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Abstract 

The Kumaraswamy distribution has attracted the attention of researchers 

from many fields of application because of its mathematical tractability and 

its flexibility to accommodate data in various shapes. The distribution is a 

beta-type distribution, however, the closed-form of its distribution function 

gives it an advantage over the beta distribution. The aim of this article is to 

study record values from the Kumaraswamy distribution. The distribution, 

conditional distribution, moments, mixed moments, and conditional 

moments of the upper records and, more generally, the 𝑘𝑡ℎ upper records are 

derived. We also prove some characterizations of the Kumaraswamy 

distribution based on the upper records. The maximum likelihood, the 

modified maximum likelihood, and the conditional median predictors of 

future records are given. A bootstrap procedure is applied to fit the 

Kumaraswamy distribution to a real dataset: rainfall for the month of January 

from 1982 to 2021, recorded at the Changi climate station in Singapore, and 

then future rainfall records are predicted. 

Keywords: - Kumaraswamy distribution; upper record values; 

characterization; bootstrap; prediction. 

 

 

1. Introduction 

Kumaraswamy (1980) derived a probability distribution function for double-bounded 

random processes as a model to the storage volume of a reservoir of a given capacity. A 

random variable 

𝑋 is said to have a Kumaraswamy distribution function, denoted by 𝑋~𝐾(𝑝, 𝑞), if 

 

                                   𝐹(𝑥; 𝑝, 𝑞) = 1 − (1 −  𝑥𝑝)𝑞                                                 (1.1) 

and, therefore, the probability density function (pdf) is given by 
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                             𝑓(𝑥; 𝑝, 𝑞) = 𝑝𝑞𝑥𝑝−1(1 − 𝑥𝑝)𝑞−1, 𝑝, 𝑞 > 0                                                    (1.2) 

In the last few years, many researchers have studied the distribution; Nadarajah (2008)    

pointed out that the Kumaraswamy distribution is a special case of a more general class of 

 

1 Corresponding author. 

distributions. Jones (2009) studied moments, maximum likelihood, limit distributions, and the 

relationship of the distribution with other known distributions. Mitnik (2013) examined some 

properties of the distribution, including setting bounds for the variance and the mean of the 

absolute deviation from the median. Using the Monte-Carlo simulation, Gholizadeh et al. 

(2011) studied classical and Bayesian point and interval estimators for the shape parameter of 

the distribution. Estimation of the parameters under progressive type-II censored data was 

carried out            by Gholizadeh et al. (2013). Further maximum likelihood and Bayesian estimation 

studies were conducted by Hussian (2014) who used simulation to compare estimators based 

on simple random samples and ranked set samples. El-Morshedy et al. (2020) proposed a new 

three-parameter generalized model of the inverse Gompertz distribution known as the 

Kumaraswamy inverse Gompertz distribution. Al-Babtain et al. (2021) considered estimation 

of different types of entropies for the Kumaraswamy distribution. 

      Records occur naturally in many fields of study, including science, sports, engineering, 

medicine, economics, and industry. Their applications have attracted scientists from a variety 

of disciplines. An upper (lower) record value in a data sequence is the value that is greater (less) 

than all previous values. That is, if {𝑋𝑛 𝑛 ≥ 1}  is a sequence of random variables and 𝑌𝑛 

=  𝑚𝑎𝑥{𝑋1, 𝑋2, … , 𝑋𝑛}, 𝑛 ≥  1, then 𝑋𝑗 is an upper record value if 𝑋𝑗 > 𝑌𝑗−1and is a lower 

record value if  𝑋𝑗 < 𝑌𝑗−1, 𝑗 > 1. It is sufficient to handle either upper records or lower 

records, because if  𝑋𝑗 is an upper record value, then −𝑋𝑗is a lower record value. In this article, 

we will only deal with upper record values and simply refer to them as record values. The times 

at which records appear are called record times and are defined by 𝑈(𝑛) = min{𝑗: 𝑗 >

𝑈(𝑛 − 1), 𝑋𝑗 > 𝑋𝑈(𝑛−1)  , 𝑛 > 1}, with 𝑈(1)  =  1 with probability 1. By definition 𝑋1 is an 

upper as well as a lower record value. The sequence𝑋𝑈(𝑛), 𝑛 ≥ 1  then defines an upper record 

value sequence. 

       A natural extension of record values is the 𝑘𝑡ℎ records. Suppose 𝑋1:1 ≤ ⋯ 𝑋𝑛:𝑛 be the 

order statistic of the sample 𝑋1, 𝑋2, … , 𝑋𝑛. For fixed 𝑘 ≥  1, the 𝑘𝑡ℎ upper record times 

𝑈𝑘(𝑛), 𝑛 ≥ 1, of the sequence {𝑋𝑖 , 𝑖 ≥ 1}, are defined as 𝑈𝑘(1) = 1, and 
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𝑈𝑘(𝑛 + 1) = min{𝑗 > 𝑈𝑘(𝑛): 𝑋𝑗:𝑗+𝑘−1 > 𝑋𝑈𝑘(𝑛):𝑈𝑘(𝑛)+𝑘−1} , 𝑛 = 1,2, …, 

and the 𝑘𝑡ℎ upper record values as 𝑌𝑛
(𝑘)

= 𝑋𝑈𝑘(𝑛):𝑈𝑘(𝑛)+𝑘−1,𝑛 = 1, 2, … 

      In addition to the statistical inference research that was conducted based on random 

samples from the KD, many papers also examined statistical inference based on record values 

from this distribution. Nadar et al. (2012) obtained MLE and Bayesian estimates of the KD 

shape parameters based on a sequence of upper record values. They also used Bayesian and non-

Bayesian prediction methods to predict future record values. Similar estimation and prediction 

problems were examined by Kizilaslan and Nadar (2015) based on record values and inter-

record times. Abou-Elheggag et al. (2018) studied the estimation of 𝑃(𝑋 <  𝑌) when 𝑋 and 𝑌 

are independent record values of the KD. 

