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Abstract 

The ridge estimator has been consistently demonstrated to be an attractive 

shrinkage method to reduce the effects of multicollinearity. The inverse 

Gaussian regression model (INGRM) is a well-known model in application 

when the response variable is a skewed data. However, it is known that the 

variance of maximum likelihood estimator (MLE) of the INGRM coefficients 

can negatively affected in the presence of multicollinearity. In this paper, a new 

shrinkage estimator is proposed to overcome the multicollinearity problem in 

the INGRM. Our Monte Carlo simulation and real data application results 

suggest that the proposed estimator is better than the MLE estimator and ridge 

estimator, in terms of MSE.  

 

Keywords: Multicollinearity; ridge estimator; inverse Gaussian regression 

model; Monte Carlo simulation. 

 

 

1. Introduction 

The inverse Gaussian regression model (IGRM) has been widely used in industrial engineering, life 

testing, reliability, marketing, and social sciences [1-7]. “Specifically, IGRM is used when the 

response variable under the study is positively skewed [8-10]. When the response variable is 

extremely skewness, the IGRM is preferable than gamma regression model [11]. In dealing with the 

IGRM, it is assumed that there is no correlation among the explanatory variables [12-32]. In 

practice, however, this assumption often not holds, which leads to the problem of multicollinearity. 

In the presence of multicollinearity, when estimating the regression coefficients for IGRM using the 

maximum likelihood (ML) method, the estimated coefficients are usually become unstable with a 

high variance, and therefore low statistical significance [33]. Numerous remedial methods have 

been proposed to overcome the problem of multicollinearity [34-58]. The ridge regression method 

[59] has been consistently demonstrated to be an attractive and alternative to the ML estimation 

method. 

Ridge regression is a biased method that shrinks all regression coefficients toward zero to reduce 

the large variance [60]. This done by adding a positive amount to the diagonal of T
X X. As a result, 

the ridge estimator is biased but it guaranties a smaller mean squared error than the ML estimator.   

In linear regression, the ridge estimator is defined as 
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1ˆ ( ) ,T T

Ridge k −= +β X X I X y   (1) 

where y  is an 1n  vector of observations of the response variable, 1( ,..., )p=X x x  is an n p  

known design matrix of explanatory variables, 1( ,..., )p =β  is a 1p   vector of unknown 

regression coefficients, I  is the identity matrix with dimension p p , and 0k   represents the 

ridge parameter (shrinkage parameter). The ridge parameter, k , controls the shrinkage of β  toward 

zero. The OLS estimator can be considered as a special estimator from Eq. (1) with 0k = . For 

larger value of k , the ˆ
Ridgeβ  estimator yields greater shrinkage approaching zero [59, 61].  

2. The proposed estimator 

To improve ridge estimator in dealing with multicollinearity in  inverse Gaussian ridge regression 

model, a new shrinkage estimator of ridge estimator is proposed by extending the works of 

Lukman, et al. [62], Lukman, et al. [63], Lukman, et al. [64].  The proposed estimator (INGMRE) is 

defined as: 

 
1ˆ ˆ ˆˆ ˆ( (1 ) ) ,INGMRE INGR

T T

M INGRMk d −= + + =β X WX I X WXβ Cβ  (2) 

where 1ˆ ˆ( (1 ) )T Tk d −= + +C X WX I X WX , 0k  , and 0 1d  . The MSE of Eq. (2) can be 

obtained as  

 
1ˆ ˆ( ) ( ) ( ) ,INGMR

T T T

E

TMSE −  = + − −
 
β C X WX C C I ββ C I  (3) 

where the bias and variance of  ˆ
INGMREβ is defined as, respectively,  

 ˆbias ( )INGMRE
  = −
 
β C I β  (4) 

 
1ˆ ˆvar ( )T T

INGMRE

−  =
 
β C X WX C  (5) 

3. Superiority of the proposed estimator in terms of MSE 

With availability of different estimators for a parameter in the regression model, it is of interest to 

compare their performances in terms of MSE. For two given estimators ˆ
Aβ  and ˆ

Bβ  of β , the 

estimator ˆ
Bβ  is said to be superior to ˆ

Aβ  under the MSE criterion if and only if  

ˆ ˆ=MSE( ) MSE( ) 0A B − β β .  

