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Abstract

When there is collinearity between the response variable and numerous
explanatory variables, modeling the link between the response variable and
several explanatory variables is difficult. Several shrinkage estimators have
traditionally been presented to avoid this problem. The Kibria and Lukman
estimator is one of them (K-L). In this paper, a jackknifed version of the K-L
estimator in the Bell regression model is proposed, which combines the
Jackknife process with the K-L estimator to reduce biasedness. In terms of
absolute bias and mean squared error, our Monte Carlo simulation findings and
real-world application of the Bell regression model imply that the suggested
estimate can provide significant improvements over current competing
estimators.

Keywords: Collinearity; K-L estimator; Bell regression model; Jackknife
estimator; Monte Carlo simulation.

1. Introduction

Because it describes the relationship between the response variable of interest and a variety of
explanatory variables, statistical modeling is significant in many scientific research domains. The
response variable in a linear regression model is assumed to have a normal distribution. This
assumption, however, may not hold true in many real-world applications. The response variable in
medical sciences, for example, can be favorably count. As a result, employing a linear regression
model may not be appropriate. The generalized linear model (GLM) is a type of regression model
that is becoming increasingly popular as a statistical modeling tool for both continuous and discrete
response variables. (Algamal, 2018).

In real applications, the design data matrix X has multicollinearity between explanatory variables,
and, therefore, X' X is singular or can be inflating the variance of the maximum likelihood
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estimator (MLE). Therefore, the traditional estimation methods, such as MLE, tend to perform
poorly. The ridge, Liu, Liu-type, and others estimator that given by several authors is an alternative
to MLE to overcome the multicollinearity in linear regression model (Hoerl & Kennard, 1970; K.
Liu, 1993). These estimators have been extended to the GLMs (Akram, Amin, & Amanullah, 2020;
B. M. G. Kibria, 2003; G. Kibria, Mansson, & Shukur, 2012; Kurtoglu & Ozkale, 2016; Mackinnon
& Puterman, 1989; Mansson & Shukur, 2011; Nyquist, 1991; Segerstedt, 1992; Shamany, Alobaidi,
& Algamal, 2019).

Although the powerful of these shrinkage estimators, but they have a smaller bias. It is possible to
reduce bias by applying a jackknife procedure to these estimators. This procedure enables
processing of experimental data to get statistical estimator for unknown parameters. The advantage
of the jackknife procedure is that it presents an estimator that has a small bias while still providing
beneficial properties of large samples (Alkhateeb & Algamal, 2020; Mansi Khurana, Yogendra P.
Chaubey, & Shalini Chandra, 2014; Ozkale & Arican, 2018).

The main objective given in this paper is to use Jackknife approach with the new ridge-type
estimator (K-L estimator) of Kibria and Lukman (2020). Our proposed estimator will efficiently
help to decrease the biasness of K-L estimator in Bell regression model. The superiority of our
proposed estimator in different simulated examples and a real data application is proved.

2. K-L estimator in Bell regression model

Assume that (y;,X;), i =1,2,...,n is independent observed data with the predictor vector x, e R**
and the response variable y; € R which follows a distribution that belongs to the Bell distribution.

Then, the density function of y, can be expressed as

eye—e€+1B
P (v =y):Ty, y =012,.., 1)

where >0 and B = (1/e)2(d Y /d 1) is the Bell numbers (Eric T Bell, 1934; Eric Temple Bell,

d=0
1934; Castellares, Ferrari, & Lemonte, 2018). The mean and variance of the Bell distribution
are respectively defined by

E(y):eee, (@)
Var(y)=0(1+6)e’. (3)

Assuming y =6e’ and 0 =W _(y) where W (.) is the Lambert function. Then Eq. (1) can be
written in the new parameterization as
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W, (v) B

ptv =y)=epfe-e By oz @

In GLM, the mean of the response variable, & =E (y;), is conditionally related to a linear function

p
of predictors through a link function. The linear function is stated as 7, = £, + > _x; 8; =x| p with
j=1

