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Abstract 

The Liu shrinkage estimators for the zero-inflated Poisson regression model 

(ZIPRM) has been a suitable shrinkage method to reduce the impacts of 

multicollinearity. The zero-inflated Poisson regression model (ZIPRM) is a very 

popular model for count data that have extra zeros. However, it is known that the 

presence of multicollinearity can have a negative effect on the variance of the 

maximum likelihood estimator (MLE) of the ZIPRM coefficients. In this work, 

an Restricted almost unbiased Liu-estimator in zero-inflated Poisson regression 

(RAULZIPR) model is proposed the presence of multicollinearity. We 

investigate the behavior of the proposed estimator Based on a Monte Carlo study. 

we illustrate that our proposed estimators exhibit better MSE than the usual MLE 

estimator, Liu estimator and ZIPRidge estimator in the presence of 

multicollinearity. Furthermore, we apply the proposed estimator on a real dataset. 

The results show that the performance of (RAULZIPR) outperforms for that of 

the MLE estimator, Liu estimator and ZIPRidge estimator in the existing of the 

multicollinearity among the count data in the (ZIPRM)model. 

Keywords: Multicollinearity; Liu estimator; zero-inflated Poisson regression 

model; Restricted almost unbiased; Monte Carlo simulation. 

 

 

1. Introduction 

The zero-inflated Poisson regression model (ZIPRM) is widely and effectively applied for studying 

several real data problems, especially, applied economics, biomedical, environment and so forth. 

“When the response variable comes in the form of non-negative integers or counts with extra zeros, 

ZIPRM is used, (which induce overdispersion in the dependent variable)[1][2][3]. when the variance 

exceeds the mean of the dependent variable for a count data regression model, Overdispersion is 
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empirically very commonly observed is exist. Thus, the ZIPR model introduced by D. Lambert (1992)  

[4] is a model for count data with excess number of zeros. With the probability p the observation is 

0, and a Poisson (λ) random variable is observed with probability 1 – p. For example, overdispersion 

is found when modeling health service counts where most patients have zero visits, when estimating 

insurance claim data where most have zero claims, or when manufacturing equipment is properly 

aligned with close to zero defaults. 

One of the common assumptions of the regression model in the ZIPRM is that the regressors (or 

independent variables) should not be correlated with others. However, in practice, this assumption 

often fails, which causes the multicollinearity problem. In the presence of multicollinearity, the MLE 

may not perform well, when estimating the regression coefficients for ZIPRM using the maximum 

likelihood (ML) method. Because the estimated coefficients become unstable with a highly variance, 

and therefore low statistical significance[5][6]. When using an ordinary least-square estimator with 

the highly correlated explanatory variables, there is a risk that the estimated regression coefficients 

will have the wrong sign (OLS). Type II errors and wider confidence intervals are also common 

consequences of multicollinearity. As a result, the inference based on the OLS is unstable when there 

is considerable multicollinearity. 

ridge regression (RR) estimator proposed by (Hoerl and Kennard 1970)[7] to reduce the effects of 

multicollinearity for the linear regression model, which is based on a moderately biased, but efficient 

estimator. Thus, the estimated coefficient solve the multicollinearity problem in the correlated and 

reduced variances with the very small cost of a minor bias (see, Wichern and Churchill 1978[8],Saleh 

and Kibria 1993 [9], Kibria 2003[10]; Amin et al. 2017 [11]; Qasim, Amin, and Omer 2019)[12]. 

Since, the ridge regression estimator is a complicated function of the ridge parameter k, Liu 

(1993)[13] introduced an alternative biased estimator, which is a linear function of the shrinkage 

parameter d (see, Akdeniz and Kaçiranlar 1995 [14], Alheety and Kibria 2009 [15]; Kibria 2012 ; 

Kibria et al. (2013) [16],Månsson 2013 [17], Shukur, Månsson, and Sjölander 2015 [18], Qasim, 

Amin, and Ullah 2018 [19] Al-Taweel and Algamal 2020 [20];. considered some ridge regression 

estimators for the zero-inflated Poisson regression model and showed the usefulness of the model in 

presence of the multicollinearity. They also proposed some ridge regression estimators and compared 

their performance with the MLE. However, the literature on Liu (2003)[13] estimator for the zero-

inflated Poisson model is limited. 

2. Zero-inflated Poisson regression model) ZIPRM( 

The zero-inflated Poisson (ZIP) model was proposed for modeling zero-inflation in count data. 

