
β x β

  (4) 

Unfortunately, the first derivative cannot be solved analytically because Eq. (4) is nonlinear in β . 

The iteratively weighted least squares (IWLS) algorithm or Fisher-scoring algorithm can be used to 

obtain the ML estimators of the IGR parameters. In each iteration, the parameters are updated by 
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( 1) ( ) 1 ( ) ( )( ) ( ),r r r rI S+ −= +β β β β   (5) 

where 
( )( )rS β  and 

1 ( )( )rI −
β  are ( ) ( ) /S =  β β β  and ( )( )

1
1 2( ) ( ) / TI E

−
− = −   β β β β evaluated at 

( )r
β , respectively. The final step of the estimated coefficients is defined as  

 1ˆ ˆ ˆ ,T
IGR

−=β B X Wm   (6) 

where ˆ( )T=B X WX , 3ˆ ˆdiag( )i=W , m̂  is a vector where ith element equals to 

2 3ˆ ˆ ˆ ˆ(1/ ) (( ) / )i i i i im y  = + − , and ˆˆ 1/ T
i = x β . The covariance matrix of ˆ

IGRβ  equals  
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where j  is the eigenvalue of the B  matrix and the dispersion parameter,  , is estimated by 

[Uusipaikka (2009)]  
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=

−
=

−
   (9) 

3. Inverse Gaussian Liu estimator 

The maximum likelihood estimator (MLE) often yields unstable estimation results in the 

multicollinearity situation [Asar and Genç (2015)]. This is because the MSE (Eq. (8)) becomes 

inflated when the eigenvalues of the highly correlated explanatory be small [Mackinnon and 
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Puterman (1989), Segerstedt (1992), Liu and Piantadosi (2016)]. To settle on the problem, ridge 

estimator (RE) is proposed [Hoerl and Kennard (1970)] by imposing a positive amount to the 

diagonal of T
X X in case of linear regression model. However, RE has drawbacks that the estimated 

parameters are nonlinear functions of the ridge parameter and that the small ridge parameter chosen 

in the process may not be large enough to overcome multicollinearity (Asar & Genç, 2015). 

 K. Liu (1993) proposed an estimator, which is called Liu estimator, combining the Stein estimator 

with the ridge estimator. Comparing with ridge estimator, the Liu estimator is a linear function of 

the shrinkage parameter, therefore it is easy to choose the shrinkage parameter than to choose ridge 

parameter. 

Consequently, the Liu estimator in IGR, the inverse Gaussian Liu estimator (IGLE), is defined as 

 1ˆ ˆˆ ˆ( ) ( )T T
IGLE IGRd−= + +β X WX I X WX I β   (10) 

where d  is a shrinkage parameter, 0 1d  . For 1d = , ˆ ˆ
IGLE IGR=β β and for 0 1d  , 

ˆ ˆ
IGLE IGRβ β .  

3.1.  The MSE properties 

The Liu estimator is a shrinkage estimator and it is assumed to perform better than the MLE 

estimator in the presence of multicollinearity [Månsson (2013)]. The matrix mean squared error 

(MMSE) of  ˆ
IGLEβ  is defined as follows: 

 

ˆ ˆ ˆMMSE( ) ( )( )

ˆ ˆ ˆ( ) ( ) ( ) ,

T
IGLE IGLE IGLE

T

IGLE IGLE IGLE

E

Var bias bias

= − −

   = +
   

β β β β β

β β β   (11) 

where  
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 1ˆ( ) ,T
IGLE d dVar  −=β V B V   (12) 

and 

  ˆ( ) ,IGLE dbias = −β V I β   (13) 

 where ˆT=B X WX  and 1( ) ( )d d−= + +V B I B I . The MSE of the estimator ˆ
IGLEβ  can be defined as 

 

   1

2 2

2

2 2
1 1

ˆMSE( )

( )
( 1) ,

( 1) ( 1)

TT T
IGRE d d d d

p p
j j

j jj j j

tr

d
d



 


  

−

= =

 = + − −
 

+
= + −

+ +
 

β V B V V I ββ V I

  (14) 

where j  is defined as the jth element of ˆ
IGR β and   is the eigenvector of  the ˆT

X WX . 

