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Abstract 

In this article, we propose test statistics to test the conformity of bivariate data to 

the bivariate skew-normal distribution (BSN). The tests are based on partial 

functional mean characterization. We will use this characterization to introduce 

two tests, defined as the integrated deviation (ID) or integrated squared deviation 

(ISD) between the sample and the population partial functional means. The 

performance of the two tests is compared to that of the Meintanis and Hlávka 

(MH) and Balakrishnan et al. (BCS) tests. Using a bootstrap procedure, the 

proposed tests, as well as MH and BCS tests, were applied to real data. It turned 

out that the computational forms of the proposed tests are much simpler than that 

of the MH test. However, depending on the BSN shape parameters and the 

alternative model chosen, the proposed tests either outperform MH or the MH 

test outperforms the proposed tests. Except for a few cases, the proposed tests and 

the MH test outperform the BCS test. 

Keywords: - Partial functional mean, characterization, power. 

 

 

 

1. Introduction 

The normal distribution, which is a symmetric distribution, is a probabilistic model that can be 

fitted to data sets from many application domains. However, many other data sets can be 

skewed to the right or left. Therefore, the normal distribution, which has many interesting 

properties, may not be a suitable model for such data. It is therefore necessary to define a class 

of probability distributions that can be fitted to asymmetric data and at the same time has 

interesting mathematical properties. Azzalini [1, 2] introduced such a class of distributions, 

called the skew-normal distribution (SND), which includes the normal distribution as a special 

case. The probability density function for this class is given by 

𝑓(𝑥; 𝛼) = 2𝜙(𝑥)Φ(𝛼𝑥),−∞ < 𝑥 < ∞, 

where 𝜙(𝑥) and Φ(𝑥) are the normal density and distribution functions, respectively. Due to 

its wide range of applications, the univariate SND has attracted many researchers; among these 

are [3, 4, 5, 6], to name a few.  

Azzalini and Dalla Valle [7] extended this family to the multivariate skew-normal 

(MSN) distribution. They proposed the following joint probability density function for the k-

dimensional variable  𝑌 = (𝑌1, … , 𝑌𝑘)
𝑇: 
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 𝑓𝑘(𝑦) = 2𝜙𝑘(𝑦;𝛀)Φ(𝛼
𝑇𝑦), (1) 

where  

 𝛼𝑇 =
𝜆𝑇𝚿−𝟏𝚫−𝟏

√1 + 𝜆𝑇𝚿−𝟏𝜆
, (2) 

 

 𝚫 = diag (√1 − 𝛿1
2, … , √1 − 𝛿𝑘

2), (3) 

 𝛀 =  𝚫(𝚿 +  𝜆𝜆𝑇)𝚫, (4) 

 𝛌 = (λ(𝛿1), … , λ(𝛿𝑘))
𝑇
, (5) 

where λ(𝛿𝑖) = 𝛿𝑖(1 − 𝛿𝑖
2)−1/2and 𝜙𝑘(𝑦; 𝛀) is k-dimensional multivariate normal distribution 

(MND) with standardized marginals and correlation matrix 𝛀. In particular, the Bivariate Skew 

Normal (BSN(ω,𝛼1, 𝛼2)) density is given as 

 𝑓(𝑦1, 𝑦2) = 2𝜙2(𝑦1, 𝑦2; ω)Φ(𝛼1𝑦1 + 𝛼2𝑦2), (6) 

where 

𝜙2(𝑧1, 𝑧2; ω) is the Bivariate Normal Density (BND) with standardized marginals and 

correlation ω , that is 

 𝜙2(𝑧1, 𝑧2; ω) =
1

2𝜋√1 − ω2
𝐸𝑥𝑝 [−

1

2(1 − ω2)
(𝑧1
2−2ω𝑧1𝑧2 + 𝑧2

2)],  

 Φ2(𝑧1, 𝑧2; ω) = ∫ ∫ 𝜙2(𝑥1, 𝑥2; ω)𝑑𝑥1𝑑𝑥2

𝑧1

−∞

𝑧2

−∞

,  

Let 𝑍0, 𝑍1, and 𝑍2 be independent standard normal distributions, and let 𝑋1 = 𝑍1𝑎𝑛𝑑 𝑋2 =

ω𝑍1 + √1 − ω2𝑍2, then (𝑋1, 𝑋2) are jointly bivariate normal with standardized marginals and 

correlation 𝜓. Consider the transformations 

𝑌1 = 𝛿1|𝑍0| + √1 − 𝛿1
2𝑋1, 𝑌2 = 𝛿2|𝑍0| + √1 − 𝛿2

2𝑋2. 

The covariance between 𝑌1 and 𝑌2 is 𝜔 = 𝛿1𝛿2+ 𝜓√(1 − 𝛿1
2)(1 − 𝛿2

2) where 𝜓 is the generic 

element of Ψ. Azzalini and Dalla Valle [7] showed that the joint distribution of 𝑌1 and 𝑌2 is the 

bivariate skew-normal with pdf given in (6). The parameters  𝛼1 and 𝛼2 are related to 

ω, 𝛿1 and 𝛿2 via the respective expressions  

 𝛼1 =
𝛿1 − 𝛿2ω

√(1 − ω2)(1 − ω2 − 𝛿1
2−𝛿2

2 + 2𝛿1𝛿2ω)
, (7) 

 𝛼2 =
𝛿2 − 𝛿1ω

√(1 − ω2)(1 − ω2 − 𝛿1
2−𝛿2

2 + 2𝛿1𝛿2ω)
 . (8) 

Azzalini and Capitanio [8] have examined some properties of the MSN distribution. 

Several articles have dealt with the MSN Azzalini-Capitanio distribution or have introduced 

different versions of it. Reference can be made to [9, 10, 11]. 

Goodness-of-fit procedures are generally used to examine whether a data set can be 

modeled using a certain probability distribution. Basically, the procedure is a hypothesis testing 
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procedure that tests whether to accept or reject that a sample can be attributed to some assumed 

distribution. The first known goodness of fit test procedure was the Pearson chi-square test [12].             

The procedure measures the discrepancy between the number of observed and expected 

observations in a category or interval. Different versions of the test have been proposed, for 

example [13, 14, 15, 16, 17, 18, 19, 20]. While these types of tests are more appropriate for 

discrete or categorical data, they can nevertheless be used to test for continuous distributions. 

Another important class of goodness of fit tests is the class of tests based on the 

empirical distribution function, called EDF tests. This class is based on discrepancies between 

the distribution function assumed under the null hypothesis and its empirical counterpart. 

Beside the classical Kolmogorov-Smirnov and Cramer-von Mises tests, the class also includes 

[21, 22, 23] tests.  

In addition to the two classes of tests mentioned above, many tests have been introduced 

based on different properties or characterizations of distributions. For example, we find tests 

based on the empirical characteristic or moment generating function such as [24, 25, 26]. There 

are also tests based on regression and correlation such as the normality test [27] and tests based 

on the integrated distribution function such as tests proposed in [28, 29, 30, 31]. 

Few papers studied goodness of fit for the univariate or multivariate skew normal 

distributions; Gupta and Chen [32] and Meintanis [33, 34] proposed empirical distribution 

function based statistics to test a skew-normal distribution. Meintanis and Hlávka [35] and 

Balakrishnan et al. [36] introduced tests for the MSN distribution. 

The objective of this article is to introduce new goodness-of-fit tests for the skew- 

normal bivariate distribution (BSN). The tests will be based on what we call the empirical 

partial functional mean. In Section 2, we present the test statistics and its computational forms. 

In Section 3, we simulate the necessary critical values, carry out power calculations and 

compare the performance of the proposed tests with other test statistics. In Section 5, we 

illustrate the new tests to real data sets, and in Section 6, we summarize some concluding 

remarks. 

 

2. Proposed Tests 

In this section, we prove a new characterization of the BSN based on the partial functional 

mean, then we introduce test statistics based on this characterization and derive their 

computational forms. 

