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Abstract 

The binary pigeon inspired optimization Algorithm (BPOA) is a meta-heuristic 

algorithm that has been applied widely in combinational optimization problems. 

Binary knapsack problem has received considerable attention in the 

combinational optimization. In this paper, a new time-varying transfer function 

is proposed to improve the exploration and exploitation capability of the BPOA 

with the best solution and short computing time. Based on small, medium, and 

high-dimensional sizes of the knapsack problem, the computational results 

reveal that the proposed time-varying transfer functions obtain the best results 

not only by finding the best possible solutions but also by yielding short 

computational times. Compared to the standard transfer functions, the efficiency 

of the proposed time-varying transfer functions is superior, especially in the 

high-dimensional sizes.  

Keywords: 0-1 knapsack problem; pigeon inspired optimization Algorithm; 

transfer function; time-varying parameter. 

 

 

1. Introduction 

The knapsack problem is considered as one of the NP-hard combinatorial optimization problems. 

“The knapsack problem cannot be solved efficiently in a practically acceptable time scale using the 

exact algorithms because the computational time increases exponentially with the problem size. 

This leads to use approximate algorithms such as meta-heuristic algorithms to getting a good 

solutions, not necessarily optimal, in a reasonable time [1, 2]. 

The meta-heuristic algorithms are simple, flexible and they can be deal with the problems with 

different objective function properties, either discrete problems, continuous problems, or mixed 

problems [2]. These algorithms include genetic algorithm (GA) [3], particle swarm optimization 

(PSO) [4], artificial fish swarm algorithm (AFSA) [5], harmony search algorithm (HAS) [6, 7], 

gravitational search algorithm (GSA) [8], moth search algorithm (MSA) [9], cuckoo search 
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algorithm (CSA) [10, 11], firefly algorithm (FA) [12], artificial bee colony algorithm (ABCA) [13], 

bat algorithm (BA) [14, 15], flower pollination algorithm (FPA) [1], and pigeon inspired 

optimization Algorithm (POA) [16].  

The pigeon optimization algorithm (POA), which was proposed by Duan and Qiao [17], has certain 

outstanding merits, such as a simple computational process, simple implementation, and easy 

understanding with only a few parameters for tuning. Due to its good properties, POA has become a 

useful tool for many real-world problems [18-23]. The POA simulates the homing behavior of 

pigeons.  

In the binary POA, a transformation function is used to convert the continuous values generated 

from the algorithm into binary ones, and, therefore it is able to provide binary BPOA a sufficient 

amount to balance between exploration and exploitation [24]. 

In this paper, an efficient time-varying transfer function is proposed to solve the 0 –1 knapsack 

problem. The proposed transfer function is based on combining the S-shaped and V-shaped transfer 

functions with time-varying concept.  

The remainder of this paper is organized as follows. Section 2 describes the basic 0 –1 knapsack 

problem. Section 3 introduces the POA. In Section 4, the proposed time-varying transfer function is 

presented. Section 5 presents and discusses the experimental results. In section 6, conclusions are 

drawn. 

2. Knapsack problem 

Knapsack problem is one of the NP-hard combinatorial optimization problems, which has been 

widely studied in operation research. Knapsack problem consists of a set of n  items where each 

item i  has a profit ic , weight iw , and maximum weight capacity M . The objective is to maximize 

the total profit of the selected items in the knapsack such that the total weights of these items are 

achieved by Eq.(2). Mathematically, the knapsack problem can be written as [25, 26]: 

( )
1

n

i i

i

f x c x
=

=  (1) 

1

s.t.

n

i i

i

w x M
=


 (2) 

where  

1 if item i is selecled

0 otherwise
ix


= 


 

Using the penalty function, the knapsack problem can be written as follows: 

( ) ( ) ( )0,Min x f x Max h = − +  (3) 
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where 
1

n

i i

i

h w x M
=

= −  and   represents the penalty coefficient. In this paper   is setting to 1010  

for all tests. The penalty function can be described in Figure1. 