3.2.  Comparison of ˆ
IGLEβ  with ˆ

IGRβ  

For two given estimators 1β̂  and 2β̂  of β , the estimator 2β̂  is said to be superior to 1β̂  under the 

MMSE criterion if and only if  1 2
ˆ ˆMMSE( ) MMSE( ) 0− β β .  

Lemma 1: [Rao and Toutenburg (1995)] Let 1A  and 2A  are n n  matrices such that 1 0A  and 

2 0A , then  1 2 0+ A A .  

Lemma 2: [Rao et al. (2008)] Let 1A  and 2A  are n n  matrices such that 1 0A  and 2 0A , then  

1 2A A  if and only if 1
max 2 1( ) 1 − A A .  

Theorem 1: ˆ ˆMMSE( ) MMSE( ) 0IGR IGLE− β β  if and only if   

   
1

1 1
max 1.

TT T
d d d d  

−
− −     + − −       

V B V V I ββ V I B   

Proof  From Eqs. (8), (12), and (13), the matrix difference is 
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β β

B V B V V I ββ V I

Q Q

  

 where 1
1  −=Q B  and    1

2

TT T
d d d d − = + − −

 
Q V B V V I ββ V I . It is obvious that 

1−
B  and 

1 T
d d

−
V B V  are positive definite matrices. Further,    

TT
d d− −V I ββ V I is a non-negative definite 

matrix. By Lemma 1, it is clear that 2Q  is a positive definite matrix. Moreover, by Lemma 2, 

1
max 2 1( ) 1 − Q Q  the 1 2−Q Q  is a positive definite matrix, where 1

max 2 1( ) −
Q Q  is the largest 

eigenvalue of 1
2 1

−
Q Q . Consequently, the proof is completed. 

3.3. Estimating d   

To find the optimal value of d , the first derivative of Eq. (14) with respect to d  is defined as  

 

2

2 2
1 1

ˆMSE( )
ˆ2 2( 1) .

( 1) ( 1)

p p
j jIGLE

j jj j j

dd
d

dd

 


  = =

+
= + −

+ +
 

β
  (15) 

By setting the resulting ˆMSE( ) /IGLEd ddβ  to zero and solving for d , the optimal value is obtained 

as [Månsson (2013)] 

 
2

2

( 1)
.

(1/ )
optimald

 

 

−
=

+
  (16) 

According to Eq. (16), when 
2 1j   the optimald  becomes negative and becomes positive when 

2 1j  . To guarantee that optimald be between 0 and 1, the following methods have been proposed to 

estimate the optimald [Mansson et al. (2012), Månsson (2013)]:  
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, where ̂  is defined as the jth element of ˆ
IGR β and   is the 

eigenvector of the ˆT
X WX  matrix, max̂ is the maximum value of ̂ .  

4. Simulation study  

In this section, a Monte Carlo simulation experiment is used to examine the performance of IGLE 

with different degrees of multicollinearity for both the canonical link function and the log link 

function.  

4.1. Simulation design 

The response variable is drawn from inverse Gaussian distribution ~ ( , )i iy IG   with sample sizes 

100n =  and 150 , respectively, where {0.5,1.5,3}  . The explanatory variables 

1 2( , ,..., )T
i i i inx x x=x  have been generated from the following formula  

 2 1 2(1 ) , 1,2,..., , 1,2,..., ,l

ij ij ipx w w i n j p = − + = =   (17) 

where   represents the correlation between the explanatory variables and ijw ’s are independent 

pseudo-random numbers. Three values of the number of the explanatory variables: 4, 8, and 12, and 

three different values of   corresponding to 0.90, 0.95, and 0.99 are considered. Depending on the 

three type of the link function, i , the canonical and log link functions are investigated.   