2.1. Characterization of the BSN Distribution and Tests Proposal 

 Let 𝑌1, … , 𝑌𝑛 be a random sample from an absolutely continuous distribution function 𝐹 and 

probability density function 𝑓. It is straightforward to show that the partial (incomplete) mean  

𝜇(𝑡) = ∫ 𝑦𝑓(𝑦)
𝑡

−∞

𝑑𝑦 , 

when exists, characterizes the distribution of 𝑌. Based on this characterization, test statistics 

can be introduced to test whether the random sample has come from a specified distribution. 

For example, tests may be based on deviations of 𝜇(𝑡) from its empirical counterpart  
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 �̂�(𝑡) =
1

𝑛
∑𝑌𝑖𝐼𝑌𝑖≤𝑡

𝑛

𝑖=1

.  

We further notice that if 

 𝜇(𝑡) = ∫ 𝜓(𝑦)𝑓(𝑦)
𝑡

−∞

𝑑𝑦, (9) 

then 𝜇′(𝑡) = 𝜓(𝑡)𝑓(𝑡). Thus, for any 𝜇(𝑡) and 𝜓(𝑡) satisfying (9),  𝑓(𝑡) = 𝜇′(𝑡)/𝜓(𝑡),  

is the pdf of some random variable 𝑌, and therefore,  𝜇(𝑡) uniquely determines the distribution 

of 𝑌.  

The empirical counterpart of (9) is  

�̂�(𝑡) =
1

𝑛
∑𝜓(𝑌𝑖)𝐼𝑌𝑖≤𝑡

𝑛

𝑖=1

. 

Now, we will extend this to the bivariate case. Assume (𝑌11, 𝑌12)… , (𝑌𝑛1,𝑌𝑛2) is a random 

sample from the joint density 𝑓𝑌1,𝑌2(𝑦1, 𝑦2), then for any function 𝜓(𝑦1, 𝑦2), we define the joint 

partial functional mean by  

 𝜇(𝑡1, 𝑡2) = ∫ ∫ 𝛹(y
1
,y

2
)𝑓(y

1
,y

2
)𝑑y

1
𝑑y

2
,

𝑡2

−∞

𝑡₁

−∞

 (10) 

provided the integral exists.  

For our purpose, it is judicious to choose 𝛹(y
1
,y

2
) so that the integral has a closed form. 

For example if… 

 
𝛹(y

1
,y

2
) =

𝐸𝑥𝑝(−𝜌2𝜔y
1
y

2
)

𝛷(𝛼1𝑦1 + 𝛼2𝑦2)
 𝑤ℎ𝑒𝑟𝑒 𝝆 =

1

√1 − ω2
, 

  

(11) 

and 𝑓(y
1
,y

2
) is the BSN density given in (6), then 

 

𝜇(𝑡1, 𝑡2) = ∫ ∫ 𝛹(y
1
,y

2
)𝑓(y

1
,y

2
)𝑑y

1
𝑑y

2

𝑡2

−∞

𝑡₁

−∞

 

               = 2∫ ∫
𝐸𝑥𝑝(−𝜌2𝜔y

1
y

2
)

𝛷(𝛼1𝑦1 + 𝛼2𝑦2)
𝜙2(𝑦1, 𝑦2; ω)Φ(𝛼1𝑦1 + 𝛼2𝑦2)𝑑y

1
𝑑y

2

𝑡2

−∞

𝑡₁

−∞

= 2∫ ∫ 𝜙2(𝑦1, 𝑦2; ω)𝐸𝑥𝑝(−
𝜌2

2
𝜔y

1
y

2
)𝑑y

1
𝑑y

2

𝑡1

−∞

𝑡2

−∞

 

                      =
𝜌

𝜋
∫ ∫ 𝐸𝑥𝑝 [−

𝜌2

2
(𝑦1
2+𝑦2

2)] 𝑑y
1
𝑑y

2

𝑡1

−∞

𝑡2

−∞

 

=
2

𝜌
 Φ(𝜌𝑡1) Φ(𝜌𝑡2). 

(12) 

Conversely, if 

𝜇(𝑡1, 𝑡2) =
2

𝜌
 Φ(𝜌𝑡1) Φ(𝜌𝑡2) and 𝛹(y

1
,y

2
) =

𝐸𝑥𝑝(−𝜌2𝜔y
1
y

2
)

𝛷(𝛼1𝑦1+𝛼2𝑦2)
, 

then  
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 ∫ ∫
𝐸𝑥𝑝(−𝜌2𝜔y

1
y

2
)

𝛷(𝛼1𝑦1 + 𝛼2𝑦2)
𝑓(y

1
,y

2
)𝑑y

1
𝑑y

2

𝑡1

−∞

𝑡2

−∞

=
2

𝜌
 Φ(𝜌𝑡1) Φ(𝜌𝑡2) (13) 

Differentiation of both sides of (13) with respect to 𝑡1 and then with respect to 𝑡2 yields  

 
𝐸𝑥𝑝(−𝜌2𝜔t1t2)

𝛷(𝛼1𝑡1 + 𝛼2𝑡2)
𝑓(𝑡1,t2) = 2𝜌𝜙(𝜌𝑡1) 𝜙(𝜌𝑡2),  

or 

 
𝑓(𝑡1,t2) = 2𝜌 𝑒𝑥𝑝(𝜌

2𝜔t1t2)𝜙(𝜌𝑡1) 𝜙(𝜌𝑡2)𝛷(𝛼1𝑡1 + 𝛼2𝑡2),  

                              = 2𝜙2(𝑡1, 𝑡2, 𝜔)𝛷(𝛼1𝑡1 + 𝛼2𝑡2).  

Thus, we have proved the following theorem. 

Theorem: Let 𝑓(𝑦1,y
2
) be a differentiable function on ℝ2, if  𝑡1, 𝑡2are non-zero real numbers, 

then for 𝛹(y
1
,y

2
) =

𝐸𝑥𝑝(−𝜌2𝜔y
1
y

2
)

𝛷(𝛼1𝑦1+𝛼2𝑦2)
, 

 ∫ ∫ 𝛹(y
1
,y

2
)𝑓(y

1
,y

2
)𝑑y

1
𝑑y

2

𝑡2

−∞

𝑡₁

−∞

= 
2

𝜌
Φ(𝜌𝑡1) Φ(𝜌𝑡2)  

 𝑖𝑓𝑓                           

 𝑓(𝑦1,𝑦2)  = 2𝜙₂(𝑦1,𝑦2, 𝜔)𝛷(𝛼₁𝑦₁ + 𝛼₂𝑦₂). 
 

Now, we will develop test statistics based on the characterization proved in the above 

theorem. An immediate choice could be a measure of deviation between 𝜇(𝑡1, 𝑡2) and its 

empirical counterpart  

 𝜇(𝑡1, 𝑡2)̂ =
1

𝑛
∑𝛹(𝑌1j,Y2j)𝐼𝑌1j≤𝑡1

𝑛

𝑗=1

𝐼𝑌2j≤𝑡2. (14) 

Here, we propose the following two tests 

 𝑇1,𝑛 = ∫ ∫ (𝜇(𝑡1, 𝑡2)̂ −𝜇(𝑡1, 𝑡2))𝜔(𝑡1, 𝑡2)
∞

−∞

∞

−∞

𝑑𝑡1𝑑𝑡2 (15) 

 𝑇2,𝑛 = ∫ ∫ (𝜇(𝑡1, 𝑡2)̂ −𝜇(𝑡1, 𝑡2))
2

𝜔(𝑡1, 𝑡2)
∞

−∞

∞

−∞

𝑑𝑡1𝑑𝑡2 (16) 

where 𝜔(𝑡1, 𝑡2) is an arbitrary weight function chosen such that each of the integrals (15) and 

(16) exists and has a closed form. A convenient choice of 𝜔(𝑡1, 𝑡2) would be 

 𝜔(𝑡1, 𝑡2) = 𝐸𝑥𝑝 [−
𝑎2

2
(𝑡1
2 + 𝑡2

2)], (17) 

for some constant 𝑎.  

