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Abstract

The ridge regression model has been shown to be an effective shrinking strategy
for reducing the impacts of multicollinearity on a number of occasions. When
the response variable is positively skewed, the inverse Gaussian regression
model (IGR) is a popular model to use. Multicollinearity, on the other hand, is
known to reduce the variance of the maximum likelihood estimator of inverse
Gaussian regression coefficients. A inverse Gaussian ridge regression model
(IGRR) has been presented as a solution to this problem. A novel estimator is
proposed in this paper by presenting a generalization of the Liu-type estimator
using IGR. In terms of absolute bias and mean squared error, our Monte Carlo
simulation findings and real-world application demonstrate that the suggested
estimator can provide significant improvements over other competing
estimators.

Keywords: Multicollinearity; ridge estimator; inverse Gaussian regression
model; Liu-type estimator; Monte Carlo simulation.

1. Introduction

The inverse Gaussian regression (IGR) has been widely used in industrial engineering, life testing,
reliability, marketing, and social sciences (Bhattacharyya & Fries, 1982; Ducharme, 2001; Folks &
Davis, 1981; Fries & Bhattacharyya, 1986; Heinzl & Mittlbock, 2002; Lemeshko, Lemeshko,
Akushkina, Nikulin, & Saaidia, 2010; Malehi, Pourmotahari, & Angali, 2015). Specifically, IGR
model is used when the response variable under the study is positively skewed (Babu & Chaubey,
1996; Chaubey, 2002; Wu & Li, 2011). When the response variable is extremely skewness, the IGR
is preferable than gamma regression model (De Jong & Heller, 2008).

In dealing with the inverse Gaussian egression model, it is assumed that there is no correlation
among the regressors. In practice, however, this assumption often not holds, which leads to the
problem of multicollinearity. In the presence of multicollinearity, when estimating the regression
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coefficients for inverse Gaussian regression model using the maximum likelihood (ML) method,

the estimated coefficients are usually become unstable with a high variance, and therefore low
statistical significance (Asar & Geng, 2015; Kurtoglu & Ozkale, 2016). Numerous remedial
methods have been proposed to overcome the problem of multicollinearity (Al-Taweel, Algamal, &
Sciences, 2020; Al-Thanoon, Qasim, & Algamal, 2020; Z. Y. Algamal, 2011; Zakariya Y Algamal,
2012; Z. Y. Algamal, 2018a, 2018b; Zakariya Yahya Algamal & Abonazel, 2021; Zakariya Yahya
Algamal & Alanaz, 2018; Z. Y. J. E. J. 0. A. S. A. Algamal, 2018; A. Alkhateeb & Algamal, 2020;
A. N. Alkhateeb & Algamal, 2021; Alobaidi, Shamany, & Algamal, 2021; Hamad, Algamal, &
Applications, 2021; Adewale F. Lukman, Algamal, Kibria, & Ayinde, 2021; A. F. Lukman,
Dawoud, Kibria, Algamal, & Aladeitan, 2021; Mahmood & Algamal, 2021; Mohammed &
Algamal, 2021; Noeel & Algamal, 2021; Rashad & Algamal, 2019; Shamany, Alobaidi, &
Algamal, 2019; Yahya Algamal, 2018). The ridge regression method (Hoerl & Kennard, 1970) has
been consistently demonstrated to be an attractive and alternative to the ML estimation method.

In classical linear regression models the following relationship is usually adopted
y=XB+e, )

where y is an nx1 vector of observations of the response variable, X=(x,,...,X,) isan nxp
known design matrix of explanatory variables, B=(A,...5,) is a px1 vector of unknown

regression coefficients, and & is an nx1 vector of random errors with mean 0 and variance o”.

Ridge regression is a shrinkage method that shrinks all regression coefficients toward zero to reduce
the large variance (Asar & Geng, 2015; Batah, Ramanathan, & Gore, 2008). This done by adding a

positive amount to the diagonal of X' X. As a result, the ridge estimator is biased, but it guaranties
a smaller mean squared error than the ML estimator.

In linear regression, the ridge estimator is defined as
ﬁRidge = (X' X+kD'Xy, (2)

where | is the identity matrix with dimension pxp and k >0 represents the ridge parameter
(shrinkage parameter). The ridge parameter, k , controls the shrinkage of p toward zero. For larger

value of k , the ﬁRidge estimator yields greater shrinkage approaching zero (Hoerl & Kennard,
1970).

