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Abstract: 

The negative binomial regression model is a well-known model in application 

when the response variable is non-negative integers or counts. However, it is 

known that multicollinearity negatively affects the variance of maximum 

likelihood estimator of the negative binomial coefficients. To overcome this 

problem, a restricted ridge estimator is proposed and derived. Our Monte Carlo 

simulation results suggest that the proposed estimator can bring significant 

improvement relative to other existing estimators. In addition, the real 

application results demonstrate that the proposed estimator outperforms other 

estimators in terms of predictive performance.  

 

Keywords: Multicollinearity; ridge estimator; negative binomial regression 

model; shrinkage; Monte Carlo simulation. 

 

 

1- Introduction 

Negative binomial regression model (NBRM) is widely applied for studying several real data 

problems, “such as in mortality studies where the aim is to investigate the number of deaths and in 

health insurance where the target is to explain the number of claims made by the individual [De 

Jong and Heller (2008), Algamal (2012), Cameron and Trivedi (2013), Kandemir Çetinkaya and 

Kaçıranlar (2019)].  

In dealing with the NBRM, it is assumed that there is no correlation among the explanatory 

variables. In practice, however, this assumption often not holds, which leads to the problem of 

multicollinearity. In the presence of multicollinearity, when estimating the regression coefficients 

for NBRM using the maximum likelihood (ML) method, the estimated coefficients are usually 
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become unstable with a high variance, and therefore low statistical significance [Månsson (2012, 

(2013), Kibria et al. (2015), Türkan and Özel (2017)]. Numerous remedial methods have been 

proposed to overcome the problem of multicollinearity [Algamal (2018, (2018, (2018), Algamal 

and Alanaz (2018), Algamal and Asar (2018), Algamal (2018), Yahya Algamal (2018), Rashad and 

Algamal (2019), Shamany et al. (2019), Al-Taweel et al. (2020), Algamal (2020), Alkhateeb and 

Algamal (2020), Abdulazeez and Algamal (2021), Algamal and Abonazel (2021), Alobaidi et al. 

(2021), Lukman, Algamal, et al. (2021), Lukman, Dawoud, et al. (2021), Mohammed and Algamal 

(2021), Noeel and Algamal (2021), Rashad et al. (2021)]. The ridge regression method [Hoerl and 

Kennard (1970)] has been consistently demonstrated to be an attractive and alternative to the ML 

estimation method. 

Liu (1993) proposed the Liu estimator having the advantages of being a linear function of the 

shrinkage parameter as well. This estimator has the advantages of ridge estimator and Stein 

estimator. Liu (2003) showed the superiority of the Liu-type estimator, which is a two-parameter 

estimator, over ridge regression. Actually, this estimator uses advantages of both ridge estimator 

and Liu estimator. In Liu-type estimator, one can use a large shrinkage value, because there is 

another parameter to make the estimator give a good fit.  

In this paper, a restricted ridge estimator is proposed and derived for the negative binomial 

regression model. The idea behind our proposed estimator is to decrease the shrinkage parameter 

and, therefore, the resultant estimator can be better with small amount of bias.  

2- Negative binomial regression model   

Most popular distribution when analyzing count data is Negative Binomial regression, where this 

type of data used in health, social and physical science , when the dependent variable comes in the 

form of non-negative integers, the conditional distribution is yi|xi , hi~Poisson (hi, μi), i =

1,2,3, … , n where hiis a random variable which is Г(θ + θ) distributed , xi is a p×1 vector of 

covariates , β is a p×1 vector of parameters and μi = exp (xi ́ β) . 

