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Abstract 

High-dimensionality is one of the major problems which affect the quality of 

the quantitative structure-activity (property) relationship (QSAR/ QSPR) 

classification methods in chemometrics. Applying variable selection is essential 

to improve the performance of the classification task. Variable selection is well-

known as an NP-hard optimization problem. Various evolutionary algorithms 

are dedicated to solving this problem in the literature. Recently, a black hole 

algorithm was proposed, which has been successfully applied to solve various 

continuous optimization problems. In this paper, a new time-varying transfer 

function is proposed to improve the exploration and exploitation capability of 

the binary black hole algorithm in selecting the most relevant descriptors 

(variables) in QSAR/ QSPR classification models with high classification 

accuracy and short computing time. Based on seven benchmark 

biopharmaceutical datasets, the experimental results reveal the capability of the 

proposed time-varying transfer function to achieve high classification accuracy 

with minimizing the number of selected descriptors and reducing the 

computational time.  

Keywords: QSAR, black hole algorithm, evolutionary algorithm, transfer 

function, descriptors selection. 

 

 

1. Introduction 

In chemometrics, the quantitative structure-activity (property) relationship (QSAR/ QSPR) is a 

powerful and a promising model used to better understand the structural relationship between the 

chemical activity (property) and the chemical compounds by explicitly considering the 

mathematical, statistical, and informatical methods [1]. A common task in these models is the 
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selection of relevant descriptors (variables), where researchers try to determine the smallest possible 

set of descriptors that can still achieve good predictive performance [2-15]. A typical data in QSAR/ 

QSPR modeling consist of a small sample size of compounds (molecules) and a very large number 

of descriptors. Consequently, QSAR/ QSPR modeling is challenged by the high dimensionality of 

the descriptors.  

In chemometrics, today, it is easily come out with thousands of molecular descriptors, such as 

Dragon 7, which is a commercial software. It can calculate 5270 molecular descriptors [16, 17]. In 

high dimensional QSAR/ QSPR modeling, where the number of descriptors, p , exceeds the 

number of compounds, n , the traditional statistical classification methods are not feasible [5, 18]. 

In addition, the large number of descriptors can degrade the generalizable performance of the used 

classifier or the prediction performance. Therefore, selecting descriptors that truly affect the 

biological activity is an attractive way in QSAR/ QSPR modeling [19].  

Variable (Descriptor) selections can be reported as a non-polynomial (NP) hard problem. The 

objective of variable selection is to provide faster and more effective models, and also to avoid 

overfitting and the curse of dimensionality. Variable selection is a typical combinatorial 

optimization problem. A considerable effort has been devoted to developing variable selection 

procedures. With the development of computational intelligence, evolutionary algorithms, such as 

particle swarm optimization (PSO) [20], bat algorithm (BA) [21], and grey wolf optimization 

(GWO) [22], are the most effective and core technology to address high-dimensional data. 

The black hole algorithm (BHA), which was proposed by Hatamlou [23], has certain outstanding 

merits, such as a simple computational process, simple implementation, and easy understanding 

with only a few parameters for tuning. Due to its good properties, BHA has become a useful tool for 

many real-world problems [23-31]. The BHA is inspired by the black hole phenomenon in the 

space. In the case of variable selection, the search space is modeled as an n-dimensional Boolean 

lattice, in which the selected variable is coded as 1 and the not selected variable is coded as 0. 

Therefore, a binary version of the BHA was proposed. The efficiency of the binary black hole 

algorithm (BBHA) is depending on the transfer function which is responsible to map a continuous 

search space to a discrete search space.  

In this study, a new time-varying transfer function is proposed to improve the exploration and 

exploitation capability of the BBHA in selecting the most relevant descriptors in QSAR/ QSPR 

classification models with high classification accuracy and short computing time. 

The rest of the paper is organized as follows: The explanation of the black hole algorithm and the 

proposed time-varying transfer function are given in Section 2. In section 3, the experimental 

setting is covered. Section 4, the results are summarized with their discussion. Finally, Section 5 

contains a conclusion of this work. 