2.2. Computational Forms for the Proposed Tests 

To obtain a computational form for 𝑇1,𝑛, we replace the values of 𝜇(𝑡1, 𝑡2), 𝜇(𝑡1, 𝑡2),̂  and 

𝜔(𝑡1, 𝑡2) given, respectively, in (12), (14) and (17), in the integrand of (15)  

 
𝑇1,𝑛 = ∫ ∫ (

1

𝑛
∑ 𝛹(𝑌1j,Y2j)𝐼𝑌1j≤𝑡1
𝑛
𝑗=1 𝐼𝑌2j≤𝑡2 −

∞

−∞

∞

−∞

 
2

𝜌
Φ(𝜌𝑡1) Φ(𝜌𝑡2)) 𝑒𝑥𝑝 [−

𝑎2

2
(𝑡1
2 + 𝑡2

2)] 𝑑𝑡1𝑑𝑡2     =
(18) 
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1

𝑛
∑ 𝛹(𝑌1j,Y2j)
𝑛
𝑗=1 ∫ ∫ 𝑒𝑥𝑝 [−

𝑎2

2
(𝑡1
2 + 𝑡2

2)]
∞

𝑌1j

∞

𝑌2j
𝑑t1𝑑t2  −

2

𝜌
∫ ∫  Φ(𝜌𝑡1) Φ(𝜌𝑡2)𝑒𝑥𝑝 [−

𝑎2

2
(𝑡1
2 + 𝑡2

2)] 𝑑t1𝑑t2
∞

−∞

∞

−∞
            

=
2𝜋

𝑎2𝑛
∑ 𝛹(𝑌1j,Y2j)Φ̅(𝑎𝑌1j)Φ̅(𝑎𝑌2j) −
𝑛
𝑗=1

2

𝜌
[
√2𝜋

𝑎
∫   Φ (

𝜌t

𝑎
)𝜙(𝑡)𝑑t

∞

−∞
]
2

=

2𝜋

𝑎2𝑛
∑ 𝛹(𝑌1j,Y2j)Φ̅(𝑎𝑌1j)Φ̅(𝑎𝑌2j) −
𝑛
𝑗=1

4𝜋

𝑎2𝜌
𝐸2 [ Φ (

𝜌T

𝑎
)].   

 

where 𝛹(𝑥,y) is as defined in (11), Φ̅(𝑎) = 1 − Φ(𝑎),  and 𝑇 is  a standard normal variable.  

For any constants a and b, we have 𝐸[Φ(𝑎𝑇 + 𝑏)] = Φ(
𝑏

√1+𝑎2
([37], p 53-54). This gives 

𝐸 [ Φ (
𝜌T

𝑎
)] = Φ(0) =

1

2
, and hence 

 
4𝜋

𝑎2𝜌
𝐸2 [ Φ (

𝜌T

𝑎
)] =

𝜋

𝑎2𝜌
. (19) 

 Replacing (19) in (18), the following computational form for 𝑇1,𝑛is obtained 

 𝑇1,𝑛 =
2𝜋

𝑎2𝑛
∑𝛹(𝑌1j,Y2j)Φ̅(𝑎𝑌1j)Φ̅(𝑎𝑌2j) −

𝜋

𝜌𝑎2

𝑛

𝑗=1

, (20) 

To derive a computational form for Tn,2, we have 

 

𝑇𝑛,2 = ∫ ∫ [ μ(t1, t2)̂ −μ(t1,t2)]
2
ω(t1,t2)𝑑t1𝑑t2

+∞

−∞

+∞

−∞
  

       =∫ ∫  μ2(t1, t2)̂ ω(t1,t2)𝑑t1𝑑t2
+∞

−∞

+∞

−∞⏟                    
𝐼1

− 

2∫ ∫ μ(t1,t2) μ(t1, t2)̂ ω(t1,t2)𝑑t1𝑑t2
+∞

−∞

+∞

−∞⏟                          
𝐼2

+ ∫ ∫ μ2(t1, t2)ω(t1,t2)𝑑t1𝑑t2
+∞

−∞

+∞

−∞⏟                    
𝐼3

.  

(21) 

 

We now evaluate each of 𝐼1, 𝐼2, and 𝐼3. 

 

𝐼1 = ∫ ∫  μ2(t1, t2)̂ ω(t1,t2)𝑑t1𝑑t2

+∞

−∞

+∞

−∞

 

    =
1

𝑛2
∑ Ψ(Y1i,Y2i)Ψ(Y1j,Y2j)∫ ∫ 𝑒−

𝑎2

2
(t1

2+t2
2)𝑑t1𝑑t2

+∞

𝑌2𝑖∨𝑌2𝑗

+∞

𝑌1𝑖∨𝑌1𝑗

𝑛
𝑖,𝑗=1  

    = 
2𝜋

𝑛2𝑎2
∑ Ψ(Y1i,Y2i)Ψ(Y1j,Y2j)Φ̅(𝑎(𝑌1𝑖 ∨ 𝑌1𝑗)) Φ̅(𝑎(𝑌2𝑖 ∨ 𝑌2𝑗))
𝑛
𝑖,𝑗=1 , 

(22) 

 

where 𝑥 ∨ 𝑦 = max (𝑥, 𝑦). 

𝐼2 =
4

𝑎𝑛
∑ Ψ(Y1i,Y2i) ∫ ∫ Φ(𝜌𝑡1) Φ(𝜌𝑡2)𝑒

−
𝑎2

2
(t1

2+t2
2)𝑑t1𝑑t2

+∞

𝑌2𝑖

+∞

𝑌1𝑖

𝑛
𝑖=1 . 

Applying the change of variables 𝑢 =  𝑎𝑡1, 𝑣 =  𝑎𝑡2,  one has 

 
𝐼2 =

2𝜋

𝑎𝑛
∑Ψ(Y1i,Y2i)∫ 2 𝜙(𝑢)Φ(

𝜌

𝑎
𝑢) (∫ 2𝜙(𝑣)Φ(

𝜌

𝑎
𝑣)  𝑑v

+∞

𝑌2𝑖

)
+∞

𝑌1𝑖

𝑑u

𝑛

𝑖=1

 

 =
2𝜋

𝜌𝑛𝑎2
∑ Ψ(Y1i,Y2i)G̅ (𝑎𝑌1𝑖 ,

𝜌

𝑎
) G̅ (𝑎𝑌2𝑖,

𝜌

𝑎
)𝑛

𝑖=1 . 
 

(23) 
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Where G is the CDF of a skew-normal distribution with skewness parameter 
𝜌

𝑎
 and G̅ = 1 − 𝐺. 

 

𝐼3 = ∫ ∫ μ2(t1, t2)ω(t1,t2)𝑑t1𝑑t2

+∞

−∞

+∞

−∞

 

                                   =
4

𝜌2
∫ ∫ Φ2(𝜌𝑡1) Φ

2(𝜌𝑡2)𝑒
−
𝑎2

2
(t1

2+t2
2)𝑑t1𝑑t2

+∞

−∞

+∞

−∞

 

                                         =
8𝜋

(𝑎𝜌)2
∫ Φ2 (

𝜌

𝑎
𝑢)𝜙(𝑢) (∫ Φ2 (

𝜌

𝑎
𝑣)𝜙(𝑣)𝑑𝑣

+∞

−∞
)

+∞

−∞
𝑑𝑢. 

 

From [38], we have  

∫ Φ2(𝑏𝑣)𝜙(𝑣)𝑑𝑣
+∞

−∞

=
1

𝜋
arctan (√1 + 2𝑏2) 

which brings 𝐼3 to the simple form 

 
𝐼3 =

8

(𝑎𝜌)2𝜋
(𝑎𝑟𝑐𝑡𝑎𝑛√1 + 2(

𝜌

𝑎
)
2

)

2

. 

 

(24) 

Replacing (22), (23), and (24) in (21), we obtain the following form for 𝑇2,𝑛. 