Counts data with extra zeros often arise in applied economic studies. This type of data consists of 

nonnegative values[2][4][21][22][23][24]. ZIPRM can be divided in two types as presented below: 

yi = {
0 withprobability πi

Po(θi) withprobability 1 − πi
  (1) 

where πi =
exp(qi

Tγ)

(1+exp(qi
Tγ))

 and qi is the ith row of Q, which is the data matrix for the logit model, and γ 

is a (p + 1) × 1 vector of coefficients. Furthermore, θi = exp(𝐱i
T𝛃), where 𝐱i is the ith row of 𝐗, 

which is the data matrix for the ZIPRM, and 𝛃 represents to a (p + 1) × 1 vector of coefficients.  
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In order to estimate the coefficients of ZIPRM, we can use the maximum likelihood technique, which 

is known as the most popular method. The joint likelihood should then be maximized by defining 

1(yi = 0)   as an indicator function that takes on the value of 1 if if yi = 0 : 

 L(𝛃, γ) = ∑ [1(yi = 0)(log(exp(qi
Tγ)) + exp(− exp(𝐱i

T𝛃)))]N
i=1  

+ ∑[1 − 1(yi = 0)(yi𝐱i𝛃 − exp(𝐱i
T𝛃))]

N

i=1

 

                          − ∑ log[1 + exp(qi
Tγ)]N

i=1   (2) 

The iterative weighted least-squares algorithm of the individual Poisson and logit estimation is used 

to estimate this complex likelihood function using the simplex method, and the start-up values are 

obtained from those values. The estimated coefficients' last step is defined as 

�̂�ZIPRM = (𝐗T�̂�𝐗)−1𝐗T�̂��̂�,  (3) 

where �̂� = diag(θ̂i) and �̂� is a vector where ith element equals to v̂i = ln( θ̂i) + ((yi − θ̂i)/θ̂i). The 

ML estimator is asymptotically normally distributed with a covariance matrix that corresponds to the 

inverse of the Hessian matrix 

cov( �̂�ZIPRM) = [−E (
∂2ℓ(𝛃)

∂βi  ∂βk
)]

−1

= (𝐗T�̂�𝐗)−1.  (4) 

The mean squared error (MSE) of Eq. (5) can be obtained as 

MSE(�̂�ZIPRM) = E(�̂�ZIPRM − �̂�)T(�̂�ZIPRM − �̂�) 

 = tr[(𝐗T�̂�𝐗)−1] 

   = ∑
1

λj

p
j=1   = T         (5) 

where λj is the eigenvalue of the 𝐗T�̂�𝐗 matrix. 

3. The proposed estimator 

In the subsistence of multicollinearity exists, the matrix 𝐗T�̂�𝐗 becomes out of condition, causing the 

MLE estimator of the ZIPRM parameters to have a high variance and be unstable. To solve 

multicollinearity , the ZIPRM ridge regression model (ZIPRidge) can be defined as [16] 

�̂�ZIPRidge = (𝐗T�̂�𝐗 + k𝐈)−1𝐗T�̂�𝐗�̂�ZIPRM 

                              = (𝐗T�̂�𝐗 + k𝐈)−1𝐗T�̂��̂�,                       (6) 

where k ≥ 0. The MLE estimator can be considered as a special estimator from Eq. (6) with k = 0.  

Following Månsson, Kibria, and Shukur (2012)[25], we consider the following weighted Liu 

estimator 
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β̂L = (X′ŴX + I)−1(X′ŴX + dI)β̂MLE      0 ≤ d ≤ 1 .         (7) 

Where C = (X′ŴX). β̂MLE is the MLE of β. d is the Liu parameter, which has a value between 0 and 

1, and Ŵ is the matrix whose ithdiagonal element equals μ̂i. When d = 1, then β̂L will be equal β̂MLE 

and in a situation when         d < 1, then ‖β̂L‖   ≤  ‖β̂MLE‖ . We will use the Liu (1993) [13] estimator 

as β̂L combines the advantages of ridge and Stein estimators. Since, traditional β̂MLE is expected to 

give a high variance when multicollinearity is present., β̂L  is perform better than β̂MLE. This can also 

be shown by inquiring the MSE properties of MLE and Liu estimators.  

 For this estimator we have replaced the matrix of cross-products used in the Liu (1993) [13] 

estimator with the weighted matrix of cross-products and the ordinary least square estimator (OLS) 

of β with the MLE estimator. The MSE of the Liu estimator equals: 

For this estimate, we have replaced the weighted matrix of cross-products has been the cross-product 

matrix used in the Liu (1993) [13] estimator, and the MLE estimator has been used replaced of the 

ordinary least square estimator (OLS). The Liu estimator's MSE is equal to: 

MSE(β̂L) = E(DL
2) = E(β̂L − β)′(β̂L − β) 

= E|(β̂MLE − β)′Z′Z(β̂MLE − β)| + |(Zβ − β)′(Zβ − β) 

