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Abstract 

When there is collinearity between the response variable and numerous 

explanatory variables, modeling the link between the response variable and 

several explanatory variables is difficult. Several shrinkage estimators have 

traditionally been presented to avoid this problem. The Kibria and Lukman 

estimator is one of them (K-L). In this paper, a jackknifed version of the K-L 

estimator in the Bell regression model is proposed, which combines the 

Jackknife process with the K-L estimator to reduce biasedness. In terms of 

absolute bias and mean squared error, our Monte Carlo simulation findings and 

real-world application of the Bell regression model imply that the suggested 

estimate can provide significant improvements over current competing 

estimators. 

Keywords: Collinearity; K-L estimator; Bell regression model; Jackknife 

estimator; Monte Carlo simulation. 

 

1. Introduction 

Because it describes the relationship between the response variable of interest and a variety of 

explanatory variables, statistical modeling is significant in many scientific research domains. The 

response variable in a linear regression model is assumed to have a normal distribution. This 

assumption, however, may not hold true in many real-world applications. The response variable in 

medical sciences, for example, can be favorably count. As a result, employing a linear regression 

model may not be appropriate. The generalized linear model (GLM) is a type of regression model 

that is becoming increasingly popular as a statistical modeling tool for both continuous and discrete 

response variables. (Algamal, 2018).  

In real applications, the design data matrix X  has multicollinearity between explanatory variables, 

and, therefore, 
T

X X  is singular or can be inflating the variance of the maximum likelihood 
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estimator (MLE). Therefore, the traditional estimation methods, such as MLE, tend to perform 

poorly. The ridge, Liu, Liu-type, and others estimator that given by several authors is an alternative 

to MLE to overcome the multicollinearity in linear regression model (Hoerl & Kennard, 1970; K. 

Liu, 1993). These estimators have been extended to the GLMs (Akram, Amin, & Amanullah, 2020; 

B. M. G. Kibria, 2003; G. Kibria, Månsson, & Shukur, 2012; Kurtoğlu & Özkale, 2016; Mackinnon 

& Puterman, 1989; Månsson & Shukur, 2011; Nyquist, 1991; Segerstedt, 1992; Shamany, Alobaidi, 

& Algamal, 2019).  

Although the powerful of these shrinkage estimators, but they have a smaller bias. It is possible to 

reduce bias by applying a jackknife procedure to these estimators. This procedure enables 

processing of experimental data to get statistical estimator for unknown parameters. The advantage 

of the jackknife procedure is that it presents an estimator that has a small bias while still providing 

beneficial properties of large samples (Alkhateeb & Algamal, 2020; Mansi Khurana, Yogendra P. 

Chaubey, & Shalini Chandra, 2014; Özkale & Arıcan, 2018).  

The main objective given in this paper is to use Jackknife approach with the new ridge-type 

estimator (K-L estimator) of Kibria and Lukman (2020).  Our proposed estimator will efficiently 

help to decrease the biasness of K-L estimator in Bell regression model. The superiority of our 

proposed estimator in different simulated examples and a real data application is proved. 

2. K-L estimator in Bell regression model 

Assume that (y , ), 1, 2,...,i i i n=x  is independent observed data with the predictor vector 
1p

i R +x  

and the response variable iy R  which follows a distribution that belongs to the Bell distribution. 

Then, the density function of iy  can be expressed as 

  

 ( )
1

, 0,1,2,...,
!

y e

ye B
P Y y y

y



 − +

= = =  (1) 

where 0   and 
0

(1/ ) ( / !)y

y

d

B e d d


=

=   is the Bell numbers (Eric T Bell, 1934; Eric Temple Bell, 

1934; Castellares, Ferrari, & Lemonte, 2018). The mean and variance of the Bell distribution 

are respectively defined by 

 ( ) ,E y e =  (2) 

 ( ) ( )1 .Var y e  = +  (3) 