 

𝑇2,𝑛 =
2𝜋

𝑛2𝑎2
∑ 𝛹(Y1i,Y2i)𝛹(Y1j,Y2j)�̅�(𝑎(𝑌1𝑖 ∨ 𝑌1𝑗)) �̅�(𝑎(𝑌2𝑖 ∨ 𝑌2𝑗))
𝑛
𝑖,𝑗=1    

           −
2𝜋

𝜌𝑛𝑎2
∑ 𝛹(Y1i,Y2i)�̅� (𝑎𝑌1𝑖 ,

𝜌

𝑎
) �̅� (𝑎𝑌2𝑖 ,

𝜌

𝑎
)𝑛

𝑖=1    

           +
8

(𝑎𝜌)2𝜋
(𝑎𝑟𝑐𝑡𝑎𝑛√1 + 2(

𝜌

𝑎
)
2

)

2

. 

(25) 

 

When the parameters 𝛼1, 𝛼2and 𝜔 are unknown, which is the case of our study, they must be 

replaced by their estimates. Based on a random sample from the BSN density given in (6), the 

maximum likelihood estimators of the parameters 𝜔, 𝛼1, and 𝛼2 are solutions of the following 

likelihood equations: 

 
𝜕𝑙

𝜕𝜔
= 𝜔3 −

1

𝑛
∑ 𝑌1𝑗𝑌2𝑗 

𝑛

𝑖,𝑗=1

𝜔2 − (1 −
1

𝑛
∑(𝑌1𝑗

2 + 𝑌2𝑗
2

𝑛

𝑗=1

))𝜔 −
1

𝑛
∑𝑌1𝑗𝑌2𝑗 = 0

𝑛

𝑗=1

 (26) 

 
𝜕𝑙

𝜕𝛼1
=∑

𝑌1𝑗ϕ(𝛼1𝑌1𝑗 + 𝛼2𝑌2𝑗)

Φ(𝛼1𝑌1𝑗 + 𝛼2𝑌2𝑗)
= 0,

𝑛

𝑗=1

 (27) 

 
𝜕𝑙

𝜕𝛼2
=∑

𝑌2𝑗ϕ(𝛼1𝑌1𝑗 + 𝛼2𝑌2𝑗)

Φ(𝛼1𝑌1𝑗 + 𝛼2𝑌2𝑗)
= 0.

𝑛

𝑗=1

 (28) 

 

The first likelihood equation is a cubic equation in 𝜔, the other two equations are nonlinear 

equations in 𝛼1 and 𝛼2. These equations can be solved numerically. Caution must be taken so 

that the solution of 𝜔 must satisfy |𝜔 − 𝛿1𝛿2| < √(1 − δ1
2)(1 − δ2

2).  



 Mathematical Statistician and Engineering Applications 
ISSN: 2094-0343 

2326-9865 

 

707 
 
 

 
 

 

Vol. 71 No. 3s2 (2022) 

http://philstat.org.ph 

 

 

 

3.  Critical Values and Power Simulation 

Azzalini and Dalla Valle [7] showed that if 𝑍0 and 𝑍1 are independent 𝑁(0,1) random variables, 

and 𝛿 ∈ (−1,1), then 𝑌 = 𝛿|𝑍0| + √1 − 𝛿2𝑍1 is distributed 𝑆𝑁 (
𝛿

√1−𝛿2
). They further proved 

that if 𝒁 = (𝑍1, … , 𝑍𝐾)
𝑇 is a k-dimensional MVN with standardized marginals, independent of 

𝑍0~𝑁(0,1), and if 𝑌𝑗 = 𝛿𝑗|𝑍0| + √1 − 𝛿𝑗
2𝑍𝑗 , 𝑗 = 1,… , 𝑘, then 𝑌 = (𝑌1, … , 𝑌𝐾)

𝑇 is a k-

dimensional MSN with density given in (6). Based on this result, we will generate bivariate 

skew-normal samples. 

 

To generate a random sample of size 𝑛 from a BSN distribution, we first generate a sample, say 

𝑧01, … , 𝑧0𝑛,  from N(0,1), and then generate another sample, independent of the first, from 

bivariate normal , say (
𝑧11

𝑧21
) ,… , (

𝑧1n

𝑧2n
) with correlation coefficient 𝜌 and standardized 

marginals. We then compute y1𝑗 = 𝛿1|𝑧0𝑗|+√1− 𝛿1
2𝑧1𝑗 and y2𝑗 = 𝛿2|𝑧0𝑗| + √1 − 𝛿2

2𝑧2j, 𝑗 =

1, … , 𝑛. Thus (
𝑦11

𝑦21
) ,… , (

𝑦1n

𝑦2n
) is a random sample from BSN with parameters 𝜃 = ( 𝛼1,𝛼2, 𝜔)  

where 𝛼1,𝛼2 are defined in (7) and (8), and 𝜔 is the off diagonal element of Ω in (4). Based on 

this random sample, we numerically estimate 𝜃 by solving the likelihood equations (26) to (28) 

and then evaluate the proposed test statistics 𝑇1,𝑛(�̂�) and 𝑇2,𝑛(𝜃) . For the sake of comparisons, 

we will also evaluate Meintanis and Hlávka (MH) test and Balakrishnan et. al. (BCS) canonical 

form test. The computational form for the MH test is given by 

 

 

𝑀𝐻 =
1

𝑛
∑ (𝑌1𝑗𝑌1𝑘𝛿2

2 + 𝑌2𝑗𝑌2𝑘𝛿1
2 − 2𝑌1𝑗𝑌2𝑘𝛿1𝛿2)𝐼0(𝑌1𝑗𝑘)𝐼0(𝑌2𝑗𝑘)

𝑛

𝑗,𝑘=1

+
1

𝑛
∑ 𝜅2

2𝐼2(𝑌1𝑗𝑘)𝐼0(𝑌2𝑗𝑘) + 𝜅1
2𝐼2(𝑌2𝑗𝑘)𝐼0(𝑌1𝑗𝑘)

𝑛

𝑗,𝑘=1

− 2𝜅1𝜅2𝐼1(𝑌1𝑗𝑘)𝐼1(𝑌2𝑗𝑘)

+
2

𝑛
∑ (𝛿2𝜅1𝑌1𝑗 − 𝛿1𝜅1𝑌2𝑗)𝐼1(𝑌2𝑗𝑘)𝐼0(𝑌1𝑗𝑘)) + (𝛿1𝜅2𝑌2𝑗

𝑛

𝑗,𝑘=1

− 𝛿2𝜅2𝑌1𝑗)𝐼1(𝑌1𝑗𝑘)𝐼0(𝑌2𝑗𝑘). 

(29) 

 

Where 𝑌𝑚𝑗𝑘 = 𝑌𝑚𝑗 + 𝑌𝑚𝑘, 𝑚 = 1,2 , 𝜅1 = δ1 −𝜔δ2, 𝜅2 = δ2 −𝜔δ1, and 

𝐼𝑠(𝑍) = ∫ 𝑡𝑠𝑒𝑡𝑍𝑤(𝑡)𝑑𝑡
+∞

−∞
, 𝑤(𝑡) = 𝑒𝑎𝑡

2
, 𝑎 > 0, 𝑠 = 0,1,2. 

According to Meintanis and Hlávka [35], the best power of the test in (29) was attained 

at 𝑎 = 2. We notice that 𝑇1,𝑛 and 𝑇2,𝑛 have simpler computational forms compared to M-H 𝑇𝑛,𝜔 

test. It is worth noting that all test values are calculated for the MLEs of the parameters obtained 

from likelihood equations (26)-(28). 
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Balakrishnan et al. [36] developed three tests based on the so-called canonical form of the MSN 

distribution, in which the location is the zero vector and the scale is the identity matrix. For the 

purpose of comparisons to our proposed tests, we will consider only one of the three tests; the 

sum test, because it generally performed better than the other two tests. In the bivariate case, 

the test is the sum of the rations of the second component divided by the absolute value of the 

first component. For a sample of n bivariate observations, the test has the following form: 

 𝐵𝐶𝑆 =∑
𝑦2𝑗
∗

|𝑦1𝑗
∗ |

𝑛

𝑗=1

 (30) 

 

Mathematica codes will be developed to compute critical values for 𝑇1,𝑛, 𝑇2,𝑛, 𝑀𝐻 and 

BCS and to calculate the powers of these tests when testing against some competing bivariate 

alternatives. Simulated critical values for the proposed tests 𝑇1,𝑛 and 𝑇2,𝑛 were evaluated for 

some fixed parameters but treated as unknowns parameters, the results are displayed in Table 

1. 