The marginal density function of yi is  

pr(y = yi|xi)) =
Г(θ+yi)

Г(θ)Г(1+yi)
(

θ

θ+µi
)θ(

µi

θ+µi
)yi                              (1)   

The conditional mean and variance of the distribution are given respectively as   : 

 E(yi|xi) = µi          (2) 

V(yi|xi) = µi(1 + 1

θ
µi)                                                                                     (3) 

This model is usually estimated by the maximum likelihood (ML) estimator which is found by 

maximizing the log-likelihood function 

l(θ, β) = ∑ {(∑ log (t + θ)
yi=1
t=0 ) − logyi! − (yi + θ)log (1 +

1

θ
exp (x́iβ)) + yilog (

1

θ
) + yix́iβ}n

i=1          

(4) 
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Them the ML can be obtained by solving the following equation : 

s(β) =
∂l(θ,β)

∂β
= ∑

yi+μi

1+(
1

θ
)μi

n
i=1 xi = 0                                                           (5) 

Since equation (5) is non-linear in  , then by using weighted least square algorithm, we have: 

β̂NBR = (XẂ̂X)−1XẂ̂Ẑ                                                                      (6) 

Where Ẑ is a vector with the ith element equaling log (uî) + (yi − ûi)/ûi , 

 and Ŵ = diag(ûi/(1 + ûi)/θ̂i  . 

the ML estimator of β is normally distributed with asymptotic mean vector E(β̂ML)=0 and 

asymptotic covariance matrix   

Cov(β̂ML)= (XẂ̂X)−1                                            (7) 

the asymptotic mean –square error (MSE) based on the asymptotic covariance matrix equal  

MSE(β̂ML)=tr(XẂ̂X)−1=∑
1

λj

p
j=1                             (8)          

Where λj is the eigenvalue of XẂ̂X matrix . When there is a multicollinearity problem , the 

explanatory variables are highly intercorrelated . In that situation the weighted matrix of cross 

products, XW1̂
́ X ,is often ill-conditioned which leads to some eigenvalues being small . in that 

situation , it is very hard to interpret the estimated parameters since the vector of estimated 

coefficients become too long.  

To avoid this problem the Negative Binomial ridge regression proposed by Mansson and Shukur 

(2011). By minimizes the weighted sum of squares error (WSSE). Hence β̂ML is given by: 

β̂NBRR = (XŴ́ X + KI)−1XẂ̂X β̂NBML                        0>K>1      

                        = (  X́ŴX + KI )−1XẂ̂Ŝ                                                               (8)                  

In mansson and shukur (2011) it is shown that the MSE of this estimator equals : 

MSE(β̂NBRR) = ∑
λj

(λj+k)
2 + k2 ∑

αj
2

(λj+k)
2

J
j=1

J
j=1 =  γ1(k) + γ2(k)                     (9) 

                        =Var(β̂NBRR) + Bias(β̂NBRR) 

Where γ1(k) is the variance and γ2(k) is the bias part of β̂NBRR 

 The MSE of β̂NBRR is lower than ˆ
ML  estimate such that when we found k  (where k may 

take on value between zero and infinity) such that the reduction in the variance part is greater than 

the increase of the squared part, for this reason NBRR estimation is better than ML, furthermore 

NBRR is simple method since it dose not require any changes of the negative binomial regression. 
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3. The proposed estimator 

In addition to the sample information, there are some exact or restrictions for the unknown 

parameter of the model exist which may help to reduce the multicollinearity problem. Therefore, 

suppose that we have some prior information about β  in the form of independent linear restrictions 

as: 

 ,h=Hβ  (10)                      

where Hdenotes a ( ) ( ) 1  1q p q p +  + known matrix and h  shows a   q x I vector of pre-

specified know constants. Considering such a restriction, Duffy and Santner (1989) defined the 

restricted maximum likelihood estimator (RMLE) with the following from: 

 
1 1 1ˆ ˆ ˆˆ ˆ( ) ( ( ) ) ( )T T T T

RMLE MLE MLE h− − −= − −β β X WX H H X WX H Hβ  (11) 

Based on the Eq. (11), we propose a restricted negative binomial ridge estimator (RNBRE) which is 

given as follows: 

 

1
1 1 1

1

ˆ ˆ ˆ ˆ ˆˆ( ) ( ) ( )

ˆ ˆ ˆ( )

T T T T T T

RNBRE

T T

k k k

k h

−
− − −

−

 = + − + +
 

 + −
 

β X WX I X Wv X WX I H H X WX I H

H X WX I X Wv

 (12) 

It is easy to see that when the biasing parameter, 0k = , Eq. (12) becomes the RMLE in Eq. (10). 