2. Methodology 

2.1 Variable selection  

The variable selection method is a procedure that reduces or minimizes the number of variables and 

selects some subsets of original variables. Selecting the most relevant variables is one of the 

challenging tasks for large dataset. The variable selection has been proven to effectively remove 

irrelevant and redundant variables. In addition, it can improve the performance of classifiers and 
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reduce the computational time. Variable selection using evolutionary algorithm has been applied 

successfully in QSAR/QSPR classification [14, 15, 20, 32-39].  

Let S  be a dataset of n  observations with D  variables and A  be the set of all the D  variables. 

Variable selection is to choose d  variables from D , where d D , so that the objective function, 

( )f  ,  is maximized or minimized subject to the problem. In this way, variable selection becomes a 

combinatorial (discrete) optimization problem where the objective is to find the best variable subset 

B d= . By maximize the classification accuracy, the optimization problem is defined as   

 
1 2

max ( )

s.t. ( , ,..., ), {0,1}, 1,2,...,
d j

f X

X x x x x j d=  =
  (1) 

2.2 Binary black hole algorithm 

The black hole algorithm is one of the most recent evolutionary algorithms inspired from the black 

hole phenomenon in the space. This algorithm was introduced in 2013 by Hatamlou [23]. A black 

hole in space is what forms when a star of massive size collapses. The gravitational power of the 

black hole is too high that even the light cannot escape from it [24, 25, 27].  

In BHA, the process begins by the initialization of the stars, which are acting as the population, in 

the search space. The initial population is randomly generated. The best objective function of an 

individual star is selected as the black hole and it starts absorbing populations (stars) surround it. 

Then, all the stars move towards the black hole. This movement can be formulated as follows 

 
1 ( ), 1,2,... ,t t t

i i B i sHx x x x i n+  =+ −=   (2) 

where 
t

ix  and 
1t

ix +
 are the locations of the ith star at iterations t  and 1t +  , respectively. BHx  is 

the location of the black hole in the search space,   is a random number in the interval [0,1] , and 

s
n  is the total number of stars (candidate solutions in the search space). It is important to mention 

that, the black hole does not move, because it has the best objective value and then attracts all other 

stars [23, 26, 30, 31].  

After determining the movement of the stars using Eq. (2), if the objective function value of a star is 

better than the value of the black hole, the star is then selected as the black hole. During moving 

stars towards the black hole, there is the possibility of crossing the event horizon (border of the 

black hole). 

The radius of the event horizon (Schwarzschild radius) in the black hole algorithm is calculated by 

 

1

,
s

BH

n

i
i

f
R

f
=

=


  (3) 

where BH
f  and i

f  is the objective function value of the black hole and the ith star, respectively. 

When the distance between a candidate solution and the black hole is less than Eq. (3), that 

candidate is collapsed and a new candidate is created and distributed randomly in the search space.  

To perform the variable selection, a binary black hole algorithm was proposed [28-30]. Unlike the 

standard BHA, in which the solutions are updated in the search space towards continuous-valued 
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positions, in the BBHA, the search space is modeled as an n-dimensional Boolean lattice and the 

solutions are updated across the corners of a hypercube. In addition, as the problem is to select or 

not a given variable, a solution binary vector is employed, where 1 corresponds whether a variable 

will be selected to compose the new dataset, and 0 otherwise.  

In any binary algorithm, where one uses the step vector to calculate the probability of changing 

positions, the transfer functions significantly impact the balance between exploration and 

exploitation [40, 41].  

2.3 The proposed time-varying transfer function 

In BBHA, the transfer function is used to map a continuous search space to a binary one, and the 

updating process is designed to switch positions of stars between 0 and 1 in binary search spaces. In 

order to build this binary vector, a transfer function in Eq. (4) can be used, in which the new 

solution is constrained to only binary values 

 
( )

otherwis

1 if

0 e

t

i

T x r
x

 
= 


  (4) 

where  0,1r   is a random number, ( )T x  is the transfer function. Two familiar transfer functions 

are usually used, namely the sigmoid transfer function (SIG), which belongs to the S-shaped family 

[42], and the inverse tangent hyperbolic transfer function (TH), which is belonging to the V-shaped 

family [42]. These two transfer functions are, respectively, defined as: 

 ( )SIG

1
,

1
t
i

t

i x
T x

e
−

=
+

  (5) 

and 

 ( )TH

2
arc tan .