Table 1. Critical values for 𝑻𝟏,𝒏
𝒂  𝐚𝐧𝐝 𝑻𝟐,𝒏

𝒂  at nominal level 𝜶 = 𝟎. 𝟎𝟓 based on 

𝟏𝟎𝟎𝟎 samples of size 20 and 50 simulated from BSN distribution for 𝝎 =0.3 and 

different choices of 𝜹𝟏, 𝜹𝟐,  and for 𝒂 = 𝟎. 𝟏, 𝟎. 𝟓, 𝐚𝐧𝐝 𝟏. 𝟎. 

 𝑻𝟏,𝒏
𝒂  𝑻𝟐,𝒏

𝒂  

𝑛 𝑎 δ₁ δ₂ 2.5% 5% 95% 97.5% 90% 95% 

 20 

 

 

 

 

 

 

 

0.1 

0.20 0.30 -51.32 -41.14 21.22 48.30 8.40 13.78 

0.20 0.20 -44.58 -35.82 22.33 34.23 6.91 11.26 

0.70 0.80 -171.65 -169.62 -16.80 3.53 147.27 157.41 

0.80 0.80 -173.47 -172.47 -87.71 -74.58 159.99 163.00 

0.10 0.90 -166.71 163.59 -14.68 3.34 139.77 151.24 

 

 

 

 

0.5 

0.20 0.30 -2.48 -2.01 1.32 1.74 0.61 0.77 

0.20 0.20 -2.20 -1.77 1.19 1.65 0.55 0.73 

0.70 0.80 -9.05 -8.86 -1.22 -0.53 6.35 6.82 

0.80 0.80 -9.18 -9.08 -5.04 -4.54 6.90 7.19 

0.10 0.90 -8.04 -7.79 -0.63 -0.15 5.10 5.66 

 

 

 

 

1.0 

0.20 0.30 -0.81 -0.63 0.45 0.54 0.21 0.28 

0.20 0.20 -0.82 -0.61 0.41 0.55 0.20 0.26 

0.70 0.80 -2.64 -2.58 -0.41 -0.15 1.53 1.70 

0.80 0.80 -2.72 -2.69 -1.86 -1.40 1.78 1.84 

0.10 0.90 -2.34 -2.24 -1.54 0.04 1.13 1.32 

50 

 

 

 

 

 

 

 

 

 

 

0.1 

0.20 0.30 -21.21 -16.36 13.64 19.67 2.20 3.06 

0.20 0.20 -21.03 -16.12 12.49 17.16 1.99 2.88 

0.70 0.80 -135.81 -121.58 -6.14 11.03 64.27 79.03 

0.80 0.80 -169.99 -168.40 -99.91 -84.41 150.44 155.47 

0.10 0.90 -126.59 -117.55 0.54 22.26 65.17 81.84 

 

 

0.20 0.30 -1.09 -0.96 -0.86 0.74 1.02 0.27 

0.20 0.20 -0.96 -0.75 -0.71 0.91 0.20 0.24 
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0.5 

0.70 0.80 -7.41 -6.95 -0.84 0.32 3.11 4.04 

0.80 0.80 -8.84 -8.71 -5.50 -4.94 6.33 6.57 

0.10 0.90 -6.31 -5.82 -0.08 1.46 2.68 3.47 

 

 

 

 

1.0 

0.20 0.30 -0.30 -0.26 0.19 0.31 0.07 0.09 

0.20 0.20 -0.34 -0.26 0.22 0.28 0.07 0.08 

0.70 0.80 -2.26 -2.15 -0.23 0.21 0.94 1.15 

0.80 0.80 -2.62 -2.58 -1.71 -1.59 1.60 1.67 

0.10 0.90 -1.82 -1.73 -0.09 0.18 0.63 0.76 

 

The calculations are based on samples of sizes 20 and 50. Due to the time it took to run 

the simulation codes, we only simulate 1000 samples. The simulated power value, which is the 

proportion of rejections, is calculated at the significance level 𝛼 = 0.05. Thus, the rejection 

region for the two-sided test 𝑇1,𝑛is the region outside its 2.5th and 97.5th percentiles, and for the 

one-sided test 𝑇2,𝑛 is the interval to the right of its 95th percentile.  

To verify whether the proposed tests recover the nominal value 𝛼 = 0.05, we calculated 

the power of testing the BSN against itself and presented the results in Table 2. We can see 

from this table that the two proposed tests mostly recover the nominal value 0.05, however, in 

some cases the tests are somewhat liberal or slightly conservative. 

 

Table 2. Calculated power  for 𝑻𝟏,𝒏
𝒂  and 𝑻𝟐,𝒏

𝒂  based on samples of sizes 20 and 50 when 

testing the BSN against itself for various values of the parameters 𝜹 = (𝜹𝟏, 𝜹𝟐) 𝐚𝐧𝐝 𝝎 

values and for 𝒂 = 𝟎. 𝟏, 𝟎. 𝟓, 𝐚𝐧𝐝 𝟏. 𝟎. 

𝑛       20  50 

(𝛿1, 𝛿2) 𝜔 𝑻𝟏,𝒏
𝟎.𝟏  𝑻𝟐,𝒏

𝟎.𝟏 𝑻𝟏,𝒏
𝟎.𝟓 𝑻𝟐,𝒏

𝟎.𝟓 𝑻𝟏,𝒏
𝟏  𝑻𝟐,𝒏

.𝟏   𝑻𝟏,𝒏
𝟎.𝟏  𝑻𝟐,𝒏

𝟎.𝟏  𝑻𝟏,𝒏
𝟎.𝟓 𝑻𝟐,𝒏

𝟎.𝟓 𝑻𝟏,𝒏
𝟏  𝑻𝟐,𝒏

.𝟏  

(0.2, 0.2) 

0.3 0.05 0.05 0.05 0.05 0.03 0.03  0.06 0.06 0.05 0.06 0.07 0.07 

0.4 0.06 0.06 0.05 0.05 0.06 0.06  0.05 0.05 0.05 0.05 0.05 0.05 

0.5 0.05 0.05 0.05 0.04 0.04 0.05  0.04 0.04 0.05 0.05 0.05 0.05 

(0.1, 0.9) 

0.3 0.06 0.05 0.06 0.06 0.06 0.05  0.05 0.06 0.05 0.04 0.07 0.07 

0.4 0.04 0.06 0.05 0.04 0.07 0.04  0.05 0.06 0.04 0.05 0.04 0.05 

0.5 0.04 0.04 0.06 0.05 0.05 0.06  0.03 0.04 0.05 0.06 0.06 0.06 

(0.8, 0.8) 

0.3 0.004 0.05 0.04 0.04 0.05 0.05  0.04 0.05 0.05 0.06 0.04 0.06 

0.4 0.07 0.06 0.05 0.07 0.05 0.04  0.06 0.05 0.06 0.05 0.05 0.04 

0.5 0.06 0.06 0.06 0.05 0.04 0.05  0.05 0.06 0.05 0.05 0.05 0.06 

 

The power calculations of 𝑇1,𝑛
𝑎 and 𝑇2,𝑛

𝑎 ; 𝑎 = 0.1, 0.5, and 1.0, 𝑛 = 20 and 50, when testing a 

BSN with  𝛿1 = 0.2, 𝛿2 = 0.3 and 𝜔 = 0.3 , against each of BSL ( bivariate skew-Laplace), 

𝐵𝑆𝑇4 (Bivariate skew-T with 4 degrees of freedom), and 𝐵𝑆𝑇9 (Bivariate skew-T with 9 degrees 

of freedom) for distinct parameters 𝛿1, 𝛿2 and 𝜔, are displayed in Tables 3-5, respectively. We 

note that for all values of 𝜔 and 𝑎 considered, the power increases considerably when at least 

one of the two components of 𝛿 increases. We also see that the power generally tends to 

decrease with 𝜔.  Although there is no obvious pattern for the power of the two tests when 𝑎 
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varies, nevertheless, the average power of each of 𝑇1,𝑛
𝑎 and 𝑇2,𝑛

𝑎  is higher when 𝑎 = 0.5 than 

when 𝑎 = 0.1 or 𝑎 = 1.0. Unsurprisingly, Tables 3-5 show that the power increases with n 

which reveals the consistency of the tests. The performance of 𝑇1,𝑛
𝑎   and 𝑇2,𝑛

𝑎  is roughly the same 

when = 20 , but, 𝑇2,𝑛
𝑎  performs significantly better than 𝑇1,𝑛

𝑎 for most cases when 𝑛 = 50. 