      This article is organized as follows. In Section 2, we derive the distribution, conditional 

distribution, moments, and conditional moments of ordinary, and more generally, of 𝑘𝑡ℎ upper 

record values. In Section 3, new characterization of the Kumaraswamy distribution based on 

record values will be proved. Maximum likelihood, modified maximum likelihood, and 

conditional median point predictors will derived. 

 

2. Distribution and Moments of Record Values from 𝑲(𝒑, 𝒒) 

 

In subsection 2.1, we derive the pdf of record values and the 𝑘𝑡ℎrecord values from the 

𝐾(𝑝, 𝑞)  distribution. In addition, joint and conditional pdfs of record values and 𝑘𝑡ℎ records 

will be presented. The moments and conditional moments of records will be derived in 

subsection 2.2. 

 

2.1 Distribution of Record Values from 𝑲(𝒑, 𝒒) 

 

If  𝐹(𝑥) is an absolutely continuous function of a random variable 𝑋, then the distribution of the 

record value 𝑌𝑛, 𝑛 = 1,2, … is given by (Arnold et al. 1998, p.10)  

𝐹𝑌𝑛
(𝑦) = Ґ(𝑛, 𝐻(𝑦)), (2.1) 

where 𝐻(𝑦) = − log[1 − 𝐹(𝑦)]  is the cumulative hazard rate function, and Ґ(𝑎, 𝑦) is the 

incomplete gamma function given by 

                                                           Ґ(𝑎, 𝑥) = ∫ 𝑡𝑎−1𝑒−𝑎𝑡𝑑𝑡,
𝑦

0
                                                       

(2.2) 
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Therefore, the 𝑝𝑑𝑓  of 𝑌𝑛, 𝑛 = 1,2, …,  is 

𝑓𝑌𝑛
(𝑦) =

ℎ(𝑦)

Ґ(𝑛)
[𝐻(𝑦)]𝑛−1𝑒−𝐻(𝑦), 𝑦 > 0, 

(2.3) 

where  ℎ(𝑦) is the hazard rate function 

ℎ(𝑦) =
𝑓(𝑦)

1 − 𝐹(𝑦)
 

(2.4) 

Since 𝑒−𝐻(𝑦) = 1 − 𝐹(𝑦), (2.3) is equivalent to 

                                                      𝐻(𝑦) = −𝑞 log(1 − 𝑦𝑝),                                                   (2.5) 

  𝑓𝑌𝑛
(𝑦) =

[𝐻(𝑦)] 𝑛−1

Ґ(𝑛)
𝑓(𝑦). 

  (2.6) 

Thus, 

     𝑓𝑌𝑛
(𝑦) =

𝑞𝑛𝑝 [− log(1 − 𝑦𝑝)]𝑛−1(1 − 𝑦𝑝)𝑞−1𝑦𝑝−1

Ґ(𝑛)
, 0 < 𝑦 < 1. 

 

(2.7) 

Obviously, for 𝑛 = 1, we obtain the PDF of the KD distribution. 

The PDF of the 𝑘𝑡ℎ record value 𝑌𝑛
(𝑘)

, 𝑛 ≥ 1, is given by (Ahsanullah, page 75)  

𝑓
𝑌𝑛

(𝑘)(𝑦) =
𝑘𝑛

Γ(𝑛)
[𝐻(𝑦)]𝑛−1(1 − 𝐹(𝑦))𝑘−1𝑓(𝑦) 

            =
𝑘𝑛

Γ(𝑛)
[𝐻(𝑦)]𝑛−1[1 − 𝐹(𝑦)]𝑘ℎ(𝑦), 

 

(2.8) 

and the joint PDF of 𝑌𝑚
(𝑘)

and 𝑌𝑛
(𝑘)

, 1 ≤ 𝑚 < 𝑛, is 

𝑓
𝑌𝑚

(𝑘)
,𝑌𝑛

(𝑘)(𝑦𝑚, 𝑦𝑛) =
𝑘𝑛

Ґ(𝑚)Ґ(𝑛 − 𝑚)
[𝐻(𝑦𝑚)]𝑚−1[𝐻(𝑦𝑛) − 𝐻(𝑦𝑚)]𝑛−𝑚−1 × 

[1 − 𝐹(𝑦𝑛)]𝑘−1ℎ(𝑦𝑚)𝑓(𝑦𝑛), −∞ < 𝑦𝑚 < 𝑦𝑛. 

 

(2.9) 

The conditional PDF of 𝑌𝑛
(𝑘)

given 𝑌𝑚
(𝑘)

, 𝑛 > 𝑚 ≥ 𝑘, computed directly from 

Error!  Reference source not found. and Error! Reference source not found., is 

𝑓
𝑌𝑛

(𝑘)
|𝑌𝑚

(𝑘)(𝑦𝑛|𝑦𝑚) =
𝑘𝑛−𝑚

Ґ(𝑛 − 𝑚)
[

1 − 𝐹(𝑦𝑛)

1 − 𝐹(𝑦𝑚)
]

𝑘

 [𝐻(𝑦𝑛) − 𝐻(𝑦𝑚)]𝑛−𝑚−1ℎ(𝑦𝑛), 𝑛 > 𝑚

≥ 1. 

(2.10) 
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       Applying (2.8) − (2.10) to sequence of independent random variables {𝑋𝑖 , 𝑖 ≥ 1} from 

𝐾(𝑝, 𝑞), the pdf of 𝑌𝑛
(𝑘)

, 𝑛 ≥ 𝑘 ≥ 1, the joint PDF of 𝑌𝑚
(𝑘)

and 𝑌𝑛
(𝑘)

, 𝑛 > 𝑚, and the conditional pdf 

of 𝑌𝑛
(𝑘)

given 𝑌𝑚
(𝑘)

, 𝑛 > 𝑚 ≥ 𝑘, respectively, are 

                𝑓
𝑌𝑛

(𝑘)(𝑦) =
𝑘𝑛𝑞𝑛𝑝

Ґ(𝑛)
[−log(1 − 𝑦𝑝)]𝑛−1(1 − 𝑦𝑝)𝑞𝑘−1𝑦𝑝−1, 

(2.11) 