2

t t

i iT x x




 
=  

 
  (6) 

In optimization algorithm, it is expected that the focus of the early stages of the implementation the 

algorithm will be on exploration to avoid falling into the local point, but in later stages of 

implementation, the algorithm focuses more on exploitation to improve the quality of the solution 

[40, 41].  

As in Mafarja, Aljarah, Heidari, Faris, Fournier-Viger, Li and Mirjalili [41] and Islam, Li and Mei 

[40], in this paper, a dynamic transfer function is proposed to improve the BBHA. In our proposed 

time-varying transfer function, (TV), a new control parameter   is added in the original transfer 

function. This   is a time-varying variable which starts with a large value and gradually decreases 

over time. The proposed   is defined as 

 min max min( ) e ,t    −= + −   (7) 
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where max and min  are, respectively, the minimum and maximum values of the control parameter 

 . Accordingly, the two proposed transfer functions are defined as, respectively, 

 ( )TV-SIG

1
,

1

t
i

t

i x
T x

e 
−

=

+

  (8) 

and 

 ( )TV-TH

2
arc tan .

2

t
t i
i

x
T x



 

 
=  

 
  (9) 

Figure 1 explains the behavior of the proposed time-varying transfer function for both SIG and TV, 

respectively. It is obvious that these proposed functions coverage to be a vertical line when iteration 

increasing.    

 

Figure 1: Explanation of the time-varying transfer function when max 2 = and min 0.1 = during 10 

iteration. The top panel is the sigmoid transfer function and the bottom panel is the inverse tangent 

hyperbolic transfer function. 
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3. Experimental setting 

3.1. Datasets 

A set of seven benchmark biopharmaceutical datasets was used in our paper. These datasets include 

a binary class (active/inactive compound) with thousands of descriptors. These datasets have been 

used by Eklund, Norinder, Boyer and Carlsson [2] and Eklund, Norinder, Boyer and Carlsson [14]. 

Dragon software (version 6.0) was used to generate the molecular descriptors. To include consistent 

and useful descriptors, preprocessing steps were carried out as follows: First, those that had zero 

values for all molecules were discarded. Second, those that had a constant value for all molecules 

were excluded from the study. Then, descriptors in which 95% of their values were zeros were 

removed. And, finally, descriptors with a relative standard deviation of less than 0.001 were 

removed. The basic information about the datasets is described in Table 1.  

Table 1: Datasets description  

Dataset End point # compounds # descriptors 

COX2  cyclooxygenase-2 322 (154/168) 3449 

CPD Carcinogenic categorical activity in rats 1198 (581/617) 4073 

DHFR Dihydrofolate reductase 397 (201/196) 4411 

EPAFHM Fathead minnow acute toxicity 577 (297/280) 3682 

FDA FDA maximum recommended daily dose 1216 (581/635) 3957 

cas_N6512 Ames mutagenicity 6512 

(3171/3341) 

4266 

screen_U251 DTP human tumor U251 cell line screen 3743 

(1922/1821) 

3884 

 

3.2. BBHA parameters initialization 

There are four control parameters in our proposed time-varying transfer function: The number of 

stars (
sn ) (Population size), the maximum number of iterations ( maxt ), and the minimum and 

maximum values of the control parameter   of Eq. (7). The specific parameter values are outlined 

in Table 2. The position for each star is a vector of 0 and 1 values with size equals the number of 

the descriptors. Initially, the positions were randomly generated from a uniform distribution 

between 0 and 1. Further, the best fitness function that can combine the maximum classification 

performance and the minimum number of selected descriptors is preferable. The fitness function 

used in BBHA to evaluate each star position is defined as  

 fitness 0.8 CA 0.2 ,
d d

d

 −
=  +  

 
  (10) 

where CA is the classification accuracy obtained from the training dataset, d  represents the number 

of descriptors in the dataset, and d  represents the number of selected descriptors.  

Table 2: Parameter setting for BBHA 

Parameter Value 

sn  30 

maxt  500 
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max  in Eq. (7) 2 

min  in Eq. (7) 0.1 

 

4. Results and discussion 

With the aim of correctly assessing the performance of our proposed time-varying transfer 

functions, TV-SIGT  and TV-THT , comparative experiments with the original SIGT and THT  were carried 

out. In this study, the experiments were carried out using a support vector machine (SVM) with a 

linear kernel function. To obtain a reliable classification performance, for each dataset, 70% of 

samples is used as a training dataset and the remaining 30% of the samples are used as a testing 

dataset randomly. This partition repeated 50 times independently and the average classification 

accuracy  

( =(TP+TN) / (TP+FP+FN+T %A N)C 100 ) and the average number of selected descriptors are 

reported in Table 3. 