 

Table 3. Calculated power  for 𝑻𝟏,𝒏
𝒂  and 𝑻𝟐,𝒏

𝒂  , 𝐚 = 𝟎. 𝟏, 𝟎. 𝟓, 𝐚𝐧𝐝 𝟏. 𝟎, based on samples of 

sizes 20 and 50 when testing the BSN, with different values of 𝛅 = (𝛅𝟏, 𝛅𝟐) 𝐚𝐧𝐝 𝛚, 

against BSL. 

 

𝑛       20  50 

(𝛿1, 𝛿2) 𝜔 𝑻𝟏,𝒏
𝟎.𝟏  𝑻𝟐,𝒏

𝟎.𝟏 𝑻𝟏,𝒏
𝟎.𝟓 𝑻𝟐,𝒏

𝟎.𝟓 𝑻𝟏,𝒏
𝟏  𝑻𝟐,𝒏

.𝟏   𝑻𝟏,𝒏
𝟎.𝟏  𝑻𝟐,𝒏

𝟎.𝟏 𝑻𝟏,𝒏
𝟎.𝟓 𝑻𝟐,𝒏

𝟎.𝟓 𝑻𝟏,𝒏
𝟏  𝑻𝟐,𝒏

.𝟏  

(0.2, 0.2) 

0.3 0.16 0.14 0.13 0.17 0.10 0.13  0.23 0.27 0.18 0.39 0.13 0.44 

0.4 0.18 0.14 0.15 0.18 0.11 0.13  0.31 0.36 0.25 0.43 0.18 0.44 

0.5 0.19 0.16 0.16 0.18 0.12 0.14  0.31 0.36 0.25 0.43 0.18 0.44 

(0.1, 0.9) 

0.3 0.54 0.59 0.56 0.61 0.47 0.40  0.81 0.92 0.84 0.91 0.79 0.83 

0.4 0.62 0.66 0.62 0.64 0.51 0.44  0.85 0.94 0.87 0.94 0.83 0.77 

0.5 0.73 0.76 0.76 0.74 0.64 0.58  0.81 0.92 0.91 0.96 0.88 0.92 

(0.8, 0.8) 

0.3 0.84 0.85 1.00 1.00 1.00 1.00  1.00 1.00 0.96 1.00 0.96 0.98 

0.4 0.86 0.87 1.00 0.99 0.99 0.99  1.00 1.00 0.96 1.00 0.97 0.99 

0.5 0.86 0.87 0.96 0.96 0.96 0.92  0.97 0.99 0.96 1.00 0.97 0.99 

 

Table 4. Calculated power  for 𝑻𝟏,𝒏
𝒂  and 𝑻𝟐,𝒏

𝒂 , 𝐚 = 𝟎. 𝟏, 𝟎. 𝟓, 𝐚𝐧𝐝 𝟏. 𝟎, based on samples of 

sizes 20 and 50 when testing the BSN, with different values of 𝛅 = (𝛅𝟏, 𝛅𝟐) 𝐚𝐧𝐝 𝛚, 

against 𝑩𝑺𝑻𝛖, for 𝛖 = 𝟒. 

 

𝑛       20  50 

(𝛿1, 𝛿2) 𝜔 𝑻𝟏,𝒏
𝟎.𝟏  𝑻𝟐,𝒏

𝟎.𝟏 𝑻𝟏,𝒏
𝟎.𝟓 𝑻𝟐,𝒏

𝟎.𝟓 𝑻𝟏,𝒏
𝟏  𝑻𝟐,𝒏

.𝟏   𝑻𝟏,𝒏
𝟎.𝟏  𝑻𝟐,𝒏

𝟎.𝟏 𝑻𝟏,𝒏
𝟎.𝟓 𝑻𝟐,𝒏

𝟎.𝟓 𝑻𝟏,𝒏
𝟏  𝑻𝟐,𝒏

.𝟏  

(0.2, 0.2) 

0.3 0.10 0.12 0.11 0.16 0.13 0.13  0.19 0.32 0.22 0.36 0.33 0.27 

0.4 0.11 0.14 0.09 0.15 0.13 0.12  0.18 0.28 0.18 0.38 0.32 0.26 

0.5 0.13 0.16 0.10 0.16 0.11 0.11  0.38 0.51 0.21 0.40 0.34 0.28 

(0.1, 0.9) 

0.3 0.78 0.83 0.81 0.86 0.75 0.76  0.92 0.98 0.92 0.99 0.93 0.99 

0.4 0.83 0.87 0.83 0.87 0.77 0.77  0.93 0.99 0.94 0.99 0.93 0.99 

0.5 0.88 0.91 0.87 0.90 0.82 0.91  0.95 0.99 0.95 1.00 0.95 0.99 

(0.8, 0.8) 

0.3 0.88 0.89 1.00 1.00 0.77 0.78  1.00 1.00 0.87 0.93 0.89 0.93 

0.4 0.89 0.90 0.96 0.96 0.78 0.79  0.96 0.99 0.89 0.94 0.90 0.94 

0.5 0.82 0.85 0.91 0.94 0.91 0.91  0.92 0.97 0.90 0.94 0.90 0.94 
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Table 5. Calculated power  for 𝑻𝟏,𝒏
𝒂  and 𝑻𝟐,𝒏

𝒂 , 𝐚 = 𝟎. 𝟏, 𝟎. 𝟓, 𝐚𝐧𝐝 𝟏. 𝟎, based on samples of 

sizes 20 and 50 when testing the BSN, with different values of 𝛅 = (𝛅𝟏, 𝛅𝟐) 𝐚𝐧𝐝 𝛚, 

against 𝑩𝑺𝑻𝛖, for 𝛖 = 𝟗. 

 

𝑛       20  50 

(𝛿1, 𝛿2) 𝜔 𝑻𝟏,𝒏
𝟎.𝟏  𝑻𝟐,𝒏

𝟎.𝟏 𝑻𝟏,𝒏
𝟎.𝟓 𝑻𝟐,𝒏

𝟎.𝟓 𝑻𝟏,𝒏
𝟏  𝑻𝟐,𝒏

.𝟏   𝑻𝟏,𝒏
𝟎.𝟏  𝑻𝟐,𝒏

𝟎.𝟏 𝑻𝟏,𝒏
𝟎.𝟓 𝑻𝟐,𝒏

𝟎.𝟓 𝑻𝟏,𝒏
𝟏  𝑻𝟐,𝒏

.𝟏  

(0.2, 0.2) 

0.3 0.11 0.13 0.08 0.13 0.05 0.05  0.13 0.21 0.15 0.33 0.29 0.23 

0.4 0.10 0.12 0.09 0.14 0.06 0.05  0.17 0.25 0.17 0.29 0.26 0.20 

0.5 0.10 0.12 0.09 0.15 0.06 0.05  0.31 0.39 0.21 0.27 0.25 0.19 

(0.1, 0.9) 

0.3 0.86 0.89 0.81 0.85 0.75 0.74  0.94 0.98 0.92 0.98 0.95 0.99 

0.4 0.86 0.89 0.84 0.87 0.78 0.77  0.95 0.98 0.94 0.99 0.95 0.99 

0.5 0.88 0.91 0.89 0.91 0.84 0.83  0.96 0.99 0.96 0.99 0.95 0.99 

(0.8, 0.8) 

0.3 0.91 0.92 1.00 1.00 1.00 1.00  0.94 0.98 0.89 0.95 0.91 0.95 

0.4 0.84 0.85 0.96 0.96 0.96 0.95  0.94 0.98 0.90 0.95 0.92 0.95 

0.5 0.80 0.82 0.89 0.89 0.89 0.87  0.92 0.96 0.90 0.95 0.92 0.96 

 

Now that we have compared 𝑇1,𝑛
𝑎  and 𝑇2,𝑛

𝑎  tests at different parameter’s values and found that 

the second test is generally better than the first and noted that both tests perform best when 

𝑎 = 0.5 compared to 𝑎 = 0.1 and 𝑎 = 1.0, we will now compare the performance of  𝑇1,𝑛
0.5 

and 𝑇2,𝑛
0.5 with that of MH and BCS tests in (29) and (30). In addition to BSL, 𝐵𝑆𝑇4, and 𝐵𝑆𝑇9, 

which were defined earlier on page 10, we consider the following alternatives : 

1) BN1: Bivariate normal distribution with marginal means 0, marginal variances 1, and 

correlation 𝜌 = −0.7. 