Lemma 1: [65]  Let D  is a p p  positive definite matrix, b  is a 1p   vector, and  is a positive 

constant. Then 
T −D bb  is a nonnegative definite if and only if 

1T − b D b is hold.  

3.1.  Comparison between ˆ
INGMREβ and ˆ

INGRMβ  

The proposed estimator ˆ
INGMREβ  is better than ˆ

INGRMβ  if and only if (iff), 
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1

1 1ˆ ˆ( ) ( ) ( ) ) ( ) 1T T T T T T
−

− − − − − 
 

β C I X WX C X WX C C I β  (6) 

The difference between Eq. (6) and Eq. (3) is defined as 

 1 1ˆ ˆ(( ) ( ) )) ( ) ( )T T T T T− − = − − − −X WX C X WX C C I ββ C I  (7) 

Since  2ˆ ˆ ˆ( (1 )) ( )( ) 0T T T Tk d+ + − X WX X WX X WX  , then                    

1 1ˆ ˆ( ) ( ) )T T T− −−X WX C X WX C  is positive definite. By lemma 1, the proof is complete.  

 

3.2. Comparison between ˆ
INGMREβ and ˆ

Ridgeβ  

The proposed estimator ˆ
INGMREβ  is better than ˆ

Ridgeβ  if and only if (iff), 

( )
1

2 1 1ˆ ˆ( ) ( ) ( ) ( ) 1
T

T T T T Tk k k
−

− − − + + + − 
  

β C I H X WX I ββ X WX I C I β  (8) 

where  

 ( )1 1 1ˆ ˆ ˆ ˆ ( ) ( ) ( )
T

T T T T Tk k− − −= + + −H X WX I X WX X WX I C X WX C  (9) 

The difference between Eq. (8) and Eq. (6) is defined as 

 ( )2 1 1ˆ ˆ( ) ( ) ( ) ( )
T

T T T T Tk k k− − = + + + − − −H X WX I ββ X WX I C I ββ C I  (10) 

Because ( )2 1 1ˆ ˆ( ) ( )
T

T T Tk k k− −+ + +H X WX I ββ X WX I is positive, 0  iff Eq. (10) is satisfied.  

4. Simulation study  

In this section, a Monte Carlo simulation experiment is used to examine the performance of used 

estimators with different degrees of multicollinearity.  

 

4.1. Simulation design 

The response variable is drawn from inverse Gaussian distribution ~ ( , )i iy IG   with sample sizes 

100n =  and 150 , respectively, where {0.5,1.5,3}  . The explanatory variables 

1 2( , ,..., )T
i i i inx x x=x  have been generated from the following formula  

 2 1 2(1 ) , 1,2,..., , 1,2,..., ,l

ij ij ipx w w i n j p = − + = =   (11) 

where   represents the correlation between the explanatory variables and ijw ’s are independent 

pseudo-random numbers. Three values of the number of the explanatory variables: 4, 8, and 12, and 

three different values of   corresponding to 0.90, 0.95, and 0.99 are considered. Depending on the 
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type of the link function, i , the log link function is investigated.  The log link function is defined 

as  

 exp( ), 1,2,..., .T
i i i n = =x β   (12) 

Here, the vector β  is chosen as the normalized eigenvector corresponding to the largest eigenvalue 

of the T
X WX  matrix subject to 1T =β β  [66]. In addition, the ijw in Eq. (11) are generated from 

normal distribution (0,1).   

 The estimated average MSE is calculated as  

 
1

1ˆ ˆ ˆMSE( ) ( ) ( ),
R

T

iR =

= − −β β β β β   (13) 

where R  equals 1000 corresponding to the number of replicates used in our simulation. All the 

calculations are computed by R program. 

4.2. Simulation results 

The average estimated MSE of Eq. (13) for all the combination of , ,n p , and  , are respectively 

summarized in Tables 1 – 3. According to Tables 1 – 3, the proposed estimator, INMRE, gives low 

bias comparing with Ridge estimator. This finding indicates that the proposed estimator is 

significantly decreasing the bias. Meanwhile, INMRE estimator performs well not only in terms of 

bias, but also in terms of MSE. It is noted that INMRE ranks first with respect to MSE. In the 

second rank, Ridge estimator performs better than INGRM estimator. Additionally, INGRM 

estimator has the worst performance among Ridge and INMRE which is significantly impacted by 

the multicollinearity. 