Xi =@ X5 X 3X;,) and p=(5,,B....5,)" . The link function is providing the relation of the
mean and the natural parameter as z =g ‘(1) =9 (X B) . The Bell regression model (BRM) can

be modeled by assuming v, =exp(xf B) exp(exp(x{ B)) and logy, =x; B exp(x{B) as

y; O BeII(Wo(x//i )) . The parameter estimation in the BRM is achieved through using the MLE

based on the iteratively reweighted least-squares algorithm. The log-likelihood is defined

et

e

L(B.y) =Zn:yi Iog(exp(xj[;)exp(e(x?B)DJrZ”: 1 e

i=1 i=1 (5)

+logB, —Iog(l_[yi !j.

i=1
Then, the MLE is derived by equaling the first derivative of Eq. (5) to zero. This derivative cannot
be solved analytically because it is nonlinear in B . Fisher-scoring algorithm can be used to obtain
the MLE where in each iteration, the parameter is updated by

B =g+ 17(B)S (B), (6)
where | (B) = (—E (0°¢(B.#)/ OBOP" ))71. After that, the estimated coefficients are defined as

ﬁMLE = (XT WX)AXT Wﬁ, (7)
where W:diag[(ﬁyi/ani)zlv (yi)] and O is a vector where i element equals to

U, =Iogz/7i+[(yi—ﬂi)/,/var(zﬁi)]. The MLE is distributed asymptotically normal with a
covariance matrix as

A 2 _1 ~
coV(Byie) = {—E (%H - (XT WX)*l_ (8)

In the presence of multicollinearity, the rank (XT\fVX)grank (X), and, therefore, the near

singularity of X" WX makes the estimation unstable and enlarges the variance (G. Liu &
Piantadosi, 2016). The ridge estimator (RE) (Hoerl & Kennard, 1970), Liu estimator (K. Liu, 1993)
have been consistently demonstrated to be an attractive and alternative to the MLE, when the
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multicollinearity exists. In in Bell regression model, the ridge estimator and Liu estimator have been
proposed by, respectively, Amin, Akram, and Majid (2021) and Majid, Amin, and Akram (2021).

3. Jackknifing K-L estimator in Bell regression model

In 2020, Kibria and Lukman proposed a new ridge-type estimator for the linear regression model.
This proposed estimator is called as Kibria-Lukman (KL) estimator, which is defined as (B. M.
Golam Kibria & Lukman, 2020):

B =(I+k (X'X)") " (I-k (X' X)*)(X'X) Xy, ©)

where k >0 is the shrinkage parameter. The estimator ﬁKL is biased but more stable and has less

mean square error than the ordinary least square estimator. For the BRM, Eq. (9), ﬁKL_BRM, can be

defined as (Adewale F. Lukman, Algamal, Kibria, & Ayinde, 2021; A. F. Lukman, Dawoud, Kibria,
Algamal, & Aladeitan, 2021)

_ (1 +k (X WX)1)1 (1 —k (X WX)’l)(XT WX) X Wi. (10)

BKL-BRM
The bias and variance of Eq. (10) are defined as, respectively,

Bias(B,, ..,,) =—2k Q(X WX +k I) '« (12)

Variance(B,, ..,) = QX WX +k I)*(X WX —k I)*(X" WX)™

. . (12)
(XWX +k 1) (XWX -k N'QT,

where Q=(0;,9,,-.,0,) represents the matrix of eigenvectors of the X" WX matrix, and

o= QT B . In simple way, the mean square error (MSE) of Eq. (10) can be written as

. P (A —k)? P ol
MSEPB, ary) =Y ———+4k 2y —_ (13)
KL-BRM ,Z:;zj (4, +k) ,Z:;(/Ij +k)?

Shrinkage estimators are biased estimators. In linear regression model, Singh, Chaubey, and
Dwivedi (1986) proposed the Jackknife procedure to alleviate the problem of bias in generalized
ridge estimator. The theoretical and application of the jackknife estimator have been studied by
several authors (Akdeniz Duran & Akdeniz, 2012; Alkhateeb & Algamal, 2020; Gruber, 1991,
Mansi Khurana, Yogendra P Chaubey, & Shalini Chandra, 2014; Nyquist, 1988; Ozkale & Arican,
2018; Tiirkan & Ozel, 2015; Yildiz, 2017).