BN2: Bivariate normal distribution with marginal means 0, marginal variances 1, and 

correlation 𝜌 = 0.8 

2) BL1: Bivariate Laplace distribution with marginal mean 0,  marginal variances 1, and 

correlation 𝜌 = −0.7. 

BL2: Bivariate Laplace distribution with marginal mean 0, marginal variances 1, and 

correlation 𝜌 = 0.8. 

3) The bivariate Feller- Pareto distribution for the following cases: 

a) BF1: 𝑋𝑖 = (
𝑊𝑖

𝑈
)
𝑐𝑖
, 𝑖 = 1, 2, where U, 𝑊1 , and 𝑊2 are independent random variables 

with 𝑈~𝑔𝑎𝑚𝑚𝑎(3,1),𝑊𝑖~𝑔𝑎𝑚𝑚𝑎(1,1), and 𝑐𝑖 = 1; 𝑖 = 1,2.  

b) BF2: 𝑋𝑖 = (
𝑊𝑖

𝑈
)
𝑐𝑖
, 𝑖 = 1, 2, where U, 𝑊1 , and 𝑊2 are independent random variables 

with 𝑈~𝑔𝑎𝑚𝑚𝑎(2,1),𝑊𝑖~𝑔𝑎𝑚𝑚𝑎(1,1), and 𝑐𝑖 = 0.5; 𝑖 = 1,2.  

c) BF3: 𝑋𝑖 = (
𝑊𝑖

𝑈
)
𝑐𝑖
, 𝑖 = 1, 2, where U, 𝑊1 , and 𝑊2 are independent random variables 

with 𝑈~𝑔𝑎𝑚𝑚𝑎(3,1),𝑊1~𝑔𝑎𝑚𝑚𝑎(0.5,1), 𝑊2~𝑔𝑎𝑚𝑚𝑎(1.5,1) and 𝑐𝑖 = 0.5; 𝑖 = 1,2.  

Table 6 displays simulated powers when testing the BSN against the BSL. Tables 7 and 8 

display the powers when testing the BSN against 𝐵𝑆𝑇υ for υ = 4 and υ = 9, respectively. The 
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powers of 𝑇1,𝑛
0.5, 𝑇2,𝑛

0.5, and 𝑀𝐻 when testing the BSN with 𝛿1 = 0.2, 𝛿2 = 0.3 and 𝜔 = 0.3 

against each of BN1, BN2, BL1, BL2, BF1, BF2, and BF3 are shown in Table 9.  

 

Table 6. The calculated power  for 𝑻𝟏,𝒏
𝟎.𝟓, 𝑻𝟐,𝒏

𝟎.𝟓, 𝑴𝑯 and 𝑩𝑪𝑺, based on samples of sizes 20 

and 50 when testing the BSN against BSL. 

 

(𝛿1, 𝛿2) 𝜔 𝑇1,𝑛
0.5 𝑇1,𝑛

0.5 𝑀𝐻 𝐵𝐶𝑇  𝑇1,𝑛
0.5 𝑇1,𝑛

0.5 𝑀𝐻 𝐵𝐶𝑇 

(0.2, 0.2) 

0.3 0.13 0.17 0.38 0.056  0.18 0.39 0.61 0.058 

0.4 0.15 0.18 0.38 0.041  0.25 0.43 0.61 0.045 

0.5 0.16 0.18 0.39 0.038  0.25 0.43 0.62 0.052 

(0.1, 0.9) 

0.3 0.56 0.61 0.81 0.038  0.84 0.91 0.98 0.050 

0.4 0.62 0.64 0.83 0.042  0.87 0.94 0.99 0.063 

0.5 0.76 0.74 0.83 0.042  0.91 0.96 0.99 0.057 

(0.8, 0.8) 

0.3 1.00 1.00 0.95 0.056  0.96 1.00 1.00 0.080 

0.4 1.00 0.99 0.95 0.045  0.96 1.00 1.00 0.085 

0.5 0.96 0.96 0.94 0.066  0.96 1.00 1.00 0.070 

 

Table 7. The calculated power  for 𝑻𝟏,𝒏
𝟎.𝟓, 𝑻𝟐,𝒏

𝟎.𝟓, and 𝑴𝑯, based on samples of sizes 20 and 

50 when testing the BSN with different choices of 𝜹𝟏, 𝜹𝟐 , and 𝝎 against 𝑩𝑺𝑻𝛖, for 𝛖 = 𝟒. 

 

(𝛿1, 𝛿2) 𝜔 𝑇1,𝑛
0.5 𝑇1,𝑛

0.5 𝑀𝐻 𝐵𝐶𝑇  𝑇1,𝑛
0.5 𝑇1,𝑛

0.5 𝑀𝐻 𝐵𝐶𝑇 

(0.2, 0.2) 

0.3 0.11 0.16 0.66 0.052  0.22 0.36 0.88 0.057 

0.4 0.09 0.15 0.53 0.034  0.18 0.38 0.88 0.058 

0.5 0.10 0.16 0.50 0.040  0.21 0.40 0.87 0.049 

(0.1, 0.9) 

0.3 0.81 0.86 0.81 0.058  0.92 0.99 0.98 0.062 

0.4 0.83 0.87 0.71 0.056  0.94 0.99 0.98 0.070 

0.5 0.87 0.90 0.69 0.08  0.95 1.00 0.97 0.092 

(0.8, 0.8) 

0.3 1.00 1.00 0.82 0.056  0.87 0.93 0.90 0.102 

0.4 0.96 0.96 0.84 0.057  0.89 0.94 0.91 0.111 

0.5 0.91 0.94 0.84 0.065  0.90 0.94 0.92 0.093 
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Table 8. The calculated power  for 𝑻𝟏,𝒏
𝟎.𝟓, 𝑻𝟐,𝒏

𝟎.𝟓, and 𝑴𝑯, based on samples of sizes 20 and 

50 when testing the BSN with different choices of 𝜹𝟏, 𝜹𝟐 , and 𝝎 against 𝑩𝑺𝑻𝛖, for 𝛖 = 𝟗. 

 

𝑛  20  50 

(𝛿1, 𝛿2) 𝜔 𝑇1,𝑛
0.5 𝑇2,𝑛

0.5 𝑀𝐻 𝐵𝐶𝑇  𝑇1,𝑛
0.5 𝑇2,𝑛

0.5 𝑀𝐻 𝐵𝐶𝑇 

(0.2, 0.2) 

0.3 0.08 0.13 0.47 0.039  0.15 0.33 0.77 0.05 

0.4 0.09 0.14 0.48 0.032  0.17 0.29 0.71 0.056 

0.5 0.09 0.15 0.47 0.038  0.21 0.27 0.66 0.053 

(0.1, 0.9) 

0.3 0.81 0.85 0.64 0.058  0.92 0.98 0.80 0.069 

0.4 0.84 0.87 0.66 0.072  0.94 0.99 0.81 0.081 

0.5 0.89 0.91 0.66 0.068  0.96 0.99 0.82 0.092 

(0.8, 0.8) 

0.3 1.00 1.00 0.64 0.057  0.89 0.95 0.92 0.10 

0.4 0.96 0.96 0.60 0.064  0.90 0.95 0.91 0.09 

0.5 0.89 0.89 0.59 0.072  0.90 0.95 0.90 0.092 

 

Table 9. The calculated power for 𝑻𝟏,𝒏
𝟎.𝟓, 𝑻𝟐,𝒏

𝟎.𝟓, and 𝑴𝑯, based on samples of sizes 20 and 

50 when testing the BSN with 𝜹𝟏=𝜹𝟐 = 𝟎. 𝟐 , and 𝝎 = 𝟎. 𝟑 against the 

alternatives 𝑩𝑵, 𝑩𝑳, and  𝑩𝑷  distributions with sample sizes 𝒏 = 𝟐𝟎 𝐚𝐧𝐝 𝟓𝟎. 