The restricted ridge estimator was studied by several authors, such as [Duffy and Santner (1989), 

Najarian et al. (2013), ALheety and Kibria (2014), Nagarajah and Wijekoon (2015), Asar et al. 

(2016), Kurtoğlu et al. (2019)]. The MSE of  ˆ
RNBREβ is defined as  

 

2
2

4 2
1 1

( ( ) ( )
ˆMSE( ) ,

( ) ( 1)

p p
j j jj j j jj

RNBRE

j jj j

k h k h
k

k

   

 = =

 + − + −
= +  

+ +  
 β  (13) 

4. Simulation results  

In this section, a Monte Carlo simulation experiment is used to examine the performance of the new 

estimator with different degrees of multicollinearity. The response variable of  observations is 

generated from negative binomial regression as 2( , )i i iNB   +  with exp( )T
i ix = . Here, 

0 1( , ,..., )p   =  with  and   [Kibria (2003), Månsson and Shukur 

(2011)].  

The explanatory variables  have been generated from the following formula  

   (14) 

where  represents the correlation between the explanatory variables and ’s are independent 

standard normal pseudo-random numbers. Because the sample size has direct impact on the 

n

2

1

1
p

j

j


=

= 1 2 ... p  = = =

1 2( , ,..., )T
i i i inx x x=x

2 1 2(1 ) , 1,2,..., , 1,2,..., ,l

ij ij ipx w w i n j p = − + = =

 ijw
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prediction accuracy, three representative values of the sample size are considered: 50, 100 and 200. 

In addition, the number of the explanatory variables is considered as 4p =  and 7p =  because 

increasing the number of explanatory variables can lead to increase the MSE. Further, because we 

are interested in the effect of multicollinearity, in which the degrees of correlation considered more 

important, three values of the pairwise correlation are considered with {0.90,0.95,0.99} = . 

According to Asar, Arashi, and Wu (2016), two restricted matrices are explained as 

4

1 0 3 2

1 2 1 1
p=

− 
=  

− − 
H  and 

7

1 0 3 1 1 2 1

1 2 1 1 0 1 1
p=

− − 
=  

− − 
H  with (0,0)h = . In 

addition, the method of determining the value of k is defined as 2

max
ˆ(1/ )k = . For a combination 

of these different values of 0, ,n p  , and   the generated data is repeated 1000 times and the 

averaged mean squared errors (MSE) is calculated as  

 
1000

1

1ˆ ˆ ˆMSE( ) ( ) ( ),
1000

T

i =

= − −β β β β β   (1) 

where β̂  is the estimated coefficients for the used estimator.   

The estimated MSE of Eq. (15) for ML, PRE, and our proposed estimator, RPRE, for the 

combination of 0, ,n p  , and  , are respectively summarized in Tables 1, 2, and 3. Several 

observations can be made.   

First, in terms of   values, there is increasing in the MSE values when the correlation degree 

increases regardless the value of 0, ,n p  . However, RNPRE performs better than ridge and ML 

estimators. For instance, in Table 1, when 7p = , 100n = , and 0.99 = , the MSE of RNPRE was 

about 27.83% and 24.36% lower than that of ML and ridge estimators, respectively.  

Second, regarding the number of explanatory variables, it is easily seen that there is increasing in 

the MSE values when the p  increasing from four variables to seven variables. Although this 

increasing can affected the quality of an estimator, RNBRE is achieved the lowest MSE comparing 

with ML and ridge estimator, for different 0, ,n   . 

Third, with respect to the value of n , The MSE values decreases when n  increases, regardless the 

value of 0, ,p  . However, RNBRE still consistently outperforms ridge estimator by providing the 

lowest MSE.   