Assuming e  =  and ( )W =  where ( ).W  is the Lambert function. Then Eq. (1) can be 

written in the new parameterization as 
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 ( ) ( )( )
( )

exp 1 , 0,1,2,...,
!

y

yW W B
P Y y e y

y

 
= = − =  (4) 

In GLM, the mean of the response variable, ( )i iE y = , is conditionally related to a linear function 

of predictors through a link function. The linear function is stated as 
0

1

p
T

i ij j i

j

x  
=

= + = x β  with 

2 3(1, , ,..., )T

i i i ipx x x=x  and 0 1( , ,..., )T

p  =β . The link function is providing the relation of the 

mean and the natural parameter as 
1 1( ) ( )T

i i ig g − −= = x β . The Bell regression model (BRM) can 

be modeled by  assuming ( ) ( )( )exp exp expT T

i i i = x β x β  and ( )log expT T

i i i = x β x β  as   

( )( )Belli iy W  . The parameter estimation in the BRM is achieved through using the MLE 

based on the iteratively reweighted least-squares algorithm. The log-likelihood is defined  

 

( ) ( ) ( )
( )

1 1

1

( , ) log exp exp 1

log log ! .

T
i

T eeT i
i

n n
T e

i i

i i

n

y i

i

y e e

B y


= =

=

 
    = + −      

 

 
+ −  

 

 



x β

x β
x β

β x β

  (5) 

Then, the MLE is derived by equaling the first derivative of Eq. (5) to zero. This derivative cannot 

be solved analytically because it is nonlinear in β . Fisher-scoring algorithm can be used to obtain 

the MLE where in each iteration, the parameter is updated by 

 
(r 1) ( ) 1 ( ) ( )( ) ( ),r r rI S+ −= +β β β β   (6) 

where ( )( )
1

1 2( ) ( , ) / TI E 
−

− = −   β β β β . After that, the estimated coefficients are defined as  

 1
MLE

ˆ ˆ ˆ ˆ( ) ,T T−=β X WX X Wu   (7) 

where 
2ˆ diag ( / ) / ( )i i iV y  =  

 
W  and û  is a vector where ith element equals to 

ˆ ˆˆ ˆlog [( ) / var( )]i i i i iu y  = + − . The MLE is distributed asymptotically normal with a 

covariance matrix as 

 

1
2

1
MLE

( , )ˆ ˆcov( ) ( ) .T

T
E


−

−
  

= − =  
    

β
β X WX

β β
  (8) 

In the presence of multicollinearity, the ˆ( ) ( )Trank rankX WX X , and, therefore, the near 

singularity of ˆT
X WX  makes the estimation unstable and enlarges the variance (G. Liu & 

Piantadosi, 2016). The ridge estimator (RE) (Hoerl & Kennard, 1970), Liu estimator (K. Liu, 1993) 

have been consistently demonstrated to be an attractive and alternative to the MLE, when the 
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multicollinearity exists. In in Bell regression model, the ridge estimator and Liu estimator have been 

proposed by, respectively, Amin, Akram, and Majid (2021) and Majid, Amin, and Akram (2021). 

3. Jackknifing K-L estimator in Bell regression model 

In 2020, Kibria and Lukman proposed a new ridge-type estimator for the linear regression model. 

This proposed estimator is called as Kibria-Lukman (KL) estimator, which is defined as (B. M. 

Golam Kibria & Lukman, 2020): 

 ( ) ( )( )
1 1

1 1

KL
ˆ ( ) ( ) ,T T T Tk k

− −
− −=  +  −β X X X X X X X y  (9) 

where 0k   is the shrinkage parameter. The estimator KLβ̂ is biased but more stable and has less 

mean square error than the ordinary least square estimator. For the BRM, Eq. (9), KL-BRMβ̂ , can be 

defined as (Adewale F. Lukman, Algamal, Kibria, & Ayinde, 2021; A. F. Lukman, Dawoud, Kibria, 

Algamal, & Aladeitan, 2021)  