The proposed estimator, Jackknifed K-L estimator (JKL-BRM), in BRM can be expressed and
derived. Let A =diag(4,4,,...,4,) is the matrix of eigenvalues of the X" WX matrix, such that
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Q" X" WXQ=M"WM = A, where M=XQ. Consequently, the MLE estimator of Eq. (7) can be
re-written as

Bue = QUpe, (14)
where 9y, c = A™"M" Wii. As a result, the KL-BRM estimator of Eq. (10) is re-written as
Vo = (A+kDH(A-KT) M Wi (15)

Following the idea of Jackknife approach (Hinkley, 1977), let u._;,, m.;,, and W,
respectively, are the i row deleted from the vector u, the i row deleted from the matrix M, and
the i row and column deleted from the matrix \W. Let éKL_GLM(_i) be given by Eq. (12) with

replacing M, W, and u by My, Wy, and u,, thus,
ﬁKL-GLM(-i) = (M-I(-—i)w(—i)M(—i) +k I)_l(M-(r—i)W(—i)M(—i) —k I)_1M1(-—i)w(—i )ﬁ(—i)l (16)
where (M{_;,W_;,M_;, Fk I)™* is calculated according to Sherman-Morrison Woodbury theorem.

Consequently, Eq. (13) can be expressed as

(MTWM +k 1)2(MT WM =k 1) m] (0 —m] D)
1-m{ (M"WM+k ){(M" WM -k I)"m,

f)KL-GLM(-i) = f)KL-GLM - - (17)

Using the weighted pseudo values (Hinkley, 1977), which are calculated as

T.

=Vyam +NEA- m? (MT WM +k I)_l(MT WM -k I)_lmi )Oxioim — 13K|_-c-;|_|v|(-i))- (18)

Then, our proposed estimator, JKL-BRM, is defined as

n
VjiL-8rM = ViBrM T (MT WM +k I)il(MT WM -k I)flzmT (1 —m{ Vy1-BRM )- (19)

i=1

The bias, variance and MSE of v,,, gry IS respectively defined as

sias(s [l — 2k (M"WM +k |)*1]

v, (20)

JKL-BRM )

[l + 2k (MTWM +k |)+1]—|
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2
Variance(d ., ) = [1 ~ (2K (M7 WM +k 1)-1)2} (M" WM +k 1)
(21)
2

[l—(zk (M™WM +k |)-1)}

2 2
. p((lj+k)2_4k2) (ﬂj_k)
MSE(Dyo0) = 2, A (2 +K)°

(k) (4 +3€)~(4 +k) )

]

(22)

>

= (A +K)’

4. Theoretical comparison between v, grm aNd V| 5rm
With availability of different estimators for a parameter in the regression model, it is of interest to

compare their performances in terms of MSE. For two given estimators §, and g of B, the

estimator Bg is said to be superior to B, under the MSE criterion if and only if
A=MSE (B,)—MSE (B3 ) =0.

Lemma: (Farebrother, 1976) Let G isa pxp positive definite matrix, b isa p x1 yector, and C

is a positive constant. Then ¢G —bb" s a nonnegative definite if and only if b" G™b <¢ s hold.
Theorem. The proposed estimator v,,, .grm IS SUperior to estimator vy, grm if and only if

o [1— 2k (M" WM +k I)’lT [I +2k (M" WM +k 1)*1]—1]