Furthermore, with respect to  , there is increasing in the bias and MSE values when the correlation 

degree increases regardless the value of ,n 
 

and p . Regarding the number of explanatory 

variables, it is easily seen that there is a negative impact on both bias and MSE, where there are 

increasing in their values when the p  increasing from three variables to ten variables. In Addition, 

in terms of the sample size n , the bias and the MSE values decrease when n  increases, regardless 

the value of ,  and p . Clearly, in terms of the dispersion parameter  , both bias and MSE values 

are decreasing when   increasing.  

Table 1: Averaged MSE values for the log link function when 4p =   

n         INGRM Ridge INGMRE 

100 0.5 0.90 11.5361 1.6041 1.2721 

  0.95 14.7541 2.0181 1.4111 

  0.99 17.6511 2.3631 2.0041 

 1.5 0.90 10.5511 1.4831 1.2581 
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  0.95 13.4141 1.6681 1.3451 

  0.99 17.1631 1.9861 1.6321 

 3 0.9 7.1141 1.4041 1.2221 

  0.95 11.2151 1.4321 1.3251 

  0.99 14.6531 1.5841 1.5331 

150 0.5 0.9 11.3191 1.3871 1.0551 

  0.95 14.5371 1.8011 1.1941 

  0.99 17.4341 2.1461 1.7871 

 1.5 0.9 10.3651 1.2971 1.0511 

  0.95 13.2281 1.4821 1.1591 

  0.99 16.9771 1.8011 1.4441 

 3 0.90 10.3431 1.2751 1.0291 

  0.95 13.2061 1.4611 1.1371 

  0.99 16.9551 1.7781 1.4221 

 

Table 2: Averaged MSE values for the log link function when 8p =   

n         INGRM Ridge INGMRE 

100 0.5 0.90 11.8271 1.8951 1.5631 

  0.95 15.0451 2.3091 1.7021 

  0.99 17.9421 2.6541 2.2951 

 1.5 0.90 10.8421 1.7741 1.5491 

  0.95 13.7051 1.9591 1.6361 

  0.99 17.4541 2.2771 1.9231 

 3 0.9 7.4051 1.6951 1.5131 

  0.95 11.5061 1.7231 1.6161 

  0.99 14.9441 1.8751 1.8241 

150 0.5 0.9 11.6101 1.6781 1.3461 

  0.95 14.8281 2.0921 1.4851 
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  0.99 17.7251 2.4371 2.0781 

 1.5 0.9 10.6561 1.5881 1.3421 

  0.95 13.5191 1.7731 1.4501 

  0.99 17.2681 2.0921 1.7351 

 3 0.90 10.6341 1.5661 1.3201 

  0.95 13.4971 1.7521 1.4281 

  0.99 17.2461 2.0691 1.7131 

 

Table 3: Averaged MSE values for the log link function when 12p =   

n         INGRM Ridge INGMRE 

100 0.5 0.90 11.9251 1.9931 1.6611 

  0.95 15.1431 2.4071 1.8001 

  0.99 18.0401 2.7521 2.3931 

 1.5 0.90 10.9401 1.8721 1.6471 

  0.95 13.8031 2.0571 1.7341 

  0.99 17.5521 2.3751 2.0211 

 3 0.9 7.5031 1.7931 1.6111 

  0.95 11.6041 1.8211 1.7141 

  0.99 15.0421 1.9731 1.9221 

150 0.5 0.9 11.7081 1.7761 1.4441 

  0.95 14.9261 2.1901 1.5831 

  0.99 17.8231 2.5351 2.1761 

 1.5 0.9 10.7541 1.6861 1.4401 

  0.95 13.6171 1.8711 1.5481 

  0.99 17.3661 2.1901 1.8331 

 3 0.90 10.7321 1.6641 1.4181 

  0.95 13.5951 1.8501 1.5261 

  0.99 17.3441 2.1671 1.8111 

 

5. Real data application 

To demonstrate the usefulness of the IGLE in real application, we present here a chemistry dataset 

with ( ) ( ),    65,15n p = , where n  represents the number of imidazo[4,5-b]pyridine derivatives, 

which are used as anticancer compounds. While p  denotes the number of molecular descriptors, 

which are treated as explanatory variables [67]. The response of interest is the biological activities 

(IC50). Quantitative structure-activity relationship (QSAR) study has become a great deal of 

importance in chemometrics. The principle of QSAR is to model several biological activities over a 
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collection of chemical compounds in terms of their structural properties [68]. Consequently, using 

of regression model is one of the most important tools for constructing the QSAR model.  