2. Statistical methodology

2.1. Inverse Gaussian ridge regression model

Positively skewed data often arise in epidemiology, social, and economic studies. This type of data
consists of nonnegative values. Inverse Gaussian distribution is a well-known distribution that fits
to such type of data. Inverse Gaussian regression model (IGR) is used to model the relationship
between the positively skewed response variable and potentially regressors (Uusipaikka, 2009).
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The inverse Gaussian distribution is a continuous distribution with two positive parameters:

location parameter, 2, and scale parameter, 7, denoted as 1G (x,7) . Its probability density function
is defined as

f(y,ur)=

2
1 1(y —u]
exp| —— , y>0. 3)
27y 3r [ 2y [ﬂ\/; }
The mean and variance of this distribution are, respectively, E (y)=x and var(y )=z,

Inverse Gaussian regression model is considered a member of the generalized linear models (GLM)
family, extending the ideas of linear regression to the situation where the response variable is
following the inverse Gaussian distribution. Following the GLM methodology, Eq. (1) can re-write
in terms of exponential family function as

T

f (y,y,r):1{_%ﬂz+%}+{—%In(27zy3)—%ln(r)}, 4)

where C(y,7)=—(1/2)In(2zy %) —(1/2)In(z) and W_Tf‘(@)i{—zy—ﬁi}. Here, 7
v 24 p

represents the dispersion parameter and 1/ 2* represents the canonical link function.

In GLM, a monotonic and differentiable link function connects the mean of the response variable
with the linear predictor 7; :XT B, where x; is the i row of X and p isa (p+1)x1 vector of

unknown regression coefficients. Because 7; depends on g and the mean of the response variable is
a function of 7;, then E(y;)=4 =9 () =9 (X B). Related to the IGR, the x=1/X]B.
Another possible link function for the IGR is log link function, u = exp(xf B).

The model estimation of the IGR is based on the maximum likelihood method (ML). The log
likelihood function of the IGR under the canonical link function is defined as

“p)= Z{%{%ﬁ— N B}%—'“{—ln(znyh}. (5)

The ML estimator is then obtained by computing the first derivative of the Eq. (3) and setting it
equal to zero, as

i=1

o) 1)y 1
op sz[y' T }(' > ©
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Unfortunately, the first derivative cannot be solved analytically because Eq. (4) is nonlinear in f .

The iteratively weighted least squares (IWLS) algorithm or Fisher-scoring algorithm can be used to
obtain the ML estimators of the IGR parameters. In each iteration, the parameters are updated by

B =B+ 17 () (B, ™

where S (B") and 1 (B™) are S (B) = o¢(B)/ o and rl(ls)z(—E (0*4(B)/ opop’ ))’1eva|uated at

B, respectively. The final step of the estimated coefficients is defined as
ﬁlGR = (XT VAVX)leT Wﬁ’ 8

A

where W = diag(4®), 0 is a vector where i" element equals to U, = 1/ 22) +((y; — )/ £, and

A

[ =1/x| B . The covariance matrix of f,cx equals

-1
cov(B.GR):[—E (82“'” H (XWX ©)

BB’
and the mean squared error (MSE) equals

MSE (BIGR ) =E (B|GR _ﬁ)T (ﬁIGR _ﬁ)
= rtr[(X" WX)™] (10)

P,
o> L
=4

where 4; is the eigenvalue of the X" WX matrix and the dispersion parameter, 7, is estimated by
(Uusipaikka, 2009)

s _ 1 n(yi_:[li)z 11
D3 QP )

In the presence of multicollinearity, the matrix X" WX becomes ill-conditioned leading to high
variance and instability of the ML estimator of the inverse Gaussian regression parameters. As a
remedy, the inverse Gaussian ridge regression estimator (IGRR) can be defined as

ﬁIGRR = (X" WX +kD) X' WXﬁIGR

. . (12)
= (X" WX +k)X W,

where k >0. The ML estimator can be considered as a special estimator from Eq. (11) with k =0.
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2.2.  The proposed estimator

K. Liu (1993) proposed an estimator, which is called Liu estimator, combining the Stein estimator
with the ridge estimator. Comparing with ridge estimator, the Liu estimator is a linear function of
the shrinkage parameter, therefore it is easy to choose the shrinkage parameter than to choose ridge
parameter.