2

[ (M"WM k1) (M"WM)* (MTWM +k1) —[I ~(2k (M"WM +k |)-1)1

(23)
R R 2 R _
(MTWM)[I—(ZK(MTWM+kI)’l)} +4k2(MTWM+kI)21)Tv}
[1-2k (M WMk 1) (14 2k (MTWM k1) 2] - 1] <1
Proof. The difference between MSE (¥, 4ay,) and MSE (D, grm) IS
, 2 5\2 2"
14k ((/Ij—lrk) 4k )(ﬁj—k)
=diag < — - 5 (24)
A\ A +K A (4 +k)

i1

Consequently,
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T\A 2 TR =1 n AT \A 2 Th\A 1)? ?
(M WM +k |) (M"WM) (M WM +k |) - I—(Zk(M WM +k 1) )
(25)
A A 2
M WM[I ~ (2K (MT WM +k |)*1)}
is positive definite provided
2 4 2 5\2 2
(2 =k (2 k)" > (2 +k ) =42 (3 =k ). (26)
the proof is completed.
5. Simulation results
Table 1: Mean squared error of simulated data when p=3
n Estimator r=0.7 r=0.8 r=0.9 r=0.99
30 MLE 4.8489 5.0375 5.4917 13.4242
RIDGE 1.4124 1.4424 1.5614 1.7544
Liu 1.4548 1.4574 1.5767 9.2924
KL 1.2532 1.4152 1.496 1.6553
JKL 1.2116 1.2501 1.3282 1.4879
50 MLE 1.6083 1.8681 2.0006 7.1706
RIDGE 1.1729 1.2498 1.271 1.2737
Liu 1.3381 1.3737 1.4066 7.0068
KL 1.1718 1.2457 1.2562 1.2654
JKL 1.1448 1.2058 1.1944 1.2125
100 MLE 1.3103 1.3704 1.4676 3.1757
RIDGE 1.0974 1.1547 1.1669 1.1753
Liu 1.2814 1.2858 1.2895 1.3467
KL 1.0748 1.1517 1.1665 1.1745
JKL 1.0543 1.1085 1.0834 1.0719
Table 2: Mean squared error of simulated data when p=8
n Estimator r=0.7 r=0.8 r=0.9 r=0.99
30 MLE 4.87 5.0586 5.5128 13.4453
RIDGE 1.4335 1.4635 1.5825 1.7755
Liu 1.4759 1.4785 1.5978 9.3135
KL 1.2743 1.4363 1.5171 1.6764
JKL 1.2327 1.2712 1.3493 1.509
50 MLE 1.6294 1.8892 2.0217 7.1917
RIDGE 1.194 1.2709 1.2921 1.2948
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Liu 1.3592 1.3948 1.4277 7.0279
KL 1.1929 1.2668 1.2773 1.2865
JKL 1.1659 1.2269 1.2155 1.2336
100 MLE 1.3314 1.3915 1.4887 3.1968
RIDGE 1.1185 1.1758 1.188 1.1964
Liu 1.3025 1.3069 1.3106 1.3678
KL 1.0959 1.1728 1.1876 1.1956
JKL 1.0754 1.1296 1.1045 1.093
Table 3: Mean squared error of simulated data when p=12
n Estimator r=0.7 r=0.8 r=0.9 r=0.99
30 MLE 4.9027 5.0913 5.5455 13.478
RIDGE 1.4662 1.4962 1.6152 1.8082
Liu 1.5086 1.5112 1.6305 9.3462
KL 1.307 1.469 1.5498 1.7091
JKL 1.2654 1.3039 1.382 1.5417
50 MLE 1.6621 1.9219 2.0544 7.2244
RIDGE 1.2267 1.3036 1.3248 1.3275
Liu 1.3919 1.4275 1.4604 7.0606
KL 1.2256 1.2995 1.31 1.3192
JKL 1.1986 1.2596 1.2482 1.2663
100 MLE 1.3641 1.4242 1.5214 3.2295
RIDGE 1.1512 1.2085 1.2207 1.2291
Liu 1.3352 1.3396 1.3433 1.4005
KL 1.1286 1.2055 1.2203 1.2283
JKL 1.1081 1.1623 1.1372 1.1257
Table 4: Mean squared error of simulated data when p=16
n Estimator r=0.7 r=0.8 r=0.9 r=0.99
30 MLE 4.9411 5.1297 5.5839 13.5164
RIDGE 1.5046 1.5346 1.6536 1.8466
Liu 1.547 1.5496 1.6689 9.3846
KL 1.3454 1.5074 1.5882 1.7475
JKL 1.3038 1.3423 1.4204 1.5801
50 MLE 1.7005 1.9603 2.0928 7.2628
RIDGE 1.2651 1.342 1.3632 1.3659
Liu 1.4303 1.4659 1.4988 7.099
KL 1.264 1.3379 1.3484 1.3576
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JKL 1.237 1.298 1.2866 1.3047
100 MLE 1.4025 1.4626 1.5598 3.2679
RIDGE 1.1896 1.2469 1.2591 1.2675
Liu 1.3736 1.378 1.3817 1.4389
KL 1.167 1.2439 1.2587 1.2667
JKL 1.1465 1.2007 1.1756 1.1641
6. Real-life application