  ( ) ( )
1

1 1 1

KL-BRM
ˆ ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) .T T T Tk k

−
− − −= + −β Ι X WX Ι X WX X WX X Wu  (10) 

The bias and variance of Eq. (10) are defined as, respectively, 

 
1

KL-BRM
ˆ ˆBias( ) 2 ( )Tk k −= − +β Q X WX I  (11) 

  

1 1 1

KL-BRM

1 1

ˆ ˆ ˆ ˆVariance( ) ( ) ( ) ( )

ˆ ˆ( ) ( ) ,

T T T

T T T

k k

k k

− − −

− −

= + −

+ −

β Q X WX I X WX I X WX

X WX I X WX I Q
 (12) 

where 1 2( , ,..., )pq q q=Q  represents the matrix of eigenvectors of the ˆT
X WX  matrix, and 

T =Q β . In simple way, the mean square error (MSE) of Eq. (10) can be written as 

 

2 2

2

KL-BRM 2 2
1 1

( )
ˆMSE( ) 4 .

( ) ( )

p p
j j

j jj j j

k
k

k k

 

  = =

−
= +

+ +
 β  (13) 

Shrinkage estimators are biased estimators. In linear regression model, Singh, Chaubey, and 

Dwivedi (1986) proposed the Jackknife procedure to alleviate the problem of bias in generalized 

ridge estimator. The theoretical and application of the jackknife estimator have been studied by 

several authors (Akdeniz Duran & Akdeniz, 2012; Alkhateeb & Algamal, 2020; Gruber, 1991; 

Mansi Khurana, Yogendra P Chaubey, & Shalini Chandra, 2014; Nyquist, 1988; Özkale & Arıcan, 

2018; Türkan & Özel, 2015; Yıldız, 2017).  

The proposed estimator, Jackknifed K-L estimator (JKL-BRM), in BRM can be expressed and 

derived. Let 1 2diag( , ,..., )p  =Λ  is the matrix of eigenvalues of the ˆT
X WX  matrix, such that 
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ˆ ˆT T T= =Q X WXQ M WM Λ , where =M XQ . Consequently, the MLE estimator of Eq. (7) can be 

re-written as 

 MLE MLE
ˆ ˆ ,=β Qυ   (14) 

where 
1

MLE
ˆˆ ˆT−=υ Λ M Wu . As a result, the KL-BRM estimator of Eq. (10) is re-written as  

 
1 1

KL-GLM
ˆˆ ˆ( ) ( ) .Tk k− −= + −υ Λ I Λ I M Wu   (15) 

Following the idea of Jackknife approach (Hinkley, 1977), let ( )i−u , ( )i−m , and ( )i−W , 

respectively, are the ith row deleted from the vector u , the ith row deleted from the matrix M , and 

the ith row and column deleted from the matrix W. Let  KL-GLM(- )
ˆ

iθ  be given by Eq. (12) with 

replacing M , W, and u  by ( )i−M , ( )i−W , and ( )i−u , thus , 

 
1 1

KL-GLM(-i) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
ˆ ˆ ˆˆ ˆ( ) ( ) ,T T T

i i i i i i i i ik k− −
− − − − − − − − −= + −υ M W M I M W M I M W u  (16) 

where 
1

( ) ( ) ( )
ˆ( )T

i i i k −
− − −M W M I  is calculated according to Sherman-Morrison Woodbury theorem. 

Consequently, Eq. (13) can be expressed as  

 
1 1

KL-GLM
KL-GLM(-i) KL-GLM 1 1

ˆ ˆ ˆˆ( ) ( ) ( )
ˆ ˆ .