𝑓
𝑌𝑚

(𝑘)
,𝑌𝑛

(𝑘)(𝑦𝑚, 𝑦𝑛) =
(𝑘𝑞)𝑛𝑝2

Ґ(𝑚)Ґ(𝑛 − 𝑚)
[− log(1 − 𝑦𝑚

𝑝 )]
𝑚−1

× 

[− log
(1 − 𝑦𝑛

𝑝)

(1 − 𝑦𝑚
𝑝 )

]

𝑛−𝑚−1
𝑦𝑚

𝑝−1

(1 − 𝑦𝑚
𝑝 )

(1 − 𝑦𝑛
𝑝)

𝑘𝑞−1
𝑦𝑛

𝑝−1, 

 

(2.12) 

and 

𝑓
𝑌𝑛

(𝑘)
|𝑌𝑚

(𝑘)(𝑦𝑛|𝑦𝑚)

=
(𝑘𝑞)𝑛−𝑚 𝑝

Ґ(𝑛 − 𝑚)
 [– log

1 − 𝑦𝑛
𝑝

1 − 𝑦𝑚
𝑝 ]

𝑛−𝑚−1

[
1 − 𝑦𝑛

𝑝

1 − 𝑦𝑚
𝑝 ]

𝑘𝑞−1
𝑦𝑛

𝑝

1 − 𝑦𝑚
𝑝 , 0

< 𝑦𝑚 < 𝑦𝑛 < 1. (Error!  No text of specified style in document. . 13) 

𝐼𝑓 𝑛 = 𝑚 + 1, 𝑡ℎ𝑒𝑛 Error!  Reference source not found. and 

Error!  Reference source not found., respectively, are reduced to 

𝑓
𝑌𝑚

(𝑘)
,𝑌𝑚+1

(𝑘) (𝑦𝑚, 𝑦𝑚+1)

=
(𝑘𝑞)𝑚+1𝑝2

Ґ(𝑚)
[−log (1 − 𝑦𝑚

𝑝 )]
𝑚−1

×
𝑦𝑚

𝑝−1

(1 − 𝑦𝑚
𝑝 )

(1 − 𝑦𝑚+1
𝑝 )

𝑘𝑞−1
𝑦𝑚+1

𝑝−1 , 

(2.14) 

and 

𝑓
𝑌𝑚+1

(𝑘)
|𝑌𝑚

(𝑘)(𝑦𝑚+1|𝑦𝑚) = 𝑘𝑝𝑞 (
1 − 𝑦𝑚+1

𝑝

1 − 𝑦𝑚
𝑝 )

𝑘𝑞−1

 
𝑦𝑚+1

𝑝−1

(1 − 𝑦𝑚
𝑝 )

 0 < 𝑦𝑚 < 𝑦𝑚+1 < 1. 
 

(2.15) 

2.2 Moments of kth record records from KD 

 

The rth moment, 𝑟 = 1,2, …  of  records values 𝑌𝑛, 𝑛 = 1,2, …  with density  given in (2.7) is  

𝜇𝑟
(𝑘,𝑛)

≡ 𝐸(𝑌𝑛
(𝑘)

)𝑟 = ∫ 𝑦𝑟 𝑓
𝑌𝑛

(𝑘)(𝑦)𝑑𝑦
1

0

 

       =
𝑘𝑛𝑞𝑛𝑝

Ґ(𝑛)
∫ [− log(1 − 𝑦𝑝)]𝑛−1(1 − 𝑦𝑝)𝑞𝑘−1𝑦𝑟+𝑝−1𝑑𝑦   

1

0

 

Let   𝑢 = (1 − 𝑦𝑝), then the above integral reduces to 
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𝜇𝑟

(𝑘,𝑛)
=

(−1)𝑛−1𝑘𝑛𝑞𝑛

Ґ(𝑛)
∫ (log 𝑢)𝑛−1(1 − 𝑢)

𝑟
𝑝𝑢𝑘𝑞−1𝑑𝑢

1

0

 

                              =
(−1)𝑛−1 (𝑘𝑞)𝑛

Ґ(𝑛)
∫

(1−𝑢)𝑟/𝑝

𝑘𝑛−1

𝜕𝑛−1

𝜕𝑞𝑛−1 𝑢𝑘𝑞−1𝑑𝑢 
1

0
                         . (2.16) 

 

For 𝑘 ≥ 1 and  𝑛 = 1, 2, and 3, we have, respectively, the following 𝑟𝑡ℎ moments 

 

                                   𝜇𝑟
(𝑘,1)

= 𝑘𝑞 𝛣𝑒 (
𝑟

𝑝
+ 1, 𝑘𝑞),                                                                (2.17)  

𝜇𝑟
(𝑘,2)

= −𝑘𝑞2  
𝜕

𝜕𝑞
𝛣𝑒 (

𝑟

𝑝
+ 1, 𝑘𝑞) 

                                                 =  𝑘2𝑞2 𝛣𝑒 (
𝑟

𝑝
+ 1, 𝑞) [𝜓 (

𝑟

𝑝
+ 𝑘𝑞 + 1) − 𝜓(𝑘𝑞)]. 

 

  

(2.18) 

and 

𝜇𝑟
(𝑘,3)

=
𝑘𝑞3

Ґ(3)
 

𝜕2

𝜕𝑞2
𝛣𝑒 (

𝑟

𝑝
+ 1, 𝑘𝑞) 

=
𝑘2𝑞3

2
𝐵𝑒 (1 +

𝑟

𝑝
, 𝑘𝑞)

× {𝑘 [𝜓(𝑘𝑞) − 𝜓 (
𝑟

𝑝
+ 𝑘𝑞 + 1)]

2

+ [𝜓′(𝑘𝑞) − 𝑘𝜓′(
𝑟

𝑝
+ 𝑘𝑞 + 1)]}, 

(2.19) 

Where 𝐵𝑒(𝑎, 𝑏) is the usual beta function and     𝜓(𝑥) =
Ґ′(𝑥)

Ґ(𝑥)
 is the digamma function. 