It can be seen in Table 3 that, from among the four transfer functions, the TV-THT  function performs 

the best with average results of, overall the seven datasets, 96.07% and 94.27%, in terms of 

classification accuracy, for both training and testing datasets, respectively. Further, as it can be 

observed from Table 3, TV-THT  and TV-SIGT  overtake the standard THT  and SIGT . Beside the high 

classification performance, the robustness is an important factor in evaluating a classifier. The 

standard deviation of all criteria for  TV-THT in all datasets is small. This shows that TV-THT  is a robust 

transfer function. 

In terms of CA criterion, for both the training and testing datasets, the proposed TV-THT  

outperformed SIGT , THT , and TV-SIGT  in all datasets. The most remarkable result for TV-THT  concerns 

the screen_U251 dataset. We obtain 98.56% and 96.77% accuracy with average 11 descriptors for 

training and testing datasets, respectively.  

Moreover, Table 3 demonstrates that the TV-THT  and the TV-SIGT  are significantly better than SIGT  

and THT  transfer functions in terms of the number of selected descriptors. TV-THT  selects descriptors 

approximately 2 times fewer than TV-SIGT and 4 times fewer than THT .  

Comparatively speaking, in all of the datasets, SIGT  obtains worse classification accuracy compared 

with other transfer functions. In addition, TV-THT  selects the minimum number of the descriptors 

while keeping better classification performance. 

Table 3: Average performance of the proposed time-varying transfer functions. The number in 

parentheses is the corresponding standard deviation. 

Dataset Method Training dataset  Testing dataset 

  # selected descriptors CA CA 

COX2 
SIGT  25 ± 0.014 94.32 ± 0.013 92.84 ± 0.015 

 
THT  21 ± 0.011 95.14 ± 0.012 93.27 ± 0.014 

 
TV-SIGT  21 ± 0.012 95.61 ± 0.012 94.07 ± 0.013 
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TV-THT  18 ± 0.011 96.53 ± 0.012 94.72 ± 0.013 

CPD 
SIGT  27 ± 0.021 94.96 ± 0.023 93.48 ± 0.024 

 
THT  24 ± 0.022 95.68 ± 0.022 93.91 ± 0.023 

 
TV-SIGT  23 ± 0.019 96.25 ± 0.022 94.71 ± 0.022 

 
TV-THT  21 ± 0.019 97.27 ± 0.021 95.38 ± 0.022 

DHFR 
SIGT  23 ± 0.033 93.68 ± 0.031 92.22 ± 0.032 

 
THT  19 ± 0.029 94.51 ± 0.030 92.63 ± 0.031 

 
TV-SIGT  19 ± 0.030 94.97 ± 0.029 93.43 ± 0.031 

 
TV-THT  16 ± 0.031 95.89 ± 0.029 94.08 ± 0.030 

EPAFHM 
SIGT  21 ± 0.018 95.15 ± 0.017 92.21 ± 0.018 

 
THT  17 ± 0.017 95.97 ± 0.017 93.63 ± 0.017 

 
TV-SIGT  17 ± 0.017 96.44 ± 0.018 94.43 ± 0.018 

 
TV-THT  14 ± 0.016 97.36 ± 0.016 95.78 ± 0.015 

FDA 
SIGT  32 ± 0.036 91.49 ± 0.034 90.01 ± 0.032 

 
THT  28 ± 0.034 92.31 ± 0.033 90.44 ± 0.031 

 
TV-SIGT  28 ± 0.034 92.78 ± 0.031 91.24 ± 0.031 

 
TV-THT  25 ± 0.033 93.72 ± 0.031 91.89 ± 0.030 

cas_N6512 
SIGT  34 ± 0.025 90.89 ± 0.026 89.43 ± 0.026 

 
THT  30 ± 0.023 91.73 ± 0.024 89.84 ± 0.025 

 
TV-SIGT  29 ± 0.025 92.11 ± 0.025 90.64 ± 0.025 

 
TV-THT  28 ± 0.021 93.17 ± 0.023 91.29 ± 0.022 

screen_U251 
SIGT  18 ± 0.016 96.35 ± 0.015 94.87 ± 0.016 

 
THT  14 ± 0.016 97.17 ± 0.014 95.33 ± 0.015 

 
TV-SIGT  14 ± 0.015 97.64 ± 0.013 96.12 ± 0.013 

 
TV-THT  11 ± 0.014 98.56 ± 0.011 96.77 ± 0.013 

 