ˆ ˆ1 ( ) ( )

T T T T
i i i

T T T
i i

k k

k k

− −

− −

+ − −
= −

− + −

M WM I M WM I m u m υ
υ υ

m M WM I M WM I m
 (17) 

 Using the weighted pseudo values (Hinkley, 1977), which are calculated as 

1 1
KL-GLM KL-GLM KL-GLM(-i)

ˆ ˆˆ ˆ ˆ(1 ( ) ( ) )( ).T T T
i i iT n k k− −= + − + − −υ m M WM I M WM I m υ υ  (18) 

Then, our proposed estimator, JKL-BRM, is defined as  

 
1 1

JKL-BRM KL-BRM KL-BRM

1

ˆ ˆˆ ˆ ˆˆ( ) ( ) ( ).
n

T T T T
i i i

i

k k− −

=

= + + − −υ υ M WM I M WM I m u m υ   (19) 

The bias, variance and MSE of JKL-BRMυ̂  is respectively defined as 

 

2
1

JKL-BRM
1 1

ˆ2 ( )
ˆBias( ) ,

ˆ2 ( )

T

T

k k

k k

−

− −

  − +
  =
  + + −   

I M WM I
υ υ

I M WM I I
 (20) 
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2
2 2

2

JKL-BRM 6
1

2
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2

6
1

4
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3
.
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p j j j j

j
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k k k
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=

=

+ − −
= +

+

− + − +

+





υ

 (22) 

4. Theoretical comparison between  JKL-BRMυ̂  and KL-BRMυ̂  

With availability of different estimators for a parameter in the regression model, it is of interest to 

compare their performances in terms of MSE. For two given estimators ˆ
Aβ  and ˆ

Bβ  of β , the 

estimator ˆ
Bβ  is said to be superior to ˆ

Aβ  under the MSE criterion if and only if  

ˆ ˆ=MSE( ) MSE( ) 0A B − β β .  

Lemma: (Farebrother, 1976)  Let G  is a p p  positive definite matrix, b  is a 1p   vector, and c  

is a positive constant. Then 
Tc −G bb  is a nonnegative definite if and only if 

1T c− b G b is hold.  

Theorem. The proposed estimator JKL-BRMυ̂  is superior to estimator KL-BRMυ̂  if and only if 



 ( ) ( ) ( )

( ) ( )



2
1 1

2
2 2 2

1 1

2 2
1 2

2
1 1

ˆ ˆ2 ( ) 2 ( )

ˆ ˆ ˆ ˆ( ) 2 ( )

ˆ ˆ ˆ( ) 2 ( ) 4

ˆ ˆ2 ( ) 2 ( ) 1

T T T

T T T T

T T T T

T T

k k k k

k k k k

k k k k

k k k k

− −

−
− −

−
−

− −

   − + + + −
   

 − + − − +
  

 − + + +
  

   − + + + − 
   

υ I M WM I I M WM I I

M WM I M WM M WM I I M WM I

M WM I M WM I M WM I υ υ

I M WM I I M WM I I υ

 (23) 

Proof. The difference between 
JKL-BRM

ˆMSE( )υ  and KL-BRM
ˆMSE( )υ  is 

 
( )( ) ( )

( )

2
2 2

22

6

1

4
1

p

j j
j

j i
j j

j

k k kk
diag

k k

 

   
=

 
+ − − − 

= −  
+  + 

 

 (24) 

Consequently, 
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( ) ( ) ( )

( )

2
2 2 2

1 1

2
1

ˆ ˆ ˆ ˆ( ) 2 ( )

ˆ ˆ2 ( )

T T T T

T T

k k k k

k k

−
− −

−

  + + − − +
    

 − +
 

M WM I M WM M WM I I M WM I

M WM I M WM I

 (25) 

is positive definite provided  

 ( ) ( ) ( )( ) ( )
2

2 4 2 2
24 .j j j jk k k k k   − +  + − −  (26) 

the proof is completed. 