Penalty function 

- for each ix   

- Calculate total weight of ix  by 
1

n

i i

i

w x
=

 
 
 
  

- if ( )total weight knapsack capacity  

-     ( ) ( )x f x = −  

- else  

-     ( ) ( ) ( )x f x total weight knapsack capacity = − + −  

- end 

Figure 1: Penalty function 

3. Pigeon optimization algorithm  

 The POA mainly consists of two operators: the map and compass operator and the landmark 

operator. In the map and compass operator, pigeons sense the geomagnetic field to shape the map 

for homing. Suppose that the search space is N-dimensional, and then the i-th pigeon of the swarm 

can be represented by a N-dimensional vector ,1 ,2 ,N( , ,..., )i i i iX X X X= . The velocity of this 

pigeon, which represents the position change of this pigeon, can be represented by another N-

dimensional vector ,1 ,2 ,N( , ,..., )i i i iV V V V= . The best previously visited position of the  i-th pigeon is 

denoted as ,1 ,2 ,N( , ,..., )i i i iP P P P= .The global best position of the swarm is ( )1 2,  , ,  Ng g g g=  . 

Each pigeon is flying according to the following two equations: 

 ( ) ( ) ( )( )   1        Rt

i gi it V t e rand X X tV −+ =  +  −  (4) 

 ( ) ( ) ( )  1       1 ,i i iX t X t V t+ = + +  (5) 

where R is a map and compass factor, while rand  is a uniform random number in the range  0,  1 , 

gX  is the global best solution, ( )  iX t  denotes the current position of a pigeon at instance t , and 

( )  iV t  denotes the current velocity of a pigeon at iteration t . 

In landmark operator, all the pigeons are ranked according to their fitness value. In each generation, 

the number of pigeons is updated by Eq. (4), where only half number of pigeons is considered to 

calculate the desired position of the centered pigeon, while all other pigeons adjust their destination 

by following the desirable destination position.  

 
( )

( 1) ,
2

p

p

N t
N t + =  (6) 



Mathematical Statistician and Engineering Applications 

ISSN: 2094-0343 

2326-9865 

 

315 

 
Vol. 71 No. 3s2 (2022) 

http://philstat.org.ph 

 

where pN  is the number of pigeons in the current iteration t . 

The position of the desired destination is calculated by Eq. (5), while all other pigeons update their 

position toward this position by Eq. (6) [17]. 

 
( 1) Fitness( ( 1))

( 1)
Fitness( ( 1))

i i

c

p i

X t X t
X t

N X t

+  +
+ =

+




 (7) 

 ( ) ( ) ( ) ( )( )  1       1 ,i i c iX t X t rand X t X t+ = +  +  (8) 

where  cX  is the position of the centered pigeon (desired destination).  

To perform the variable selection, a BPOA was proposed [27]. Unlike the standard POA, in which 

the solutions are updated in the search space towards continuous-valued positions, in the BPOA, the 

search space is modeled as an n-dimensional Boolean lattice and the solutions are updated across 

the corners of a hypercube. In addition, as the problem is to select or not a given variable, a solution 

binary vector is employed, where 1 corresponds whether a variable will be selected to compose the 

new dataset, and 0 otherwise.  

In any binary algorithm, where one uses the step vector to calculate the probability of changing 

positions, the transfer functions significantly impact the balance between exploration and 

exploitation [24, 28].  