When 𝑟 = 1, Error!  Reference source not found. gives 

 𝜇1
(𝑘,𝑛)

=
(−1)𝑛−1𝑘𝑞𝑛

Ґ(𝑛)
[

𝜕𝑛−1

𝜕𝑞𝑛−1
𝐵 (𝑘𝑞,

1

𝑝
+ 1)]. 

   

(2.20)  

For 𝑘 = 1, 𝑛 = 1, (2.20) reduces to 

𝜇1
(1,1)

= 𝑞 𝐵 (𝑞,
1

𝑝
+ 1),                                             (2.21) 

which is the mean of 𝐾(𝑝, 𝑞) variable. 

The variance of 𝑌𝑛
(𝑘)

 has the representation   

 𝑉(𝑌𝑛
(𝑘)

) = 𝜇2
(𝑘,𝑛)

− (𝜇1
(𝑘,𝑛)

)
2

 
 

(2.22)  
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   Where 𝜇𝑟
(𝑘,𝑛)

  is as given in (2.16).                                       

The (𝑟, 𝑠)th, 𝑟, 𝑠 = 1,2, …, mixed moments are given by 

     𝜇𝑟,𝑠
(𝑘,(𝑚,,𝑛))

≡ 𝐸 [(𝑌𝑚
(𝑘)

)
𝑟

(𝑌𝑛
(𝑘)

)
𝑠
] = ∫ ∫ y𝑚

𝑟y𝑛

0
y𝑛

𝑠1

0
𝑓

𝑌𝑚
(𝑘)

,𝑌𝑛
(𝑘)(𝑦𝑚, 𝑦𝑛)𝑑y𝑚𝑑y𝑛                        (2.23) 

Replacing 𝑓
𝑌𝑚

(𝑘)
,𝑌𝑛

(𝑘) with the joint density in Error! Reference source not 

found., we obtain 

 
𝜇𝑟,𝑠

(𝑘,(𝑚,,𝑛))
=

(𝑘𝑞)𝑛𝑝2

Ґ(𝑚)Ґ(𝑛 − 𝑚)
∫ ∫ [−log (1 − 𝑦𝑚

𝑝 )]
𝑚−1

y𝑛

0

1

0

× 

 [− log
(1 − 𝑦𝑛

𝑝)

(1 − 𝑦𝑚
𝑝 )

]

𝑛−𝑚−1
𝑦𝑚

𝑟+𝑝−1

(1 − 𝑦𝑚
𝑝 )

(1 − 𝑦𝑛
𝑝)

𝑘𝑞−1
𝑦𝑛

𝑠+𝑝−1
𝑑y𝑚𝑑y𝑛. 

(2.24) 

In particular, if  𝑛 = 𝑚 + 1, the above reduces to 

 

 

 

 

(2.25) 

 

 

𝜇𝑟,𝑠
(𝑘,(𝑚,,𝑚+1))

=
(𝑘𝑞)𝑚+1𝑝

Ґ(𝑚)
∫

[log(1 − 𝑦𝑚
𝑝 )]

𝑚−1
y𝑚

𝑟+𝑝−1

(1 − 𝑦𝑚
𝑝 )

1

0

𝑑y𝑚 × [∫ (1 − u)
𝑠
𝑝u𝑘𝑞−1

1−𝑦𝑚
𝑝

0

𝑑u] 

                            

=
(𝑘𝑞)𝑚+1𝑝

Ґ(𝑚)
∫

[log (1 − 𝑦𝑚
𝑝

)]
𝑚−1

y𝑚
𝑟+𝑝−1

(1 − 𝑦𝑚
𝑝 )

𝐵 (
𝑠

𝑝
+ 1, 𝑘𝑞; 1

1

0

− 𝑦𝑚
𝑝 ) 𝑑y𝑚 .                (2.26) 

The correlation coefficient between 𝑌𝑚
(𝑘)

 and 𝑌𝑛
(𝑘)

is 

𝜇𝑟,𝑠
(𝑘,(𝑚,,𝑚+1))

=
(𝑘𝑞)𝑚+1𝑝2

Ґ(𝑚)
∫ ∫ [− log(1 − 𝑦𝑚

𝑝 )]
𝑚−1

y𝑚+1

0

1

0

× 

𝑦𝑚
𝑟+𝑝−1

(1 − 𝑦𝑚
𝑝 )

(1 − 𝑦𝑚+1
𝑝 )

𝑘𝑞−1
𝑦𝑚+1

𝑠+𝑝−1𝑑y𝑚𝑑y𝑚+1 

                     =
(𝑘𝑞)𝑚+1𝑝2

Ґ(𝑚)
∫ (

[− log(1 − 𝑦𝑚
𝑝 )]

𝑚−1
y𝑚

𝑟+𝑝−1

(1 − 𝑦𝑚
𝑝 )

1

0

× 

∫ y𝑚+1
𝑠+𝑝−1

1

y𝑚

(1 − 𝑦𝑚+1
𝑝 )𝑘𝑞−1𝑑y𝑚+1) 𝑑y𝑚 . 

Setting  𝑢 = 1 − 𝑦𝑚+1
𝑝

 and applying the Fubini’s theorem, we obtain   
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                             𝜌
𝑌𝑚

(𝑘)
,𝑌𝑛

(𝑘) =
𝜇1,1

(𝑘,(𝑚,,𝑛))
−𝜇1

(𝑘,𝑚))
𝜇1

(𝑘,𝑛)

√𝑉(𝑌𝑚
(𝑘)

)𝑉(𝑌𝑛
(𝑘)

)

 ,                                                              (2.27) 

which can be calculated from (2.16), (2.22), and (2.26). 

Based on the conditional density given in 

Error!  Reference source not found., we present the 𝑟𝑡ℎ conditional mean 

by the integral 

               𝐸 ((𝑌𝑛
(𝑘)

)
𝑟
|𝑌𝑚) =

(𝑘𝑞)𝑛−𝑚 𝑝

Ґ(𝑛−𝑚)
∫  [− log

1−𝑦𝑛
𝑝

1−𝑦𝑚
𝑝 ]

𝑛−𝑚−1

[
1−𝑦𝑛

𝑝

1−𝑦𝑚
𝑝 ]

𝑘𝑞−1
𝑦𝑛

𝑟+𝑝−1

1−𝑦𝑚
𝑝 𝑑𝑦𝑛

1

𝑦𝑚
.                