5. Simulation results 

Table 1: Mean squared error of simulated data when p=3 

                 

n Estimator r=0.7 r=0.8 r=0.9 r=0.99 

30 MLE 4.8489 5.0375 5.4917 13.4242 

 RIDGE 1.4124 1.4424 1.5614 1.7544 

 Liu 1.4548 1.4574 1.5767 9.2924 

 KL 1.2532 1.4152 1.496 1.6553 

 JKL 1.2116 1.2501 1.3282 1.4879 

50 MLE 1.6083 1.8681 2.0006 7.1706 

 RIDGE 1.1729 1.2498 1.271 1.2737 

 Liu 1.3381 1.3737 1.4066 7.0068 

 KL 1.1718 1.2457 1.2562 1.2654 

 JKL 1.1448 1.2058 1.1944 1.2125 

100 MLE 1.3103 1.3704 1.4676 3.1757 

 RIDGE 1.0974 1.1547 1.1669 1.1753 

 Liu 1.2814 1.2858 1.2895 1.3467 

 KL 1.0748 1.1517 1.1665 1.1745 

 JKL 1.0543 1.1085 1.0834 1.0719 

 

 

Table 2: Mean squared error of simulated data when p=8 

 

n Estimator r=0.7 r=0.8 r=0.9 r=0.99 

30 MLE 4.87 5.0586 5.5128 13.4453 

 RIDGE 1.4335 1.4635 1.5825 1.7755 

 Liu 1.4759 1.4785 1.5978 9.3135 

 KL 1.2743 1.4363 1.5171 1.6764 

 JKL 1.2327 1.2712 1.3493 1.509 

50 MLE 1.6294 1.8892 2.0217 7.1917 

 RIDGE 1.194 1.2709 1.2921 1.2948 
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 Liu 1.3592 1.3948 1.4277 7.0279 

 KL 1.1929 1.2668 1.2773 1.2865 

 JKL 1.1659 1.2269 1.2155 1.2336 

100 MLE 1.3314 1.3915 1.4887 3.1968 

 RIDGE 1.1185 1.1758 1.188 1.1964 

 Liu 1.3025 1.3069 1.3106 1.3678 

 KL 1.0959 1.1728 1.1876 1.1956 

 JKL 1.0754 1.1296 1.1045 1.093 

 

 

 

Table 3: Mean squared error of simulated data when p=12 

 

n Estimator r=0.7 r=0.8 r=0.9 r=0.99 

30 MLE 4.9027 5.0913 5.5455 13.478 

 RIDGE 1.4662 1.4962 1.6152 1.8082 

 Liu 1.5086 1.5112 1.6305 9.3462 

 KL 1.307 1.469 1.5498 1.7091 

 JKL 1.2654 1.3039 1.382 1.5417 

50 MLE 1.6621 1.9219 2.0544 7.2244 

 RIDGE 1.2267 1.3036 1.3248 1.3275 

 Liu 1.3919 1.4275 1.4604 7.0606 

 KL 1.2256 1.2995 1.31 1.3192 

 JKL 1.1986 1.2596 1.2482 1.2663 

100 MLE 1.3641 1.4242 1.5214 3.2295 

 RIDGE 1.1512 1.2085 1.2207 1.2291 

 Liu 1.3352 1.3396 1.3433 1.4005 

 KL 1.1286 1.2055 1.2203 1.2283 

 JKL 1.1081 1.1623 1.1372 1.1257 

 

Table 4: Mean squared error of simulated data when p=16 

 

n Estimator r=0.7 r=0.8 r=0.9 r=0.99 

30 MLE 4.9411 5.1297 5.5839 13.5164 

 RIDGE 1.5046 1.5346 1.6536 1.8466 

 Liu 1.547 1.5496 1.6689 9.3846 

 KL 1.3454 1.5074 1.5882 1.7475 

 JKL 1.3038 1.3423 1.4204 1.5801 

50 MLE 1.7005 1.9603 2.0928 7.2628 

 RIDGE 1.2651 1.342 1.3632 1.3659 

 Liu 1.4303 1.4659 1.4988 7.099 

 KL 1.264 1.3379 1.3484 1.3576 
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 JKL 1.237 1.298 1.2866 1.3047 