The proposed time-varying transfer functions 

The standard POA was originally proposed to handle a continuous optimization problems. In 

discrete optimization problems, such as knapsack problem, the standard method cannot be applied 

directly to deal for such this problems. Therefore the transfer functions are usually employed to 

convert the continuous search space to discrete search space. There are two families of transfer 

functions: S-shaped and V-shaped transfer function which were proposed by [29]. The V-shaped 

transfer functions have also been studied by [30] to tackle the feature selection problem. The most 

common transfer functions from the S-shaped family is the sigmoid function [31, 32]: 

( )
1

1
t
i

t

i x
S x

e
−

=
+

  (9) 

( )1

0 O.W

t

it

i

if S x rand
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= 


  (10) 

On the other hand, the inverse tangent hyperbolic function is the most common used transfer 

function from the V-shaped family. It is defined as: 

( )
2

arctan
2

t t

i iV x x




 
=  

 
  (11) 

( )1

0 O.W

t

it

i
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The transfer function is the main key to the balance between exploitation and exploration [24, 28]. 

In our proposed time-varying transfer function, a new control parameter   is added in the original 

transfer function. This   is a time-varying variable which starts with a large value and gradually 

decreases over time and it is expressed in Eq.(16). 

( )min max min

te    −= + −    (13) 

where max and min are, respectively, the minimum and maximum values of the control parameter 

 , and T  is the maximum iteration of the BPOA. Accordingly, the two proposed transfer 

functions are defined as, respectively,  

( )
1

1

t
i

t

i x
TVS x

e 

−
=

+

  (14) 

and  

( )
2

arctan
2

t
t i
i

x
TVV x



 

 
=  

 
  (15) 

Figure 1 explains the behavior of the proposed time-varying transfer function for both Eq. (12) and 

Eq. (14), respectively. It is obvious that these proposed functions coverage to be a vertical line 

when iteration increasing.    

 

Figure 1: Explanation of the time-varying transfer function when max 2 = and min 0.1 =  during 10 

iteration. The top panel is the sigmoid transfer function and the bottom panel is the inverse tangent 

hyperbolic transfer function. 
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4. Computational results 

5.1 Parameter setting 

For the binary POA, we set the parameters as follows: the population size =50, migration ratio = 

5/12, migration period= 1.2, butterfly adjusting rate = 5/12, and Max step = 1. In addition, we used 

linear decreasing time varying with max 2 =  and min 0.1 = .  

4.2 Comparison results 

To verify the feasibility and effectiveness of the proposed time-varying transfer functions method 

for solving 0–1 Knapsack problem, three scales of the knapsack problem are considered: low, 

medium, and high-dimensional sizes. In this paper, all the results are obtained from 50 independent 

trials. The Best, Mean, Worst, SD, Mean iterations are reported as evaluation criteria. All of the 

computational experiments were conducted in Matlab 13a on a PC with an Intel Pentium Core i7-

7500 processor (2.9 GHz) with 16GB of RAM in the Windows 10 OS.  

4.2.1 Low size 0-1 KP  

The performance of improved algorithm is investigated to solve ten low scale 0-1 KP instances (kp-

1 to kp-10), which are taken from [1, 14]. The dimensions in this case are ranging from 4 to 23. The 

information dimension, capacity, weights and profits for these ten instances are described in Table 

S1 (supplementary file). Table 1 shows the comparison results for all the used different transfer 

functions for the kp1 - kp10.  

As observed from the results in Table 1, for the low scale knapsack problems, there is no difference 

among the results of using the proposed time-varying transfer functions and the standard transfer 

functions in terms of the best, worse, mean, and SD. The major difference among the performance 

of the proposed time-varying transfer functions and the standard transfer functions in not expected 

because of relatively small numbered items. Contrary, the proposed time-varying transfer functions 

give optimal results with less number of iterations. The mean iterations of the proposed time-

varying transfer functions are obviously better than the standard transfer functions for kp4, kp5, 

kp8, kp9, and kp10 where the number of items is higher than the others. Moreover, comparing 

between the two proposed transfer function, the required iterations to get optimal solution using 

TVV is less than of TVS for kp4, kp5, kp6, kp8, kp9, and kp10.  