 (2.28) 

For 𝑛 = 𝑚 + 1, Error! Reference source not found. reduces to 

                  𝐸 ((𝑌𝑚+1
(𝑘)

)
𝑟
|𝑌𝑚) = 𝑘𝑞 𝑝 ∫ [

1−𝑦𝑚+1
𝑝

1−𝑦𝑚
𝑝 ]

𝑘𝑞−1
𝑦𝑚+1

𝑟+𝑝−1

1−𝑦𝑚
𝑝 𝑑𝑦𝑚+1

1

𝑦𝑚
.                                           (2.29) 

Set 𝑢 = 1 − 𝑦𝑚+1
𝑝

, to get 

𝐸 ((𝑌𝑚+1
(𝑘)

)
𝑟

|𝑌𝑚) = 𝑘𝑞 (1 − 𝑦𝑚
𝑝 )

−𝑘𝑞+1
∫ (1 − 𝑢)𝑟/𝑝𝑢𝑘𝑞−1

1−𝑦𝑚
𝑝

0

𝑑𝑢 

                                                         = 𝑘𝑞(1 − 𝑦𝑚
𝑝 )

−𝑘𝑞+1
𝐵 (

𝑟

𝑝
+ 1, 𝑘𝑞; 1 − 𝑦𝑚

𝑝 )                    (2.30) 

The first, second, and first mixed moments, as well as the correlation coefficient between the 

upper 𝑚𝑡ℎ and (𝑚 + 1)𝑡ℎ upper records for given values of the parameters p and q are displayed 

in Table 2.1, Table 2.2, and Table 2.3, respectively. We notice that all of these measures increase 

with m as expected. 

Table 2.1. The first, second, and first mixed moments of upper records and the correlation 

coefficient between the upper 𝑚𝑡ℎ and (𝑚 + 1)𝑡ℎ records for  𝑝 = 0.5  and 𝑞 = 1.0, 3.0. 

𝑝    𝑞    𝑚    𝜇1
(1,𝑛)

  𝜇2
(1,𝑛)

   𝜇1,1
(1,(𝑚,𝑚+1))

   

𝜌𝑚,𝑚+1 

𝑝     𝑞         𝜇1
(1,𝑛)

   𝜇2
(1,𝑛)

 𝜇1,1
(1,(𝑚,𝑚+1))

 𝜌𝑚,𝑚+1 

0.5 1 1 0.333 0.200   0.261          0.668 

2         0.611 0.457   0.530          0.766 

3         0.787 0.668   0.725          0.807 

4         0.887 0.810   0.848          0.829 

5         0.942 0.896   0.918          0.841 

0.5  3   0.100   0.029  0.042          0.698 

              0.235   0.094  0.122          0.809 

              0.372   0.187  0.227          0.858 

              0.497   0.296  0.340          0.885 

              0.603   0.407  0.451          0.902 
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6        0.970 0.945   0.957          0.849 

7        0.985  0.971   0.978          0.854 

8       0.992  0.985   0.989          0.857 

9       0.996  0.992   0.994          0.860 

              0.691   0.512  0.553          0.914 

              0.761   0.605  0.642          0.923 

              0.817   0.686  0.717          0.929 

              0.860   0.753  0.779          0.935 

 

 

Table 2.2. The first, second, and first mixed moments of upper records and the correlation 

coefficient between the upper 𝑚𝑡ℎ and (𝑚 + 1)𝑡ℎ records for  𝑝 = 1  and 𝑞 = 1.0, 2.0. 

𝑝    𝑞    𝑚    𝜇1
(1,𝑛)

  𝜇2
(1,𝑛)

   𝜇1,1
(1,(𝑚,𝑚+1))

   

𝜌𝑚,𝑚+1 

𝑝     𝑞     𝜇1
(1,𝑛)

   𝜇2
(1,𝑛)

 𝜇1,1
(1,(𝑚,𝑚+1))

 𝜌𝑚,𝑚+1 

1.0 1 1  0.500 0.333   0.417           0.655 

2          0.750 0.611   0.681          0.753 

3          0.875 0.787   0.831          0.796 

4          0.938 0.887   0.912          0.820 

5         0.969 0.942   0.955          0.834 

6          0.984 0.970   0.977          0.843 

7          0.992 0.985   0.989          0.850 

8          0.996 0.992   0.994          0.854 

9          0.998 0.996   0.997          0.857 

1.0    3     0.250   0.100  0.138          0.696 

              0.438   0.235  0.286          0.803 

              0.578   0.372  0.424          0.852 

              0.684   0.497  0.543           0.852 

              0.763   0.603  0.643          0.879 

              0.822   0.691  0.724          0.910 

              0.867   0.761  0.787          0.919 

              0.900   0.817  0.837          0.926 

              0.925   0.860  0.876          0.932 

 

Table 2.3. The first, second, and first mixed moments of upper records and the correlation 

coefficient between the upper 𝑚𝑡ℎ and (𝑚 + 1)𝑡ℎ records for  𝑝 = 2  and 𝑞 = 1.0, 3.0 

𝑝    𝑞    𝑚    𝜇1
(1,𝑛)

  𝜇2
(1,𝑛)

   𝜇1,1
(1,(𝑚,𝑚+1))

   

𝜌𝑚,𝑚+1 

𝑝     𝑞      𝜇1
(1,𝑛)

   𝜇2
(1,𝑛)

 𝜇1,1
(1,(𝑚,𝑚+1))

 𝜌𝑚,𝑚+1 

2.0  1 1   0.667 0.500   0.591          0.633 

2           0.854 0.750   0.804          0.739 

3            0.931 0.875   0.904          0.787 

4            0.967 0.938   0.952          0.813 

5            0.984 0.969   0.976          0.829 

6           0.992 0.984   0.988          0.840 

7            0.996 0.992   0.994          0.847 

8            0.998 0.996   0.997          0.852 

1.0  3    0.457   0.250   0.315           0.676 

              0.639   0438    0.497           0.791 

              0.748   0.578   0.626           0.843 

              0.819    0.684  0.720           0.873 

              0.869   0763    0.791           0.893 

              0.904   0.822   0.843           0.907 

              0.929   0.867   0.883           0.917 

              0.948   0.900   0.912           0.924 
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9            0.999 0.998   0.999          0.856              0.961   0.925   0.943           0.930 

 

3. Characterization 

In this section, we will prove a characterization of the Kumaraswamy and other continuous 

distributions based on upper record values. 