4.1.1 Canonical link function 

The canonical link function is defined as 
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1

, 1,2,..., ,i
T
i

i n = =
x β

  (18) 

To grantee that T
ix β  values are positive, the regression parameters are assumed to be equal to 1 

because the results can be generalized to any value for the parameters [Hefnawy and Farag (2013)]. 

Additionally, the ijw in Eq. (17) are generated from uniform distribution (0,1).  

4.1.2 Log link function 

The log link function is defined as  

 exp( ), 1,2,..., .T
i i i n = =x β   (19) 

Here, the vector β  is chosen as the normalized eigenvector corresponding to the largest eigenvalue 

of the T
X WX  matrix subject to 1T =β β  [Kibria (2003)]. In addition, the ijw in Eq. (17) are 

generated from normal distribution (0,1).   

 The estimated average MSE is calculated as  

 IGLE IGLE IGLE

1

1ˆ ˆ ˆMSE( ) ( ) ( ),
R

T

iR =

= − −β β β β β   (20) 

where R  equals 1000 corresponding to the number of replicates used in our simulation. All the 

calculations are computed by R program. 

4.2. Simulation results 

The average estimated MSE of Eq. (20) for all the different selection methods of d  and the 

combination of , ,n p , and  , are respectively summarized in Tables 1 – 6. Several observations 

can be obtained as follows:   

1- Generally, the MSE of IGLE is smaller than that of MLE.  
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2- Clearly, in terms of MSE, 5d  improved the performance of the inverse Gaussian Liu regression 

compared to MLE in all the cases. Furthermore, 5d  is the best estimation method for d  among 

the others in all of the cases. On the other hand, 1d  and 2d  estimators attained poor results 

comparing with the other used estimators in all cases.   

3- In terms of   values, there is increasing in the MSE values when the correlation degree 

increases regardless the value of ,n 
 
and p .   

4- Regarding the number of explanatory variables, it is easily seen that there is a negative impact 

on MSE, where there are increasing in their values when the p  increasing. 

5- With respect to the value of n , the MSE values decrease when n  increases, regardless the 

value of ,   and p . 

6- For fixed ,n p  and degree of multicollinearity  , as the   increases the MSE of all methods 

decreases.  

7- All the selection methods of d are superior to the ML estimator in terms of MSE. 

Table 1: Averaged MSE values for the canonical link function when 4p =  

n         MLE d1 d2 d3 d4 d5 
100 0.5 0.90 11.3231 7.6451 8.6501 1.3911 1.0591 0.9429 
  0.95 14.5411 12.7411 13.0061 1.8051 1.1981 1.1569 
  0.99 17.4381 13.2031 13.4411 2.1501 1.7911 1.7019 
 1.5 0.90 10.3381 5.7821 5.1991 1.2701 1.0451 0.9219 
  0.95 13.2011 8.5751 7.1691 1.4551 1.1321 0.9969 
  0.99 16.9501 9.2051 8.5291 1.7731 1.4191 1.3249 
 3 0.9 6.9011 4.5091 3.7291 1.1911 1.0091 0.8909 
  0.95 11.0021 6.7721 5.4181 1.2191 1.1121 0.9879 
  0.99 14.4401 7.8841 6.4681 1.3711 1.3201 1.1909 
150 0.5 0.9 11.1061 7.4281 8.4331 1.1741 0.8421 0.7259 
  0.95 14.3241 12.5241 12.7891 1.5881 0.9811 0.9399 
  0.99 17.2211 12.9861 13.2241 1.9331 1.5741 1.4849 
 1.5 0.9 10.1521 5.5961 5.0131 1.0841 0.8381 0.7359 
  0.95 13.0151 8.3891 6.9811 1.2691 0.9461 0.8109 
  0.99 16.7641 9.0191 8.3431 1.5881 1.2311 1.1409 
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 3 0.90 10.1301 5.5741 4.9911 1.0621 0.8161 0.7139 
  0.95 12.9931 8.3711 6.9591 1.2481 0.9241 0.7919 
  0.99 16.7421 8.9991 8.3211 1.5651 1.2091 1.1169 