100 MLE 1.4025 1.4626 1.5598 3.2679 

 RIDGE 1.1896 1.2469 1.2591 1.2675 

 Liu 1.3736 1.378 1.3817 1.4389 

 KL 1.167 1.2439 1.2587 1.2667 

 JKL 1.1465 1.2007 1.1756 1.1641 

 

 

6. Real-life application  

6.1. Aircraft Data 

This dataset is originally assumed to follow the Poisson regression model (see Myers et al., 2012; 

Asar & Genc, 2017; Amin et al. 2020; Lukman et al., 2021a,b), among others. The response 

variable y represent the number of locations with damage on the aircraft and it follows a Poisson 

distribution (Myers et al., 2012; Asar & Genc, 2017; Amin et al. 2020; Lukman et al., 2021a,b). The 

explanatory variables are described as follows: x1 denotes aircraft type (A-4 coded as 0 and A-6 

coded as 1), x2 and x3 denote bomb load in tons and total months of aircrew experience, 

respectively. Lukman et al. (2021a,b) diagnosed the model and conclude that the model suffers 

from multicollinearity because the condition number is 219.3654. The output of the Poisson 

regression model using the maximum likelihood method is presented in Table 5.  

Table 5: Poisson regression estimates using MLE 

Coef. Estimate Std. Error z value Pr(>|z|) 

(Intercept) -0.4060 0.8775 -0.463 0.6436 

x1 0.5688 0.5044 1.128 0.2595 

x2 0.1654 0.0675 2.449 0.0143 

x3 -0.0135 0.0083 -1.633 0.1025 

 

However, the variance of the number of locations with damage on the aircraft is more than twice the 

mean (2.0569). With this, it is evident that the data exhibit over-dispersion. Bell Regression models 

account for over-dispersion in count data (Castellares et al., 2018; Lemonte et al. 2020). Recently, 

Amin et al. (2021) employed the bell regression model to model the same dataset. Table 6 provides 

the regression estimates and the mean squared error of each of the adopted estimators in this study. 

The biasing parameter k proposed by Hoerl et al. (1975) was adopted as the biasing parameter for 

the Bell ridge and the Bell KL estimators. 

k̂ =
p

∑ �̂�j
2p

j=1

                    (25) 

The Scalar mean squared error (MSE) for the other adopted method of estimation in this study are 

as follows: 

MSE(�̂�MLE) = ∑
1

λj

p
j=1                                                            (26) 
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where λj is the eigenvalue of 𝐗T�̂�𝐗. 

MSE(�̂�k−BRM) = ∑
λj

(λj+k)
2 + k2∑

�̂�j
2

(λj+k)
2

p
j=1

p
j=1                       (27) 

where α̂j
2 is the jth squared of the maximum likelihood estimate.    

MSE(�̂�d−BRM) = ∑
(λj+d)

2

λj(λj+1)
2 + (1 − d)2∑

�̂�j
2

(λj+1)
2

p
j=1

p
j=1                      (28) 

         

6.2. Table 6: Bell regression estimates for Aircraft Data 

Coef. �̂�MLE �̂�k−BRM �̂�d−BRM �̂�KL−BRM �̂�JKL−BRM 

Intercept 
-0.5422 -0.1509 -0.3006 -0.0375 

-0.0534 

x1 
0.5990 0.3433 0.0034 0.3285 

0.0021 

x2 
0.1630 0.1665 0.0119 0.1605 

0.0521 

x3 
-0.0117 -0.0146 -0.0023 -0.0161 

-0.0362 

MSE 
1.7447 0.1609 0.5327 0.1493 

0.1125 

7. Conclusions 

We have presented a new proposed estimator of K-L estimator for Bell regression model in the 

presence of collinearity. The proposed estimator combines Jackknife procedure with K-L estimator 

to reduce the biasedness. Our experimental results with both simulated and real application, which 

is related to the Bell regression model, demonstrated that the proposed estimator could successfully 

deal with collinearity. Moreover, compared with MLE, Ridge, and KL-BRM, the proposed 

estimator can efficiently reduce the MSE. 
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