Theorem 3.2: Assume {Xn, n ≥ 1} is a sequence of independent and continuous random variables 

with a common distribution function F(x) on (α, β) with α and β are possibly finite or infinite. Let 

{Yn, n ≥ 1} denote the corresponding sequence of upper record values. Further, assume ψ(x) is a 

continuous, monotone decreasing, and differentiable function with lim
x→−∞

ψ(x) = 1 

and lim
x→∞

ψ(x) = 0. Then the condition 

                                        E[ѱa(Ys|Yr = x)] =
ѱa(x)

2s−r                                                     (3.1) 

Determines F(x) uniquely. 

Proof: By Error!  Reference source not found., the conditional expectation of  ѱ𝑎(𝑌𝑠|𝑌𝑟 = 𝑥), 

when 𝑘 = 1, is 

 𝐸[ѱ𝑎(𝑌𝑠|𝑌𝑟 = 𝑥)]

=
1

Ґ(𝑠 − 𝑟)
∫ ѱ𝑎(𝑦)

𝛽

𝑥

[− log 𝐹(𝑥)  + log 𝐹(𝑦)]
𝑠−𝑟−1 𝑓(𝑦)

𝐹(𝑥)
𝑑𝑦 

  (3.2) 

Replacing 𝐹(𝑥) with 𝐹(𝑥) = 1 − ѱ𝑎(𝑥) in (3.2), the necessary condition is directly proved. 

To prove the sufficient condition, equations (3.1) and (3.2) give 

 1

Ґ(𝑠 − 𝑟)
∫ ѱ𝑎(𝑦)

𝛽

𝑥

[− log 𝐹(𝑥)   + log 𝐹(𝑦)]
𝑠−𝑟−1

𝑓(𝑦)𝑑𝑦 = 𝐹(𝑥)
ѱ𝑎(𝑥)

2𝑠−𝑟
. 

(3.3) 

Let 

𝐸𝑟,𝑠
𝑎 (𝑥) =

1

Ґ(𝑠 − 𝑟)
∫ ѱ𝑎(𝑦)

𝛽

𝑥

[− log 𝐹(𝑥)  + log 𝐹(𝑦)]
𝑠−𝑟−1

𝑓(𝑦)𝑑𝑦 

 so that 

 
𝐸𝑟,𝑠

𝑎 (𝑥) = 𝐹(𝑥)
ѱ𝑎(𝑥)

2𝑠−𝑟
. (3.4) 

Differentiate both sides of Error!  Reference source not found. with respect to 𝑥 to obtain 
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 −1

Ґ(𝑠 − 𝑟 − 1)
∫ ѱ𝑎(𝑦)[− log 𝐹(𝑥)  + log 𝐹(𝑦)]

𝑠−𝑟−2 𝑓(𝑥)

𝐹(𝑥)
𝑓(𝑦)𝑑𝑦 

𝛽

𝑥

= 𝑎𝐹(𝑥)
ѱ𝑎−1(𝑥)ѱ′(𝑥)

2𝑠−𝑟
− 𝑓(𝑥)

ѱ𝑎(𝑥)

2𝑠−𝑟
 (3.5) 

From equations (3.3) and (3.4), the left-hand side of equation (3.5) is−
𝑓(𝑥)

𝐹 ̅ (𝑥)
𝐸𝑟+1,𝑠

𝑎 (𝑥), where  

𝐸𝑟+1,𝑠
𝑎 (𝑥) = 𝐹(𝑥)

ѱ𝑎(𝑥)

2𝑠−𝑟−1. 

Therefore, equation (3.35) can be rewritten as 

 
−

𝑓(𝑥)

𝐹(𝑥)
𝐸𝑟+1,𝑠

𝛼 (𝑥) = −
ѱ𝑎(𝑥)

2𝑠−𝑟−1
𝑓(𝑥) =

ѱ𝑎−1(𝑥)

2𝑠−𝑟
[𝑎ѱ′(𝑥)𝐹(𝑥) − ѱ(𝑥)𝑓(𝑥)], 

(3.6) 

which is simplified to 

−
𝑓(𝑥)

𝐹(𝑥)
=

𝑎ѱ′(𝑥)

ѱ(𝑥)
, 

and the solution of which is 

 𝐹(𝑥) = 1 − ѱ𝑎(𝑥). (3.7) 

Hence the theorem is proved.  

In particular, If 𝑠 = 𝑟 + 1, then 𝐸[ѱ𝑎(𝑌𝑟+1|𝑌𝑟 = 𝑥)] =
ѱ𝑎(𝑥) 

2
 determines 𝐹(𝑥) uniquely. 

Depending on 𝜓(𝑢), many continuous distributions, including the Kumaraswamy distribution, can 

be characterized by Error!  Reference source not found.. Some of these are given in the 

following corollary. 