Table 2: Averaged MSE values for the canonical link function when 8p =  

n         MLE d1 d2 d3 d4 d5 
100 0.5 0.90 11.6801 8.0021 9.0071 1.7481 1.4161 1.2999 
  0.95 14.8981 13.0981 13.3631 2.1621 1.5551 1.5139 
  0.99 17.7951 13.5601 13.7981 2.5091 2.1481 2.0609 
 1.5 0.90 10.6951 6.1391 5.5561 1.6491 1.4021 1.3009 
  0.95 13.5581 8.9321 7.5241 1.8121 1.4891 1.3539 
  0.99 17.3091 9.5621 8.8861 2.1301 1.7741 1.6819 
 3 0.9 7.2581 4.8661 4.0861 1.5481 1.3661 1.2459 
  0.95 11.3591 7.1291 5.7751 1.5761 1.4691 1.3449 
  0.99 14.7991 8.2411 6.8241 1.7281 1.6771 1.5479 
150 0.5 0.9 11.4631 7.7851 8.7901 1.5311 1.1991 1.0829 
  0.95 14.6811 12.8811 13.1461 1.9451 1.3381 1.2969 
  0.99 17.5781 13.3431 13.5811 2.2901 1.9311 1.8419 
 1.5 0.9 10.5091 5.9531 5.3701 1.4411 1.1951 1.0929 
  0.95 13.3721 8.7461 7.3381 1.6261 1.3031 1.1679 
  0.99 17.1211 9.3761 8.7001 1.9441 1.5881 1.5959 
 3 0.90 10.4871 5.9311 5.3481 1.4191 1.1731 1.0709 
  0.95 13.3501 8.7241 7.3161 1.6041 1.2811 1.1459 
  0.99 17.0991 9.3541 8.6781 1.9221 1.5661 1.4739 

Table 3: Averaged MSE values for the canonical link function when 12p =  

n         MLE d1 d2 d3 d4 d5 
100 0.5 0.90 11.8341 8.1561 9.1611 1.9021 1.5701 1.4539 
  0.95 15.0521 13.2521 13.5191 2.3161 1.7091 1.6679 
  0.99 17.9491 13.7141 13.9521 2.6611 2.3021 2.2129 
 1.5 0.90 10.8491 6.2931 5.7101 1.7811 1.5561 1.4329 
  0.95 13.7121 9.0861 7.6781 1.9661 1.6431 1.5079 
  0.99 17.4611 9.7161 9.0401 2.2841 1.9281 1.1359 
 3 0.9 7.4121 5.0201 4.2401 1.7021 1.5201 1.3999 
  0.95 11.5131 7.2831 5.9291 1.7301 1.6231 1.5009 
  0.99 14.9511 8.3951 6.9781 1.8821 1.8311 1.6019 
150 0.5 0.9 11.6191 7.9391 8.9441 1.6851 1.3531 1.2369 
  0.95 14.8351 13.0351 13.3001 2.0991 1.4921 1.4509 
  0.99 17.7321 13.4991 13.7351 2.4441 2.0851 1.9959 
 1.5 0.9 10.6631 6.1091 5.5241 1.5951 1.3491 1.2469 
  0.95 13.5261 8.9001 7.4921 1.7801 1.4591 1.3219 
  0.99 17.2751 9.5301 8.8541 2.0981 1.7421 1.5499 
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 3 0.90 10.6411 6.0851 5.5021 1.5731 1.3491 1.2249 
  0.95 13.5041 8.8781 7.4701 1.7581 1.4351 1.2999 
  0.99 17.2531 9.5081 8.8321 2.0761 1.7201 1.5279 