Table 1: Results obtained by the transfer functions for the low scale 0–1 KP 

Instance Transfer 

 

function Best Mean Worst SD 

Mean 

iterations 

kp-1 S 35 35 35 0 1 

 V 35 35 35 0 1 

 TVS 35 35 35 0 1 

 TVV 35 35 35 0 1 

kp-2 S 23 23 23 0 1 

 V 23 23 23 0 1 
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 TVS 23 23 23 0 1 

 TVV 23 23 23 0 1 

kp-3 S 130 130 130 0 1 

 V 130 130 130 0 1 

 TVS 130 130 130 0 1 

 TVV 130 130 130 0 1 

kp-4 S 107 107 107 0 2.17 

 V 107 107 107 0 1.11 

 TVS 107 107 107 0 1 

 TVV 107 107 107 0 1 

kp-5 S 295 295 295 0 3.38 

 V 295 295 295 0 2.15 

 TVS 295 295 295 0 1 

 TVV 295 295 295 0 1 

kp-6 S 52 52 52 0 1.17 

 V 52 52 52 0 1.14 

 TVS 52 52 52 0 1 

 TVV 52 52 52 0 1 

kp-7 S 481.07 481.069 481.07 0 1 

 V 481.07 481.069 481.07 0 1 

 TVS 481.07 481.069 481.07 0 1 

 TVV 481.07 481.069 481.07 0 1 

kp-8 S 1025 1025 1025 0 2.63 

 V 1025 1025 1025 0 1.95 

 TVS 1025 1025 1025 0 1.66 

 TVV 1025 1025 1025 0 1 

kp-9 S 1024 1024 1024 0 2.94 

 V 1024 1024 1024 0 1.21 

 TVS 1024 1024 1024 0 1.12 

 TVV 1024 1024 1024 0 1 

kp-10 S 9767 9767 9767 0 5.36 

 V 9767 9767 9767 0 3.31 

 TVS 9767 9767 9767 0 4.22 

 TVV 9767 9767 9767 0 2.41 

 

4.2.2 Medium size 0-1 KP  

To further evaluate the performance of proposed time-varying transfer functions in medium size 0-1 

Knapsack problem, ten medium size 0-1 KP instances (kp-11 to kp-20) are taken from [1, 14] in 

which the items are between 30 and 75. The description of these ten instances are described in 

Table S2 (supplementary file). Table 2 summarizes the comparison results for all the used different 

transfer functions.  
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Obviously, it is evident from Table 2 that the proposed time-varying transfer functions obtained the 

same best, worse, mean, and SD values as the standard transfer functions. From Tables 2, for the 

mean iterations, the proposed time-varying transfer functions are superior to the standard transfer 

functions on kp11 to kp20. This indicates that the proposed time-varying transfer functions is 

comparatively fast. For example, in kp20, the reduction in mean iteration of TVS function was 

63.15% lower than that of S function. On the other hand, the reduction in mean iteration of TVV 

function was 57.94% lower than that of V function. 

Further, it was noted that the v-shaped transfer functions are usually yielded the least iterations 

compared to S-shaped transfer functions. On the other hand, comparing between the two proposed 

transfer function, the required iterations to get optimal solution using TVV is less than of TVS for 

all the 0-1 Knapsack problems.  

Table 2: Results obtained by the transfer functions for the medium size 0–1 KP 

Instance Transfer 

 