 

𝑛 20  50 

𝐴𝑙𝑡. 𝑇1,𝑛
0.5 𝑇2,𝑛

0.5 𝑀𝐻 𝐵𝐶𝑇  𝑇1,𝑛
0.5 𝑇2,𝑛

0.5 𝑀𝐻 𝐵𝐶𝑇 

BN1 0.13 0.11 0.07 0.05  0.20 0.13 0.03 0.07 

BN2 0.13 0.11 0.05 0.04  0.18 0.14 0.04 0.052 

BL1 0.27 0.25 0.31 0.04  0.40 0.49 0.39 0.05 

BL2 0.26 0.25 0.30 0.05  0.42 0.50 0.39 0.06 

BF1 0.90 0.85 0.60 0.12  0.96 0.93 0.83 0.16 

BF2 0.99 0.99 0.43 0.09  1.00 1.00 0.66 0.12 

BF3 0.96 0.95 0.83 0.08  1.00 0.993 0.99 0.11 

 

4. Real data applications 

In this section, we apply the suggested procedures, along with the MH and BCS procedures, to 

test certain real-world data for compliance with the BSN distribution. Two sets of data will be 

processed; Australian Institute of Sport (AIS) data [39] and Old Faithful Geyser (OFG) data 

[40]. AIS data consists of 13 biomedical variables measured on 100 female athletes and 102 

male athletes. The OFG data consists of 272 observations that measure the duration of eruption 

and the inter-eruption times for the Old Faithful geyser in Yellowstone National Park, USA [8, 

36, 39, 40]. We will apply the 𝑇1, 𝑇2, MH, and BCS tests to eight pairs of AIS variables (male 

and female analyzed separately), namely, body fat percentage and lean body mass (Bfat, LBM), 

body mass index  and sum of skin folds (BMI, SSF), red blood cell count and white blood cell 

count (RCC, WCC), and plasma ferritin concentration and Hematocrit (Fe, Hc). We will also 

apply the tests to the eruption times and the inter-eruption times (ET, IET) of the OFG data. 
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The bootstrap procedure is used to test the null hypothesis that a given set of data fits 

the BSN distribution. To compute the p-value for a right-tail test, say T, we take the following 

steps: 

i) For a given sample, estimate the BSN parameters including the location and scale parameters, 

standardize the data, and then evaluate the statistic for the estimated parameter �̂� = (�̂�, 𝛼1̂, 𝛼2̂). 

Denote this by 𝑇(�̂�). 

ii)  Simulate B samples from BSN with the parameter �̂� ≡ (�̂�, 𝛼1̂, 𝛼2̂) obtained in (i),  then for 

each sample calculate the bootstrap MLE of ,  say  ̂
∗
, and then calculate 𝑇(̂

∗
). 

iii) The approximate p-value is calculated as the proportion of times the value of 𝑇(̂
∗
) exceeds 

𝑇(�̂�).  

 

The calculated p-values when applying 𝑇1, 𝑇2, MH, and BCS test to FOG data and to each of 

the pairs (Bfat,LBM), (BMI,SSF), (RCC,WCC), (Fe,Hc), and (Ht,Wt) are displayed in Table 

10.  

For the male athletes data, 𝑇1 and BCS lead to the same conclusion in favor of the BSN 

distribution while 𝑇2 and MH lead to the same conclusion but against the BSN. For the female 

athletes data, 𝑇1 and BCS lead to the same conclusion in favor of BSN for (Bfat, LBM), (BMI, 

SSF) and to the same conclusion against BSN for (Fe, Hc), but have different conclusions for 

(RCC, WCC). On the other hand, 𝑇2 and MH agree against BSN for both male and female (Bfat, 

LBM) and (BMI, SSF) data, disagree for (RCC, WCC) and (Fe, Hc). The four tests, 𝑇1, 𝑇2, MH, 

and BCS lead to the same conclusion in favor of the BSN for the (ET,IET) data. 

 

Table 10.  P-values of tests of the BSN for eight pairs of variables from the AIS data set 

and for FOG data. 

 

Data 
(Bfat, LBM) (BMI, SSF) (RCC, WCC) (Fe, Hc) 

 (ET,IET) 
Male Female Male Female Male Female Male Female 

𝑇1,𝑛
0.5 0.99 1.00 0.99 1.00 0.99 0.001 1.00 0.00 0.80 

𝑇2,𝑛
0.5 0.001 0.001 0.003 0.001 0.00 0.001 0.000 0.001 0.25 

𝑀𝐻 0.002 0.020 0.002 0.002 0.001 0.42 0.002 0.67 0.49 

𝐵𝐶𝑇 0.73 0.48 0.22 0.48 0.28 0.75 0.64 0.04 0.84 

 

5. Conclusions 

We have proposed two tests based on a partial functional mean characterization. Simulation 

were used to calculate critical values for the proposed tests as well as for the MH and the BCS 

test. Meintanis and Hlávka [26] calculated critical values and powers of their MH test using 

bootstrap. Balakrishnan et al [8] used bootstrap to calculate p-values of their proposed tests to 

compare with the MH test performance. From the power calculations displayed in Tables 2-8 

and in Table 10, we have the following conclusions: 
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1. The proposed tests could recover the nominal value 𝛼 = 0.05 for all but few cases as can be 

seen in Table 2.  

2. Tables 3-5 tell that there is a slight variation in the powers of 𝑇1,𝑛
𝑎  and 𝑇2,𝑛

𝑎  for the three choices 

of 𝑎 = 0.1, 𝑎 = 0.5, and 𝑎 = 1.0. However, in most cases, 𝑇1,𝑛
𝑎  and 𝑇2,𝑛

𝑎  have better 

performance when  𝑎 = 0.5.  

3. It can be concluded from Table 6 that MH performs better than 𝑇1,𝑛
0.5 and 𝑇2,𝑛

0.5 when testing the 

BSN with 𝛿1 = 𝛿2 = 0.2 against the BSL distribution. The three tests perform as well when 

𝛿1 = 𝛿2 = 0.8.  

4. From Tables 7-8, we note that MH  outperforms 𝑇1,𝑛
0.5 and 𝑇2,𝑛

0.5 when testing the BSN with 

𝛿1 = 𝛿2 = 0.2 against the 𝐵𝑆𝑇υ, for υ = 4 and 9, while 𝑇1,𝑛
0.5 and 𝑇2,𝑛

0.5 outperform MH when 

𝛿1 = 0.1 and 𝛿2 = 0.9 and when  𝛿1 = 𝛿2 = 0.8.The tests 𝑇1,𝑛
0.5 and 𝑇2,𝑛

0.5 outperform the MH 

test when testing the BSN with 𝛿1 = 𝛿2 = 0.2 and 𝜔 = 0.5 against each of BN1, BN2, BL1, 

BL2, BF1, and BF2, while MH performs better than 𝑇1,𝑛
0.5 and 𝑇2,𝑛

0.5 when testing against BF3 for 

𝑛 = 50 but not for 𝑛 = 20.  

5. We note that generally, MH performs better when 𝛿1and 𝛿2 are both small, while 𝑇1,𝑛
0.5 and 𝑇2,𝑛

0.5 

work better, when either of the two parameters is small and the other is large. 

6. Except for few cases, the 𝐵𝐶𝑇 is outperformed by the other three tests. 
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