Table 4: Averaged MSE values for the log link function when 4p =  

n         MLE d1 d2 d3 d4 d5 
100 0.5 0.90 11.8361 8.1581 9.1631 1.9041 1.5721 1.4559 
  0.95 15.0541 13.2541 13.5191 2.3181 1.7111 1.6699 
  0.99 17.9511 13.7161 13.9541 2.6631 2.3041 2.2149 
 1.5 0.90 10.8511 6.2951 5.7121 1.7831 1.5581 1.4349 
  0.95 13.7141 9.0881 7.6821 1.9681 1.6451 1.5099 
  0.99 17.4631 9.7181 9.0421 2.2861 1.9321 1.7379 
 3 0.9 7.4141 5.0221 4.2421 1.7041 1.5221 1.4039 
  0.95 11.5151 7.2851 5.9311 1.7321 1.6251 1.5009 
  0.99 14.9531 8.3971 6.9811 1.8841 1.8331 1.6039 
150 0.5 0.9 11.6191 7.9411 8.9461 1.6871 1.3551 1.2389 
  0.95 14.8371 13.0371 13.3021 2.1011 1.4941 1.4529 
  0.99 17.7341 13.4991 13.7371 2.4461 2.0881 1.9979 
 1.5 0.9 10.6651 6.1091 5.5261 1.5971 1.3511 1.2489 
  0.95 13.5281 8.9021 7.4941 1.7821 1.4591 1.3239 
  0.99 17.2771 9.5321 8.8561 2.1011 1.7441 1.6539 
 3 0.90 10.6431 6.0871 5.5041 1.5751 1.3291 1.2269 
  0.95 13.5061 8.8841 7.4721 1.7611 1.4381 1.3049 
  0.99 17.2551 9.5121 8.8341 2.0781 1.7221 1.6299 

Table 5: Averaged MSE values for the log link function when 8p =  

n         MLE d1 d2 d3 d4 d5 
100 0.5 0.90 12.1931 8.5151 9.5201 2.2611 1.9291 1.8129 
  0.95 15.4111 13.6111 13.8761 2.6751 2.0681 2.0269 
  0.99 18.3081 14.0731 14.3111 3.0221 2.6611 2.5739 
 1.5 0.90 11.2081 6.6521 6.0691 2.1621 1.9151 1.8139 
  0.95 14.0711 9.4451 8.0381 2.3251 2.0021 1.8669 
  0.99 17.8221 10.0751 9.3991 2.6431 2.2881 2.1949 
 3 0.9 7.7711 5.3791 4.5991 2.0611 1.8791 1.7609 
  0.95 11.8721 7.6421 6.2881 2.0891 1.9821 1.8579 
  0.99 15.3121 8.7541 7.3391 2.2411 2.1901 2.0609 
150 0.5 0.9 11.9761 8.2981 9.3031 2.0441 1.7121 1.5959 
  0.95 15.1941 13.3941 13.6591 2.4581 1.8511 1.8099 
  0.99 18.0911 13.8561 14.0941 2.8031 2.4441 2.3549 
 1.5 0.9 11.0221 6.4661 5.8831 1.9541 1.7081 1.6059 
  0.95 13.8851 9.2591 7.8511 2.1391 1.8161 1.6809 
  0.99 17.6341 9.8891 9.2131 2.4571 2.1011 2.0109 
 3 0.90 11.0001 6.4441 5.8611 1.9321 1.6861 1.5839 
  0.95 13.8631 9.2391 7.8291 2.1191 1.7941 1.6609 
  0.99 17.6121 9.8691 9.1911 2.4351 2.0791 2.0169 
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Table 6: Averaged MSE values for the log link function when 12p =  