function Best Mean Worst SD 

Mean 

iterations 

kp-11 

 
S 1437 1437 1437 0 

8.83 

 V 1437 1437 1437 0 4.92 

 TVS 1437 1437 1437 0 5.74 

 TVV 1437 1437 1437 0 2.95 

kp-12 S 1689 1689 1689 0 10.19 

 V 1689 1689 1689 0 4.62 

 TVS 1689 1689 1689 0 5.51 

 TVV 1689 1689 1689 0 2.63 

kp-13 S 1821 1821 1821 0 41.76 

 V 1821 1821 1821 0 13.9 

 TVS 1821 1821 1821 0 29.33 

 TVV 1821 1821 1821 0 6.51 

kp-14 S 2033 2033 2033 0 30.25 

 V 2033 2033 2033 0 9.64 

 TVS 2033 2033 2033 0 20.03 

 TVV 2033 2033 2033 0 3.82 

kp-15 S 2440 2440 2440 0 35.87 

 V 2440 2440 2440 0 13.04 

 TVS 2440 2440 2440 0 22.96 

 TVV 2440 2440 2440 0 7.25 

kp-16 S 2651 2648.5 2643 2.86 699.08 

 V 2651 2651 2651 0 17.93 

 TVS 2651 2651 2651 0 476.29 

 TVV 2651 2651 2651 0 9.96 

kp-17 S 2917 2917 2917 0 196.41 
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 V 2917 2917 2917 0 26.04 

 TVS 2917 2917 2917 0 75.99 

 TVV 2917 2917 2917 0 10.28 

kp-18 S 2818 2815.6 2794 1.73 894.78 

 V 2818 2818 2818 0 12.26 

 TVS 2818 2818 2818 0 529.38 

 TVV 2818 2818 2818 0 6.57 

kp-19 S 3223 3221.6 3219 0.93 785.18 

 V 3223 3223 3223 0 11.89 

 TVS 3223 3223 3223 0 6.5 

 TVV 3223 3223 3223 0 6.86 

kp-20 S 3614 3614 3614 0 590.38 

 V 3614 3614 3614 0 9.93 

 TVS 3614 3614 3614 0 217.98 

 TVV 3614 3614 3614 0 4.57 

4.2.3 High-dimensional size 0-1 KP  

To further highlight the benefits of our proposed time-varying transfer functions, three cases have 

been investigated. The first case handles the uncorrelated problem (kp21 – kp25) where the weights 

iw  are uncorrelated with the profits ic . Each iw  and ic  is randomly chosen from 5 to 20 and from 

5 to 40, respectively. The second case handles the weakly correlated problem (kp26 – kp30). In this 

case, the weights iw  and the profits ic  can be expressed as follows:  5,20iw   and 

 5, 5i i ic w w − + . The third case handles the strongly correlated problem (kp31 – kp35). In this 

case, iw and ic  can be calculated as:  5,20iw   and  5i ic w + . The knapsack capacity for the 

kp-21-kp35 can be calculated as 
1

0.75
n

i

i

M w
=

=  . The dimension sizes varying from 100 to 2000 

items. For all used transfer functions, the maximum iteration is set to 10000. Tables 3 – 5 reports 

the comparison results for all the used different transfer functions. Based on the obtained results, 

several points are concluded.  

(1) It can be seen that the proposed time-varying transfer functions significantly outperform the 

standard transfer functions on all evaluation measures including the best, mean, worst, and 

standard deviations.  

(2) As observed from the results, the proposed time-varying V-shaped transfer functions, TVV, can 

easily find the optimal values with small SD in all uncorrelated, weakly correlated, and strongly 

correlated problems.  

(3) It is obvious that there is an improvement for searching the global optimal solution when using 

TVV compared to TVS. This leads to the performance dominance of the inverse tangent 

hyperbolic transfer function against the sigmoid transfer function. 

(4) The mean iteration values of time-varying V-shaped transfer functions, TVV, are obviously 

superior to S and V functions for all high-dimensional size problems.  
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(5) Compared to the proposed time-varying V-shaped transfer functions, TVV is significantly 

improve the performance metrics with lower SD and mean iterations”.  