= tr |(β̂MLE − β)′(β̂MLE − β) Z′Z| + k2β′(X′WX + kI)−2β 

= ∑
(λj+d)2

λj(λj+1)2 + (d − 1) ∑
αj

2

(λj+1)2 J
j=1  J

j=1             (8) 

where αj
2 is defined as the jth element of γβ and γ is the eigenvector defined such that X′WX =  γ′Λγ, 

where Λ equals diag(λj). In order to show that there exist a value of d bounded between 0 and 1 so 

that       MSE(β̂L) < MSE(β̂MLE) (we will start by taking the first derivative of equation (8) with 

respect to d: 

g′(d) = 2 ∑
(λj+d)

λj(λj+1)2 + 2(d − 1) ∑
αj

2

(λj+1)2 J
j=1  J

j=1                  (9) 

and then by inserting the value one in equation (9) we get: 

g′(d) = 2 ∑
1

λj(λj + 1)
 

J

j=1

 

which is greater than zero since λj > 0. Hence, there exists a value of d parameter which is between 

0 and 1 so that MSE(β̂d) < MSE(β̂MLE). Furthermore, By Setting equation (8) to zero and solving for 

any individual parameter  dj will yield the best value for that  dj parameter. Then it can be shown as 

follows: 

dj =
αj

2 − 1

1
λj

+ αj
2

  

   we propose a new estimator which is called as the restricted almost unbiased Liu Estimator in 

zero-inflated Poisson regression (RAULZIPR)  model and defined as 

β̂RAULZIPR = Kd�̂�ZIPRM    (10) 

Where Kd = [I − (1 − d)2(C + I)−2] ,   0 < d < 1. 

The asymptotic properties of β̂RAULZIPR are: 

E[β̂RAULZIPR] = E[Kd�̂�ZIPRM]    (11) 
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E[β̂RAULZIPR] = Kdβ       

and 

D(cov(β̂RAULZIPR)) = cov(�̂�RAULZIPR)      (12) 

= cov(Kd�̂�ZIPRM) 

= Kdcov(�̂�ZIPRM)Ḱd 

= KdTḰd 

and 

Bias[β̂RAULZIPR] = E[β̂RAULZIPR] −  β        (13) 

= [Kd − I] β 

= δ 

Then the mean square error can be calculated as,, 

MSE[β̂RAULZIPR] = D (cov(β̂RAULZIPR)) +Bias[β̂RAULZIPR] Bias[β̂RAULZIPR]́ 

                =KdDḰd + δδ́               (14) 

 

 

4. Simulation study  

In this part, the performance of these methods in ZIPRM with various levels of multicollinearity is 

investigated using a Monte Carlo simulation experiment. 

4.1. Simulation design 

By Eq. (1) generates the response variable for the n observations of the ZIPRM, and using pseudo-

random numbers from the binomial distribution, we first generate a binary variable. where πi =

exp(qi
Tγ) /(1 + exp(qi

Tγ)) and qi take on the value of 1 and γ consists only of the intercept term. 

Then, the values that are equal to one of the binary variables are obtained from the Poisson distribution 

with θi = exp(𝐱i
T𝛃) [16][20]. Where 𝛃 = (β1, . . . , βp) with ∑ βj

2 = 1
p
j=1  and β1 = β2 =. . . = βp  . 

The explanatory variables 𝐱i
T = (xi1, xi2, . . . , xin) have been generated from the following formula  

 xij = (1 − ρ2)1l2wij + ρwip,   i = 1,2, . . . , n,  j = 1,2, . . . , p,  (15) 

The correlation between the explanatory variables is represented by ρ, when the degrees of correlation 

are considered as more important, we take three values of the pairwise correlation are considered with 

ρ = {0.90,0.95,0.99}. and wij’s are independent standard normal pseudo-random numbers. Three 

representative sample size values50, 100, and 200n are considered since they have a direct impact on 

prediction accuracy. Additionally, because adding more explanatory variables can lead to a higher 

MSE, the number of explanatory variables is considered as p=4, 8 and p=12. Further, because we are 

interested in the effect of multicollinearity, The generated data is repeated 1,000 times for each of 

these different values of n, p, and ρ, and the mean squared errors (MSE) is calculated as 

 MSE(�̂�) =
1

1000
∑ (1000

i=1 �̂�RAULZIPR − 𝛃)T(�̂�RAULZIPR − 𝛃). (16) 

 

Table 1: Averaged MSE values for the four estimators when 50n =  

p    MLE ZIPRidge Liu RAULZIPR 
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4 0.90 6.091 5.85 5.511 5.397 

 0.95 6.135 5.9 5.561 5.447 

 0.99 6.401 6.166 5.827 5.713 

8 0.90 6.205 5.97 5.631 5.517 

 0.95 6.255 6.02 5.681 5.567 

 0.99 6.521 6.286 5.947 5.833 

12 0.90 5.843 5.608 5.269 5.155 

 0.95 5.893 5.658 5.319 5.205 

 0.99 6.159 5.924 5.585 5.471 

 