Consequently, the Liu estimator in IGRM, the inverse Gaussian Liu estimator (IGLE), is defined as

Bioe = (X" WX+ (X" WX +d D)6z (13)

where d is a shrinkage parameter, O<d <1. For d =1, B =Brand for 0<d <1,

Bior |-

BicLe H <

Liu estimator is upgraded by proposing Liu-type estimator to overcome the problem of sever
multicollinearity, Liu-type estimator is defined as follows (Zakariya Yahya Algamal & Asar, 2020)

Biore = (X WX +K D) (X" WX ~d I)f r (14)

where —oo<d <oo and k >0. Liu-type estimator has superior over ridge estimator (Liu, 2003).
The MSE of B¢ is

MSE Broire) = v ;lj(iﬁk)ﬁ(d +k) ;Mﬁk)z (15)

In the context of the linear regression model, Kurnaz and Akay (2014), proposed the a new
generalized Liu-type estimator to alleviate the problem of multicollinearity in linear regression
model. The theoretical of the generalized Liu-type estimator have been studied by Kurnaz and Akay
(2014) and Ertan and Akay (2020).

According to Kurnaz and Akay (2014) and Ertan and Akay (2020), our proposed new Liu-type
estimator for inverse Gaussian regression model (NGLTE) is defined as:

Buoire = (X WX+KI) (X" WX +f (k)I)B o (16)

where f (k) is a continuous function of the k. Usually, f (k) is selected as a linear function of the
biasing parameter such as f (k)=ak +b , where a,beR . As a result, the NGLTE becomes a

general estimator which includes the other biased estimators (Ertan & Akay, 2020; Kurnaz & Akay,
2014).

The MSE of Byqre iS

54+ (k) RE(F (K)-k)aj

MSE (ﬁNIGLTE) = V_lz

Z A0, +K)? JZZl (1 k)’ (a7

3. Simulation study
In this section, a Monte Carlo simulation experiment is used to examine the performance of our
proposed estimator under different degrees of multicollinearity.

Vol. 71 No. 3s2 (2022) 295

http://philstat.org.ph



Mathematical Statistician and Engineering Applications
ISSN: 2094-0343
2326-9865
3.1.  Simulation design

The response variable of n observations from inverse Gaussian regression model is generated as

y, 01G(6,,v), where ve{0.50,1.5} and 6 =exp(x| B), B=(B.,...3,) with Zp:ﬂle and
j=L

B, =p,=..=p, (Kibria, 2003). The explanatory variables x| =(Xi;,Xi,,...X;;) have been
p i in™i2 in

generated from the following formula

X; =A=p)" Wy +pw o, i =1,2,.,n, j=12,..p, (18)

where p represents the correlation between the explanatory variables and w; ’s are independent

standard normal pseudo-random numbers. Because the sample size has direct impact on the
prediction accuracy, three representative values of the sample size are considered: 50, 100, and 150.
In addition, the number of the explanatory variables is considered as p =4 and p =8 because
increasing the number of explanatory variables can lead to increase the MSE. Further, because we
are interested in the effect of multicollinearity, in which the degrees of correlation considered more
important, three values of the pairwise correlation are considered with p ={0.90,0.95,0.99}. The

optimum value of k can be obtained by using Hoerl, Kannard, and Baldwin (1975) formula as

<

P (19)

T~
a

K =

>

where v is the estimated dispersion parameter which is calculated by Eq. (9). For a combination of
these different values of n,v,p, and p the generated data is repeated 1000 times and the average
absolute bias and average MSE are determined as

1 1000

MSE(B) = =2 =B (B-B). (20)

3.2.  Simulation results
The averaged MSE all the combination of n,v,p, and p, are respectively summarized in Tables 1

and 2. The best value of the averaged bias and MSE is highlighted in bold. As Table 1 shows, the
proposed method, NIGLTE, gives low bias comparing with IGRR and IGLTE. On other hand,
NIGLTE performances better than GRR. It is noted from Table 2 that NIGLTE ranks first with
respect to MSE. In the second rank, IGLTE estimator performs better than both IGRR and IGR
estimators. Additionally, IGR estimator has the worst performance among IGRR, IGLTE, and
NIGLTE which is significantly impacted by the multicollinearity.