n         MLE d1 d2 d3 d4 d5 
100 0.5 0.90 12.3491 8.6691 9.6741 2.4151 2.0831 1.9669 
  0.95 15.5651 13.7651 14.0321 2.8291 2.2221 2.1809 
  0.99 18.4621 14.2481 14.4651 3.1741 2.8151 2.7259 
 1.5 0.90 11.3621 6.8061 6.2231 2.2941 2.0691 1.9459 
  0.95 14.2251 9.5991 8.1911 2.4791 2.1561 2.0209 
  0.99 17.9741 10.2291 9.5531 2.7981 2.4411 2.6509 
 3 0.9 7.9251 5.5331 4.7531 2.2151 2.0331 1.9129 
  0.95 12.0261 7.7961 6.4421 2.2431 2.1361 2.0139 
  0.99 15.4641 8.9081 7.4911 2.3951 2.3441 2.2149 
150 0.5 0.9 12.1321 8.4521 9.4591 2.1981 1.8661 1.7499 
  0.95 15.3481 13.5481 13.8131 2.6121 2.0051 1.9639 
  0.99 18.2451 14.0121 14.2481 2.9591 2.5981 2.5109 
 1.5 0.9 11.1761 6.6221 6.0391 2.1081 1.8621 1.7599 
  0.95 14.0391 9.4131 8.0051 2.2931 1.9721 1.8349 
  0.99 17.7881 10.0431 9.3691 2.6111 2.2551 2.1629 
 3 0.90 11.1541 6.5981 6.0151 2.0861 1.8621 1.7379 
  0.95 14.0191 9.3911 7.9831 2.2711 1.9481 1.8129 
  0.99 17.7661 10.0211 9.3451 2.5891 2.2331 2.1409 

 

5. Real data application 

To demonstrate the usefulness of the IGLE in real application, we present here a chemistry dataset 

with ( ) ( ),    65,15n p = , where n  represents the number of imidazo[4,5-b]pyridine derivatives, 

which are used as anticancer compounds. While p  denotes the number of molecular descriptors, 

which are treated as explanatory variables [Algamal et al. (2015)]. The response of interest is the 

biological activities (IC50). Quantitative structure-activity relationship (QSAR) study has become a 

great deal of importance in chemometrics. The principle of QSAR is to model several biological 

activities over a collection of chemical compounds in terms of their structural properties [Algamal 

and Lee (2017)]. Consequently, using of regression model is one of the most important tools for 

constructing the QSAR model. A description of the used explanatory variables is provided in Table 

7. All the variables are numerical. 
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Table 7: Description of the used explanatory variables 

Variable 

name’s 

description 

MW molecular weight 

IC3 Information Content index (neighborhood symmetry of 3-order) 

SpMaxA_D normalized leading eigenvalue from topological distance matrix 

ATS8v Broto-Moreau autocorrelation of lag 8 (log function) weighted by van der 

Waals volume 

MATS7v Moran autocorrelation of lag 7 weighted by van der Waals volume 

MATS2s Moran autocorrelation of lag 2 weighted by I-state 

GATS4p Geary autocorrelation of lag 4 weighted by polarizability 

SpMax8_Bh(p) largest eigenvalue n. 8 of Burden matrix weighted by polarizability 

SpMax3_Bh(s) largest eigenvalue n. 3 of Burden matrix weighted by I-state 

P_VSA_e_3 P_VSA-like on Sanderson electronegativity, bin 3 

TDB08m 3D Topological distance based descriptors - lag 8 weighted by mass 

RDF100m Radial Distribution Function - 100 / weighted by mass 

Mor21v signal 21 / weighted by van der Waals volume 

Mor21e signal 21 / weighted by Sanderson electronegativity 

HATS6v leverage-weighted autocorrelation of lag 6 / weighted by van der Waals 

volume 

 

First, to check whether the response variable belongs to the inverse Gaussian distribution, a Chi-

square test is used. The result of the test equals to 5.2762 with p-value equals to 0.2601. It is 

indicated form this result that the inverse Gaussian distribution fits very well to this response 

variable. That is, the following model is set 

 
50

15

1

ˆˆ exp( ).IC j j

j

y 
=

= x   (21) 

Second, to check whether there is a relationship among the explanatory variables or not, Figure 1 

displays the correlation matrix among the 15 explanatory variables. It is obviously seen that there 
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are correlations greater than 0.90 among MW, SpMaxA_D, and ATS8v ( 0.96r = ), between 

SpMax3_Bh(s) and ATS8v ( 0.92r = ), and between Mor21v with Mor21e ( 0.93r = ). 