Fourth, in terms of the value of the intercept and for a given values of , ,p n , RNBRE is always 

show smaller MSE comparing with the other methods”.  

To summary, all the considered values of 0, , ,n p  , RNBRE is superior to ridge estimator, clearly 

indicating that the new proposed estimator is more efficient. 
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Table 1: MSE values when 0 1 = −  

   ML Ridge RNBRE 

        

4p =  50n =  0.9 6.8024 6.5554 5.6881 

  0.95 7.4304 7.1834 6.3164 

  0.99 7.8284 7.5814 6.7143 

 100n =  0.9 5.1734 4.9264 4.0594 

  0.95 6.2484 6.0014 5.134 

  0.99 6.4404 6.1934 5.3264 

 200n =  0.9 5.0164 4.7694 3.9021 

  0.95 5.2264 4.9792 4.1124 

  0.99 5.9814 5.734 4.8674 

7p =  50n =  0.9 6.9074 6.6604 5.7934 

  0.95 7.5264 7.2794 6.4124 

  0.99 7.9414 7.6941 6.8274 

 100n =  0.9 5.4424 5.1954 4.3284 

  0.95 6.5854 6.3384 5.4714 

  0.99 6.9104 6.6634 5.7964 

 200n =  0.9 5.3524 5.1054 4.2384 

  0.95 5.6274 5.3804 4.5134 

  0.99 6.1854 5.9384 4.6714 

 

Table 2: MSE values when 0 0 =  

   ML Ridge RNBRE 

        

4p =  50n =  0.90 6.8261 6.5791 5.7123 

  0.95 7.4541 7.2072 6.3401 

  0.99 7.8521 7.6051 6.7381 

 100n =  0.90 5.1971 4.9501 4.0831 

  0.95 6.2721 6.0251 5.1581 

  0.99 6.4641 6.2172 5.3501 

 200n =  0.90 5.0401 4.7931 3.9261 

  0.95 5.2501 5.0031 4.1361 

  0.99 6.0051 5.7581 4.8911 

7p =  50n =  0.90 6.9311 6.6842 5.8171 

  0.95 7.5501 7.3031 6.4361 

  0.99 7.9651 7.7181 6.8511 

 100n =  0.90 5.4661 5.2191 4.3521 

  0.95 6.6091 6.3621 5.4951 

  0.99 6.9341 6.6871 5.8201 

 200n =  0.90 5.3761 5.1291 4.2621 

  0.95 5.6511 5.4041 4.5371 
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  0.99 6.2091 5.9621 5.0951 

 

Table 3: MSE values when 0 1 =  

   ML Ridge RNBRE 

        

4p =  50n =  0.90 7.024 6.777 5.91 

  0.95 7.652 7.405 6.538 

  0.99 8.05 7.803 6.936 

 100n =  0.90 5.395 5.148 4.281 

  0.95 6.47 6.223 5.356 

  0.99 6.662 6.415 5.548 

 200n =  0.90 5.238 4.991 4.124 

  0.95 5.448 5.201 4.334 

  0.99 6.203 5.956 5.089 

7p =  50n =  0.90 7.129 6.882 6.015 

  0.95 7.748 7.501 6.634 

  0.99 8.163 7.916 7.049 

 100n =  0.90 5.664 5.417 4.55 

  0.95 6.807 6.56 5.693 

  0.99 7.132 6.885 6.018 

 200n =  0.90 5.574 5.327 4.46 

  0.95 5.849 5.602 4.735 

  0.99 6.407 6.16 5.293 

 

5. Conclusions 

In this paper, a restricted ridge estimator of negative binomial regression model was proposed. This 

proposed estimator allows us to handle multicollinearity. According to Monte Carlo simulation 

studies, the restricted estimator has better performance than maximum likelihood estimator and 

ridge estimator, in terms of MSE. The superiority of the new estimator based on the resulting MSE 

was observed and it was shown that the results are consistent with Monte Carlo simulation results. 
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