Furthermore, with respect to p, there is increasing in the MSE values when the correlation degree
increases regardless the value of n,v and p . Regarding the number of explanatory variables, it is
easily seen that there is a negative impact on MSE, where there are increasing in their values when
the p increasing from four variables to eight variables. In Addition, in terms of the sample size n,
the MSE values decrease when n increases, regardless the value of p,vand p. Clearly, in terms of

the dispersion parameter v, MSE values are decreasing when v increasing.
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Table 1: Averaged MSE values for the four estimators when v =0.5
n p Y IGR IGRR IGLTE NIGLTE
50 4 0.90 4.785 4.544 4.205 4.091
0.95 4.829 4.594 4.255 4,141
0.99 5.095 4.86 4521 4.407
8 0.90 4.899 4.664 4.325 4.211
0.95 4.949 4.714 4.375 4.261
0.99 5.215 4.98 4.641 4.527
100 4 0.90 4.537 4.302 3.963 3.849
0.95 4.587 4.352 4.013 3.899
0.99 4.853 4.618 4.279 4.165
8 0.90 4.663 4.422 4.083 3.969
0.95 4.707 4.472 4.133 4.019
0.99 4.973 4.738 4.399 4.285
150 4 0.90 4.486 4.251 3.912 3.798
0.95 4.536 4.301 3.962 3.849
0.99 4.802 4.567 4.228 4114
8 0.90 4.606 4.371 4.032 3.919
0.95 4.656 4.421 4.082 3.968
0.99 4,922 4.687 4.348 4.234
Table 2: Averaged MSE values for the four estimators when v =1.5
n p Y IGR IGRR IGLTE NIGLTE
50 4 0.90 4.676 4.441 4.102 3.988
0.95 4.725 4.49 4.151 4.037
0.99 4.992 4.757 4.418 4.304
8 0.90 4.796 4.561 4.222 4.108
0.95 4.845 4.61 4.271 4.156
0.99 5.112 4.877 4.538 4.424
100 4 0.90 4.434 4.199 3.86 3.746
0.95 4.484 4.248 3.909 3.795
0.99 4.75 4515 4.176 4.062
8 0.90 4.554 4.319 3.98 3.866
0.95 4.604 4.369 4.03 3.916
0.99 4.87 4.635 4.296 4.182
150 4 0.90 4.383 4.148 3.809 3.695
0.95 4.432 4.197 3.859 3.744
0.99 4.699 4.464 4.125 4.011
8 0.90 4.503 4.268 3.929 3.815
0.95 4,552 4.317 3.979 3.864
0.99 4.819 4.584 4.245 4.131
297
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4, Real Data Application

To demonstrate the usefulness of the NIGLTE in real application, we present here a chemistry
dataset with (n, p) = (6515), where n represents the number of imidazo[4,5-b]pyridine

derivatives, which are used as anticancer compounds. While p denotes the number of molecular

descriptors, which are treated as explanatory variables (Zakariya Yahya Algamal, Lee, Al-Fakih, &
Aziz, 2015). The response of interest is the biological activities (ICsp). Quantitative structure-
activity relationship (QSAR) study has become a great deal of importance in chemometrics. The
principle of QSAR is to model several biological activities over a collection of chemical compounds
in terms of their structural properties (Zakariya Yahya Algamal & Lee, 2017). Consequently, using
of regression model is one of the most important tools for constructing the QSAR model. A
description of the used explanatory variables is provided in Table 7. All the variables are numerical.
First, to check whether the response variable belongs to the inverse Gaussian distribution, a Chi-
square test is used. The result of the test equals to 5.2762 with p-value equals to 0.2601. It is
indicated form this result that the inverse Gaussian distribution fits very well to this response
variable. That is, the following model is set

15
Yicy, = eXp(Z X; B;)- (21)
-1

Second, to check whether there is a relationship among the explanatory variables or not, Figure 1
displays the correlation matrix among the 15 explanatory variables. It is obviously seen that there
are correlations greater than 0.90 among MW, SpMaxA_D, and ATS8v (r =0.96), between
SpMax3_Bh(s) and ATS8v (r =0.92), and between Mor21v with Mor21e (r =0.93).