Table 3: Comparison results of uncorrelated high-dimensional size 0–1 KP 

Instance Dimension 
Transfer 

function 
Best Mean Worst SD 

Mean 

iterations 

kp-21 100 S 2126 2120.8 2116 158 1088 

  V 2126 2126 2126 0 72 

  TVS 2126 2126 2126 0 523 

  TVV 2126 2126 2126 0 37 

kp-22 500 S 11025 11017.5 11012 18.5 3028 

  V 11025 11024.2 11023 1.51 130 

  TVS 11025 11023.8 11022 2.20 1585 

  TVV 11025 11025 11025 0 68 

kp-23 1000 S 21963 21958.6 21950 17.1 6856 

  V 21968 21967.1 21965 2.11 842 

  TVS 21969 21966.9 21963 4.92 2979 

  TVV 21969 21969 21969 0 494 

kp-24 1500 S 32633 32626.2 32620 20.65 5631 

  V 32639 32637.8 32636 2.61 1960 

  TVS 32637 32635.4 32634 3.48 3276 

  TVV 32640 32639.2 32638 0.34 981 

kp-25 2000 S 43711 43705 43692 31.6 8857 

  V 43725 43722.6 43720 5.22 3764 

  TVS 43723 43720.7 43718 3.67 5845 

  TVV 43726 43725 43722 1.93 2075 

 

Table 4: Comparison results of weakly correlated high-dimensional size 0–1 KP 

Instance Dimension 
Transfer 

function 
Best Mean Worst SD 

Mean 

iterations 

kp-26 100 S 2015 2012.3 2009 4.32 931 

  V 2015 2015 2015 0 53 

  TVS 2015 2015 2015 0 357 

  TVV 2015 2015 2015 0 30 

kp-27 500 S 10450 10447.2 10446 6.52 1859 

  V 10450 10449.3 10448 0.84 103 

  TVS 10450 10447.8 10446 1.71 856 

  TVV 10450 10450 10450 0 54 

kp-28 1000 S 20856 20852.1 20849 6.85 3463 

  V 20856 20854.6 20853 0.99 220 

  TVS 20856 20854 20852 2.31 2856 

  TVV 20856 20856 20856 0 142 
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kp-29 1500 S 31625 31620.3 31618 8.02 4188 

  V 31630 31629.5 31626 1.85 1962 

  TVS 31632 31628.7 31626 2.94 3278 

  TVV 31632 31631.4 31631 0.26 900 

kp-30 2000 S 42050 42046 42041 10.93 7799 

  V 42055 42053.1 42049 2.04 2541 

  TVS 42057 42051.6 42047 7.32 4587 

  TVV 42057 42056 42054 1.34 1062 

 

Table 5: Comparison results of strongly correlated high-dimensional size 0–1 KP 

Instance Dimension 
Transfer 

function 
Best Mean Worst SD 

Mean 

iterations 

kp-31 100 S 2669 2669 2669 0 287 

  V 2669 2669 2669 0 40 

  TVS 2669 2669 2669 0 111 

  TVV 2669 2669 2669 0 16 

kp-32 500 S 13657 13654.1 13652 0.67 568 

  V 13657 13657 13657 0 54 

  TVS 13657 13657 13657 0 326 

  TVV 13657 13657 13657 0 32 

kp-33 1000 S 27164 27162.5 27159 1.29 925 

  V 27166 27164.6 27164 0.90 131 

  TVS 27166 27164.4 27162 0.22 623 

  TVV 27166 27166 27166 0 92 

kp-34 1500 S 40461 40459.8 40455 2.58 1770 

  V 40466 40465 40463 1.61 297 

  TVS 40468 40466.3 40464 1.58 839 

  TVV 40468 40468 40468 0 150 

kp-35 2000 S 42050 42048.9 42042 3.01 3909 

  V 42054 42053.1 42048 2.18 563 

  TVS 42057 42055 42051 2.33 2380 

  TVV 42057 42056.2 42055 0.89 385 

 

5. Conclusion 

In this paper, a time-varying transfer function was proposed to improve the exploration and 

exploitation capability of the binary POA in solving the 0–1 KP problem efficiently. The 

experimental results show that the introduction of time-varying parameter in the transfer function 

can improve the performance of binary POA in solving small, medium, and high-dimensional sizes 

0–1 KP problems. Additionally, the experimental results show that proposed time-varying V-shaped 

transfer function outperforms the S-shaped transfer function in terms of the best, worse, mean, SD, 

and the mean iterations. 
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