To further highlight the efficiency of the proposed time-varying transfer functions, Table 4 displays 

the execution time in seconds, on average, for all considered transfer functions. The computational 

efficiency of TV-THT   and TV-SIGT  are comparable to THT  and SIGT . It is noteworthy that TV-THT  has 

the fastest convergence speed beating the other three used transfer functions, where it requires the 

least amount of time to complete the optimized target.  

Table 4: Average CPU time, in seconds, of the proposed time-varying transfer functions.  

Dataset 
SIGT  THT  TV-SIGT  TV-THT  SVM 

COX2 237.21 208.59 118.57 101.36 371.58 

CPD 361.21 332.59 242.57 226.33 406.33 
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DHFR 418.95 389.33 299.31 282.11 532.84 

EPAFHM 259.78 231.16 141.14 125.97 310.79 

FDA 314.19 284.59 194.57 178.34 428.09 

cas_N6512 486.86 458.24 368.22 351.01 537.91 

screen_U251 386.78 358.16 267.14 249.93 428.39 

 

To further verify the effectiveness of the proposed time-varying transfer functions, the statistical 

paired t-test is performed to verify whether there is a significant difference between TV-THT  and 

TV-SIGT , and the other two transfer functions in terms of the area under the curve (AUC). Table 5 

displays the difference values between the TV-THT  and the other three functions and the p-values (in 

the parentheses). The bold values indicate a statistical significant taking significance level of 

0.05 = . It can be seen that there is a statistical difference between TV-THT  and each of THT  and 

SIGT  for the seven dataset. On the other hand, there is a statistical difference between the TV-THT  and 

the TV-SIGT  for CPD, FDA, cas_N6512, and screen_U251 datasets.  

                         

Table 5: Paired t-test results of TV-THT  and the other three functions in terms of AUC.  

Dataset 
SIGT  THT  TV-SIGT  

COX2 2.21 (0.000) 1.39 (0.004) 0.92 (0.065) 

CPD 2.37 (0.000) 1.65 (0.007) 1.08 (0.041) 

DHFR 2.28 (0.000) 1.45 (0.004) 0.99 (0.071) 

EPAFHM 2.25 (0.000) 1.43 (0.001) 0.96 (0.064) 

FDA 2.31 (0.000) 1.49 (0.002) 1.02 (0.037) 

cas_N6512 2.38 (0.000) 1.54 (0.004) 1.16 (0.000) 

screen_U251 2.32 (0.000) 1.48 (0.003) 1.01 (0.033) 

 

In summary, from the experimental results, it has been approved that TV-THT  and the TV-SIGT  

outperform THT  and SIGT  with superiority of TV-THT  over TV-SIGT  and achieved better results in the 

classification accuracy and the number of the selected descriptors. The reason behind outperforming 

the proposed time-varying transfer function over the THT  and SIGT  is that TV-THT  and  TV-SIGT  have a 

good exploitation and exploration property by adding the time-varying parameter. Additionally, the 

proposed TV-THT  and TV-SIGT , can achieve high classification performance with least number of 

descriptors in a short time.  

5. Conclusion 

In this paper, a new time-varying transfer function was proposed to improve the exploration and 

exploitation capability of the BBHA. It was evaluated in the context of variable selection in QSAR/ 

QSPR classification over several datasets and transfer functions. Depending on seven benchmark 

biopharmaceutical datasets, the experimental results show that the proposed time-varying transfer 

function, TV-THT  and TV-SIGT , are capable of reducing the number of descriptors while maintaining 
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the high accuracy of classification with short computing time. The efficiency of TV-THT  in terms of 

AUC was also evaluated by utilizing paired t-test. The results show that the  TV-THT  has significantly 

gained better classification performance compared to other used methods. 
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