Third, to test the existence of multicollinearity after fitting the inverse Gaussian regression model
using log link function and the estimated dispersion parameter is 0.00103, the eigenvalues of the

matrix X" WX are obtained as 1.884x10°,3.445x10%, 2.163x10°, 2.388x10*, 1.290x10°,
9.120x10%,4.431x10%, 1.839x10%, 1.056x10%, 5525, 3231, 2631, 1654, 1008, and 1.115. The
determined condition number CN = /A4 .. / A4, Of the data is 40383.035 indicating that the severe

multicollinearity issue is exist.

The estimated inverse Gaussian regression coefficients and MSE values for the IGR, IGRR, IGLTE,
and NIGLTE estimators are listed in Table 4. According to Table 4, it is clearly seen that the
NIGLTE shrinkages the value of the estimated coefficients efficiently. Additionally, in terms of the
MSE, there is an important reduction in favor of the NIGLTE. Specifically, it can be seen that the
MSE of the NIGLTE estimator was about 45.11%, 36.71%, and 19.84% lower than that of IGR,
IGRR, and IGLTE estimators, respectively.

Table 3: Description of the used explanatory variables

Variable description
name’s
MW molecular weight
IC3 Information Content index (neighborhood symmetry of 3-order)
SpMaxA D normalized leading eigenvalue from topological distance matrix
ATS8v Broto-Moreau autocorrelation of lag 8 (log function) weighted by van der
Vol. 71 No. 352 (2022) 298
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MATS7v
MATS2s
GATS4p
SpMax8_Bh(p)
SpMax3_Bh(s)
P_VSA e 3
TDB08m
RDF100m
Mor21v
Mor21le
HATS6v

Waals volume
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Moran autocorrelation of lag 7 weighted by van der Waals volume

Moran autocorrelation of lag 2 weighted by I-state

Geary autocorrelation of lag 4 weighted by polarizability

largest eigenvalue n. 8 of Burden matrix weighted by polarizability
largest eigenvalue n. 3 of Burden matrix weighted by I-state
P_VSA-like on Sanderson electronegativity, bin 3
3D Topological distance based descriptors - lag 8 weighted by mass
Radial Distribution Function - 100 / weighted by mass

signal 21 / weighted by van der Waals volume

signal 21 / weighted by Sanderson electronegativity

leverage-weighted autocorrelation of lag 6 / weighted by van der Waals

volume”

Table 4: The estimated coefficients and MSE values for the four used estimators.

Estimators
IGR IGRR IGLTE NIGLTE

ﬁ 1.002 0.8839 0.5797 0.3397
MW

Ig 1.237 0.0816 0.0676 0.0244
IC3

B -1.102 1.1159 0.8421 0.6021
SpMaxA_D

/} -1.379 0.0816 0.0676 0.0244
ATS8v

B -1.219 -0.5142 -0.6252  -0.8652
MATS7v

/§ -1.215 0.0816 0.0676 0.08084
MATS2s

3 -1.237 -0.8834 -1.0011 -1.2411

ﬂGATS4p

ﬁA 2.506 0.0816 0.0676 0.11684
SpMax8_Bh(p)

,3 2.069 -0.7311 -0.8427  -1.0827
SpMax3_Bh(s)

3 2.001 0.0816 0.0676 0.0931

IBP_VSA_e_a

3 -2.103 -0.7423 -0.8568 -1.0968

ﬁTDBOBm

B 1571 0.0816 0.0676 0.0593
RDF100m

ﬁ» -2.434 -0.7732 -0.8859  -1.1259
Mor21v

3 -2.352 0.0816 0.0676 0.04284

ﬂMoere

ﬁ 2.211 1.4145 1.101 0.8611
HATS6v

MSE 3.2951 2.7058 2.5482 1.9366
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Conclusions

In this paper, a new estimator was developed by generalizing the Liu-type estimator with inverse
Gaussian regression model. According to Monte Carlo simulation studies, it has been seen that
some estimator can bring significant improvement relative to others, in terms of MSE. Moreover, in
real data application, compared to IGR, IGRR, and IGLTE estimators, the developed estimator can
efficiently reduce the MSE.
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