Corollary. If 𝑠 = 𝑟 + 1, then equation (3.34) yields the following 

a) If 𝜓(𝑥) = 𝑒−𝑥, then 𝐹(𝑥) =  1 − 𝑒−𝑎𝑥, 𝑥 > 0; 𝑋 is distributed as exponential. 

b) If 𝜓(𝑥) = 𝑥, then 𝐹(𝑥) =  1 − 𝑥𝑎 , 0 < 𝑥 < 1; 𝑋 has the power function distribution. 

c) If 𝜓(𝑥) = 𝑒−𝑥𝜆
, then 𝐹(𝑥) =  1 − 𝑒−𝑎𝑥𝜆

, 0 < 𝑥, 𝜆 > 0; 𝑋 is distributed as Weibull. 

d) If 𝜓(𝑥) = 1 − 𝑥𝑝, then 𝐹(𝑥) =  1 − (1 − 𝑥𝑝)𝑎, 0 < 𝑥 < 1, 𝑝 > 0; 𝑋 is distributed as 

Kumaraswamy. 

 

4. Prediction of Upper Record Values 
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Future record predictions are of great interest to researchers in many practical fields, including 

medicine, industrial production, hydrology, and meteorology. In this section, we look at the 

problem of predicting future records based on observed records from the two-parameter 

Kumaraswamy distribution. Three point predictors; the maximum likelihood predictor (MLP), the 

modified maximum likelihood (MMLP), and the conditional median predictor (CMP) will be 

derived. 

Let  𝑦1 < 𝑦2 < ⋯ < 𝑦𝑚  represent the first 𝑚  upper records,  and  𝑦𝑠  represent  the 𝑠𝑡ℎ future 

record where 𝑠 > 𝑚. Prediction of 𝑦𝑠 based on the first 𝑚 observed records, 𝑦 = {𝑦1, 𝑦2, … , 𝑦𝑚}, 

is primarily determined by the conditional predictive density function of 𝑦𝑠 given the observed 

records 𝑦 = {𝑦1, 𝑦2, … , 𝑦𝑚}. Using the Markovian property of records, the conditional  distribution 

of 𝑦𝑠 given 𝑦 is simply the conditional distribution of 𝑦𝑠  given  𝑦𝑚,  as demonstrated by Arnold  

et al. (1998), as follows: 

 
𝑓(𝑦𝑠|𝑦𝑚; 𝑝, 𝑞) =

[𝐻(𝑦𝑠) − 𝐻(𝑦𝑚)]𝑠−𝑚−1

Ґ(𝑠 − 𝑚)

𝑓(𝑦𝑠|𝑝, 𝑞)

1 − 𝐹(𝑦𝑚|𝑝, 𝑞)
 

      (4.1) 

 

For the 𝐾(𝑝, 𝑞) distribution, Eq. (4.1) reduces to 

 

𝑓(𝑦𝑠|𝑦𝑚; 𝑝, 𝑞) =
𝑝𝑞𝑠−𝑚

Ґ(𝑠 − 𝑚)
[ln(1 − 𝑦𝑚

𝑝 )

− ln(1 − 𝑦𝑠
𝑝)]𝑠−𝑚−1 𝑦𝑠

𝑝−1 (1 − 𝑦𝑠
𝑝)𝑞−1

(1 − 𝑦𝑚
𝑝 )𝑞

, 
 

(4.2) 

Where   0 < 𝑦𝑚 < 𝑦𝑠 < 1 

In this part, we examine the classical point prediction 

4.1 Maximum Likelihood Predictor 

In this subsection, we give a point prediction for 𝑦𝑠 , 𝑠 > 𝑚    𝑢sing the maximum likelihood 

prediction (MLP) method. If  𝑦 = {𝑦1, 𝑦2, … , 𝑦𝑚}  is a set of observed records from a population 

with PDF  𝑓(𝑦𝑠; 𝜃) and CDF 𝐹(𝑦𝑠; 𝜃), where 𝜃 = (𝑝, 𝑞), then the predictive likelihood function 

(PLF) of 𝑦𝑠, 𝑝 and 𝑞, is given by (see Basak and Balakrishnan, 2003): 

 

(4.3) 

 𝐿 (𝑦𝑠;  𝜃, 𝑦)

= ∏ ℎ(𝑦𝑖; 𝜃) (
[𝐻(𝑦𝑠;  𝜃) − 𝐻(𝑦𝑚;  𝜃)]𝑠−𝑚−1

Ґ(𝑠 − 𝑚)
𝑓(𝑦𝑠; 𝜃))

𝑚

𝑖=1
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Generally, if  𝑦̂𝑀𝐿𝑃 = 𝑢(𝑦 ), 𝑝̂ = 𝜈(𝑦), and  𝑞̂ = 𝑤(𝑦)  are statistics for which 

 𝐿 (𝑢 (𝑦) , 𝜈 (𝑦) , 𝑤 (𝑦) |𝑦) = sup
𝑦𝑠,𝑝,𝑞

𝐿 (𝑦𝑠, 𝑝, 𝑞|𝑦) , 
(4.4) 

 

Then  𝑢(𝑦 )  is said to be the MLP of 𝑦𝑠, 1 < 𝑚 < 𝑠, 1 < 𝑚 < 𝑠,  and  𝜈(𝑦)  and 𝑤(𝑦)  are the 

predictive maximum likelihood estimates (PMLEs) of 𝑝 and 𝑞, respectively. The log-likelihood 

predictive function (PLF) for the 𝐾(𝑝, 𝑞) distribution is 

 𝐿(𝑦𝑠; 𝑝, 𝑞; 𝒚)     

= 𝑞𝑠𝑝𝑚+1
[log(1 − 𝑦𝑚

𝑝 ) − log(1 − 𝑦𝑠
𝑝)]𝑠−𝑚−1

Ґ(𝑠 − 𝑚)

𝑦𝑠
𝑝−1

(1 − 𝑦𝑠
𝑝

)1−𝑞
∏

𝑦𝑖
𝑝−1

1 − 𝑦𝑖
𝑝

𝑚

𝑗=1

 

 

(4.5) 

 

After some simplifications, the Log-likelihood function, up to a constant, is 

𝑙(𝑦𝑠, 𝑝, 𝑞|𝒚) ≡ 𝑙(𝑦𝑠, 𝑝, 𝑞)

= (𝑝

− 1) ∑ log 𝑦𝑖

𝑚

𝑖=1

− ∑ log(1 − 𝑦𝑖
𝑝) + (𝑠 − 𝑚 − 1) log[log(1 − 𝑦𝑚

𝑝 ) − log(1 − 𝑦𝑠
𝑝)]