Table 2: Averaged MSE values for the four estimators when 100n =  

p    MLE ZIPRidge Liu RAULZIPR 

4 0.90 5.57 5.329 4.99 4.876 

 0.95 5.614 5.379 5.04 4.926 

 0.99 5.88 5.645 5.306 5.192 

8 0.90 5.684 5.449 5.11 4.996 

 0.95 5.734 5.499 5.16 5.046 

 0.99 6 5.765 5.426 5.312 

12 0.90 5.322 5.087 4.748 4.634 

 0.95 5.372 5.137 4.798 4.684 

 0.99 5.638 5.403 5.064 4.95 

 

Table 3: Averaged MSE values for the four estimators when 200n =  

p    MLE ZIPRidge Liu RAULZIPR 

4 0.90 5.206 4.965 4.626 4.512 

 0.95 5.25 5.015 4.676 4.562 

 0.99 5.516 5.281 4.942 4.828 

8 0.90 5.32 5.085 4.746 4.632 

 0.95 5.37 5.135 4.796 4.682 

 0.99 5.636 5.401 5.062 4.948 

12 0.90 4.958 4.723 4.384 4.27 

 0.95 5.008 4.773 4.434 4.32 

 0.99 5.274 5.039 4.7 4.586 

 

From Tables 1-3 we can conclude the following points : 

1. When Increasing the multicollinearity level, ρ, with fixed values of n, p, has a negative impact 

on the MLE estimator and in some cases of the RAUZIPRE , ZIPRidge and Liu. This is because the 

values of the MSE increase as the level of the multicollinearity, ρ, increases.  

2. The values of the MSE of the estimators, RAUZIPRE, ZIPRidge, Liu, and MLE, increase 

when the number of explanatory variables, p, increased with fixed values of ρ and n. 
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3. The RAUZIPRE estimator is outperform the ZIPRidge, Liu, and MLE estimators as they have 

smaller values of the MSE. 

4.2. Real data application 

In this part, we consider the biochemists dataset to further investigate the usefulness of our new 

estimator,[26] . The bioChemists dataset consists of n = 915 observations. The Articles is the 

dependent variable that represents articles number published during the Ph.D study in the last 3 years. 

As listed in Table 4, there are five explanatory variables that affect the dependent variable. 

Table 4. The description of the explanatory variables of the bioChemists data 

Variable names Description 

Female Represent the student gender, 0 if male 1 and if female 

MentorArts 
Represent the articles number published during the last 3 Ph.D. 

years 

Prestige Represent the Ph.D. student prestige 

Married Represent the marital status, 0 if single and 1 if married 

Children Represent the children number of aged 5 or younger 

 

The bioChemists data was fitted to the ZIP regression model using equation (2). Then, the 

RAUZIPRE, ZIPRidge and MLE were calculated. For the bioChemists dataset, Table 5 shows the 

estimated values of the MSE and the estimated values of the coefficient parameters of the ZIP model 

for different estimators, RAUZIPRE, ZIPRidge, Liu, and MLE”. As compared to ZIPRidge, Liu, and 

MLE, the RAUZIPRE has the smallest MSE value, as can be seen: 

Table 5. The estimated coefficient parameters and the estimated MSE for the RAUZIPRE, ZIPRidge, 

Liu and MLE. 

Variable names MLE. ZIPRidge Liu RAUZIPRE 

Female -0.518 -0.409 -0.391 -0.385 

MentorArts 0.398 0.221 0.213 0.215 

Prestige -0.465 -0.471 -0.383 -0.371 

Married 0.382 0.303 0.288 0.271 

Children 0.038 0.029 0.022 0.018 

MSE 170.61 79.71 60.88 51.07 

 

 

 

5. Conclusions 

 In this article, we proposed an Restricted almost unbiased Liu-estimator in zero-inflated Poisson 

regression (RAULZIPR) model. The proposed estimator is able to solve the inflation problem of the 

maximum likelihood estimation method that is applied to estimate the ZIP model parameters. 
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Through the use of a real dataset and a Monte Carlo simulation experiment, the performance of the 

suggested estimator was performance. Based on our results, the performance of the RAUZIPRE is 

better than that of the ZIPRidge, Liu and MLE.as it has smaller MSE values than the other estimators 

for the ZIP model when multicollinearity exists in the data. We have seen from the real dataset and 

the simulated results that the MLE inflates when multicollinearity is present. As they have lower 

values of the MSE, the RAUZIPRE estimators show better performance than the ZIPRidge, Liu, and 

MLE. 
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