6.1.  Aircraft Data

This dataset is originally assumed to follow the Poisson regression model (see Myers et al., 2012;
Asar & Genc, 2017; Amin et al. 2020; Lukman et al., 2021a,b), among others. The response
variable y represent the number of locations with damage on the aircraft and it follows a Poisson
distribution (Myers et al., 2012; Asar & Genc, 2017; Amin et al. 2020; Lukman et al., 2021a,b). The
explanatory variables are described as follows: x; denotes aircraft type (A-4 coded as O and A-6
coded as 1), x2 and x3 denote bomb load in tons and total months of aircrew experience,
respectively. Lukman et al. (2021a,b) diagnosed the model and conclude that the model suffers
from multicollinearity because the condition number is 219.3654. The output of the Poisson
regression model using the maximum likelihood method is presented in Table 5.

Table 5: Poisson regression estimates using MLE

Coef. Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.4060  0.8775 -0.463 0.6436

x1 0.5688 0.5044 1.128 0.2595
X2 0.1654 0.0675  2.449 0.0143
X3 -0.0135  0.0083 -1.633 0.1025

However, the variance of the number of locations with damage on the aircraft is more than twice the
mean (2.0569). With this, it is evident that the data exhibit over-dispersion. Bell Regression models
account for over-dispersion in count data (Castellares et al., 2018; Lemonte et al. 2020). Recently,
Amin et al. (2021) employed the bell regression model to model the same dataset. Table 6 provides
the regression estimates and the mean squared error of each of the adopted estimators in this study.
The biasing parameter k proposed by Hoerl et al. (1975) was adopted as the biasing parameter for
the Bell ridge and the Bell KL estimators.

k=2 (25)

oL
The Scalar mean squared error (MSE) for the other adopted method of estimation in this study are
as follows:

MSE(EMLE) = ij:l}lij (26)
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where ; is the eigenvalue of XTWX.
3 _vP _X 2P _ 9
MSE(Bk—BRM) = Zj:l (Aj+k)2 +k =1 (}\]-+k)2 (27)
where &jz is the jth squared of the maximum likelihood estimate.
3 _wp ()’ _nevp Y
MSE(Bd—BRM) - Zj:l?\j()\ﬁl)z + (1 d) j=1 (7\j+1)2 (28)

6.2.  Table 6: Bell regression estimates for Aircraft Data

Coef. Bwee Brosrm Ba_srm Bxi-BrM  Biki-BRM

Intercept -0.0534
-0.5422 -0.1509 -0.3006 -0.0375

0.0021
0.5990 0.3433 0.0034 0.3285

X2 0.0521
0.1630 0.1665 0.0119 0.1605

X3 -0.0362
-0.0117 -0.0146 -0.0023 -0.0161

MSE 0.1125
1.7447 0.1609 0.5327 0.1493

7. Conclusions

We have presented a new proposed estimator of K-L estimator for Bell regression model in the
presence of collinearity. The proposed estimator combines Jackknife procedure with K-L estimator
to reduce the biasedness. Our experimental results with both simulated and real application, which
is related to the Bell regression model, demonstrated that the proposed estimator could successfully
deal with collinearity. Moreover, compared with MLE, Ridge, and KL-BRM, the proposed
estimator can efficiently reduce the MSE.
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