Third, to test the existence of multicollinearity after fitting the inverse Gaussian regression model 

using log link function and the estimated dispersion parameter is 0.00103, the eigenvalues of the 

matrix ˆT
X WX  are obtained as 91.884 10 , 63.445 10 , 52.163 10 , 42.388 10 , 31.290 10 , 

29.120 10 , 24.431 10 , 21.839 10 , 21.056 10 , 5525 , 3231, 2631, 1654 , 1008 , and 1.115 . The 

determined condition number max minCN / =  of the data is 40383.035 indicating that the severe 

multicollinearity issue is exist. 

The estimated inverse Gaussian regression coefficients and the estimated theoretical MSE values 

for the MLE, and the used estimators are listed in Table 8. According to Table 8, it is clearly seen 

that the inverse Gaussian Liu estimators have MSE values less than the MSE of the MLE, in 

general. Moreover, the MSE of the 5d  estimator is the lowest among all estimators. Specifically, it 

can be seen that the MSE of 5d  estimator was about 44.24%, 38.56%, 33.68%, and 13.06% lower 

than that of 1d , 2d , 3d , and 4d  estimator, respectively. These findings come in agreement with the 

results of simulation. 

 

Figure 1. Correlation matrix among the 15 explanatory variables of the real data. 
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Table 8: The estimated coefficients and MSE values of the used estimators 

 Methods      

̂   MLE d1 d2 d3 d4 d5 

MW 1.002 0.741 0.835 0.734 0.8 0.617 

IC3 1.237 0.977 1.07 0.969 1.035 0.852 

SpMaxA_

D 

-1.102 -1.363 -1.269 -0.902 -1.304 -1.019 

ATS8v -1.379 -1.64 -1.546 -1.179 -1.581 -1.296 

MATS7v -1.219 -1.48 -1.386 -1.019 -1.421 -1.136 

MATS2s -1.215 -1.476 -1.382 -1.015 -1.417 -1.132 

GATS4p -1.237 -1.498 -1.405 -1.037 -1.439 -1.154 

SpMax8_

Bh.p. 

2.506 2.245 2.339 2.707 2.304 2.589 

SpMax3_

Bh.s. 

2.069 1.808 1.902 2.269 1.867 2.152 

P_VSA_e

_3 

2.001 1.739 1.833 2.2 1.798 2.083 

TDB08m -2.103 -2.365 -2.27 -1.903 -2.305 -2.02 

RDF100m 1.571 1.309 1.403 1.77 1.368 1.653 

Mor21v -2.434 -2.695 -2.601 -2.235 -2.636 -2.351 

Mor21e -2.352 -2.613 -2.519 -2.152 -2.554 -2.269 

HATS6v 2.211 1.95 2.044 2.411 2.009 2.294 

MSE 3.295 2.041 1.855 1.716 1.309 1.138 

 

6. Conclusions 

In this paper, a Liu estimator was proposed in inverse Gaussian regression model. Further, 

numerous selection methods of the Liu parameter are explored and investigated. According to 

Monte Carlo simulation studies, the IGLE is always superior to the MLE in terms of MSE for all 

the used d  estimation methods. Further, it has been seen that 5d  can bring significant improvement 

relative to others estimation methods of d , in terms of MSE in all the cases. In conclusion, based 

on the results of the simulation and real data application, the use of IGLE is recommended when 

multicollinearity is present in the inverse Gaussian regression model. 
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