First, to check whether the response variable belongs to the inverse Gaussian distribution, a Chi-

square test is used. The result of the test equals to 5.2762 with p-value equals to 0.2601. It is 

indicated form this result that the inverse Gaussian distribution fits very well to this response 

variable. That is, the following model is set 

 
50

15

1

ˆˆ exp( ).IC j j

j

y 
=

= x   (14) 

Second, to check whether there is a relationship among the explanatory variables or not, Figure 1 

displays the correlation matrix among the 15 explanatory variables. It is obviously seen that there 

are correlations greater than 0.90 among MW, SpMaxA_D, and ATS8v ( 0.96r = ), between 

SpMax3_Bh(s) and ATS8v ( 0.92r = ), and between Mor21v with Mor21e ( 0.93r = ). 

Third, to test the existence of multicollinearity after fitting the inverse Gaussian regression model 

using log link function and the estimated dispersion parameter is 0.00103, the eigenvalues of the 

matrix ˆT
X WX  are obtained as 91.884 10 , 63.445 10 , 52.163 10 , 42.388 10 , 31.290 10 , 

29.120 10 , 24.431 10 , 21.839 10 , 21.056 10 , 5525 , 3231, 2631, 1654 , 1008 , and 1.115”. The 

determined condition number max minCN / =  of the data is 40383.035 indicating that the severe 

multicollinearity issue is exist. 

 
Figure 1. “Correlation matrix among the 15 explanatory variables of the real data. 

The estimated inverse Gaussian regression coefficients and the estimated theoretical MSE values 

for the MLE, and the used estimators are listed in Table 4. According to Table 4, it is clearly seen 
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that the INGMRE shrinkages the value of the estimated coefficients efficiently. Additionally, in 

terms of the MSE, there is an important reduction in favor of the INGMRE. Specifically, it can be 

seen that the MSE of the INGMRE estimator was about 51.077% and 11.767% lower than that of 

INGRM and Ridge estimators, respectively. 

Table 4: The estimated coefficients and MSE values of the used estimators”  

 Methods   

̂   INGRM Ridge INGMRE 

MW 1.002 0.835 0.734 

IC3 1.237 1.07 0.969 

SpMaxA

_D 

-1.102 -1.269 -0.902 

ATS8v -1.379 -1.546 -1.179 

MATS7

v 

-1.219 -1.386 -1.019 

MATS2s -1.215 -1.382 -1.015 

GATS4p -1.237 -1.405 -1.037 

SpMax8

_Bh.p. 

2.506 2.339 2.707 

SpMax3

_Bh.s. 

2.069 1.902 2.269 

P_VSA_

e_3 

2.001 1.833 2.2 

TDB08

m 

-2.103 -2.27 -1.903 

RDF100

m 

1.571 1.403 1.77 

Mor21v -2.434 -2.601 -2.235 

Mor21e -2.352 -2.519 -2.152 

HATS6v 2.211 2.044 2.411 

MSE 3.295 1.827 1.612 
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6. Conclusions 

In this paper, “a new shrinkage estimator is proposed to overcome the multicollinearity problem in 

the inverse Gaussian regression model. According to Monte Carlo simulation studies, the INGMRE 

estimator has better performance than NIGRM and Ridge estimators, in terms of MSE. 

Additionally, a real data application is also considered to illustrate benefits of using INGMRE 

estimator. The superiority of the INGMRE estimator based on the resulting MSE was observed and 

it was shown that the results are consistent with Monte Carlo simulation results”. In conclusion, the 

use of the INGMRE estimator is recommended when multicollinearity is present in the inverse 

Gaussian regression model. 
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