𝑚

𝑖=1

+   (𝑚 + 1 )log 𝑝 + s log q +(𝑝 − 1) log 𝑦𝑠 + (𝑞 − 1) log(1 − 𝑦𝑠
𝑝)  (4.6) 

Therefore, the likelihood equations are: 

𝜕𝑙(𝑦𝑠, 𝑝, 𝑞)

𝜕𝑝
= ∑ log 𝑦𝑖

𝑚

𝑖=1

+ ∑
𝑦𝑖

𝑝
log 𝑦𝑖

(1 − 𝑦𝑖
𝑝)

𝑚

𝑖=1

+ (𝑠 − 𝑚 − 1)

𝑦𝑠
𝑝 log 𝑦𝑠

1 − 𝑦𝑠
𝑝 −

𝑦𝑚
𝑝 log 𝑦𝑚

1 − 𝑦𝑚
𝑝

log(1 − 𝑦𝑚
𝑝 ) − log(1 − 𝑦𝑠

𝑝)

+   
𝑚 + 1

𝑝
+  log 𝑦𝑠 − (𝑞 − 1)

𝑦𝑠
𝑝 log 𝑦𝑠

1 − 𝑦𝑠
𝑝 = 0 

 

 

(4.7) 

 

𝜕𝑙(𝑦𝑠, 𝑝, 𝑞)

𝜕𝑞
=

𝑠

𝑞
+ log(1 − 𝑦𝑠

𝑝) = 0 
(4.8) 
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𝜕𝑙(𝑦𝑠,𝑝,𝑞)

𝜕𝑦𝑠
 = (𝑠 − 𝑚 − 1)

𝑝𝑦𝑠
𝑝−1

1−𝑦𝑠
𝑝

[log(1−𝑦𝑚
𝑝

)−log(1−𝑦𝑠
𝑝

)]
+

𝑝−1

𝑦𝑠
− (𝑞 − 1)

𝑝𝑦𝑠
𝑝−1

1−𝑦𝑠
𝑝 = 0       

 

(4.9) 

 

The PMLE of 𝑞, say 𝑞̂, is obtained from equation (4.8) and is given by 

 𝑞̂ =
−𝑠

log(1 − 𝑦𝑠
𝑝)

 
(4.10) 

 

The PMLE of 𝑝, say 𝑝̂,  and MLP of  𝑦𝑠  say 𝑦̂𝑀𝐿𝑃, can be obtained by substituting Eq. (4.10) in 

Eq (4.7) and (4.9), respectively, to obtain 

 

∑ log 𝑦𝑖

𝑚

𝑖=1

+ ∑
𝑦𝑖

𝑝 log 𝑦𝑖

(1 − 𝑦𝑖
𝑝)

𝑚

𝑖=1

+ (𝑠 − 𝑚 − 1)

𝑦𝑠
𝑝 log 𝑦𝑠

1 − 𝑦𝑠
𝑝 −

𝑦𝑚
𝑝 log 𝑦𝑚

1 − 𝑦𝑚
𝑝

log(1 − 𝑦𝑚
𝑝 ) − log(1 − 𝑦𝑠

𝑝)
+ 

𝑚 + 1

𝑝
+ log 𝑦𝑠 + (

𝑠

log(1 − 𝑦𝑠
𝑝)

+ 1)
𝑦𝑠

𝑝 log 𝑦𝑠

1 − 𝑦𝑠
𝑝 = 0, 

(4.11) 

and 

 
(𝑠 − 𝑚 − 1)

𝑝𝑦𝑠
𝑝−1

1−𝑦𝑠
𝑝

[log(1−𝑦𝑚
𝑝

)−log(1−𝑦𝑠
𝑝

)]
+

𝑝−1

𝑦𝑠
 + (

𝑠

log(1−𝑦𝑠
𝑝

)
+ 1)

𝑝𝑦𝑠
𝑝−1

1−𝑦𝑠
𝑝 = 0 

(4.12) 

 

In particular, when 𝑠 = 𝑚 + 1, (4.11) and (4.12) reduce to 

 ∑ log 𝑦𝑖
𝑚
𝑖=1 + ∑

𝑦𝑖
𝑝

log 𝑦𝑖

(1−𝑦𝑖
𝑝

)
𝑚
𝑖=1 +

𝑚+1

𝑝
 + log 𝑦𝑠 + (

𝑚+1

log(1−𝑦𝑠
𝑝

)
+ 1)

𝑦𝑠
𝑝

log 𝑦𝑠

1−𝑦𝑠
𝑝 = 0, 

(4.13) 

and 

 𝑝 − 1

𝑦𝑠
+ (

𝑚 + 1

log(1 − 𝑦𝑠
𝑝

)
+ 1)

𝑝𝑦𝑠
𝑝−1

1 − 𝑦𝑠
𝑝 = 0 

(4.14) 

 

Analytical solutions for Eq. (4.13) and (4.14) may not be possible, so they must be solved 

numerically. 
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4.2 Modified Maximum Likelihood Predictor 

A modified maximum likelihood predictor (MMLP) is obtained as a solution to equation (4.9) 

after implementing the MLEs of 𝑝 and 𝑞 that were derived based on the first 𝑚 upper records. 

Thus, the MMLP of  𝑦𝑠 is the solution of the following equation 

 

(𝑠 − 𝑚 − 1)

𝑝̂𝑦𝑠
𝑝−1

1 − 𝑦𝑠
𝑝

[ln(1 − 𝑦𝑚
𝑝 ) − ln(1 − 𝑦𝑠

𝑝)]
+

𝑝̂ − 1

𝑦𝑠
− (𝑞̂ − 1)

𝑝̂𝑦𝑠
𝑝−1

1 − 𝑦𝑠
𝑝

= 0 
( 4.15) 

Where  𝑦𝑠 > 𝑦𝑚. 

To compute the MMLP of 𝑦𝑠, say 𝑌̂𝑀𝑀𝐿𝑃, an analytical method has to be applied to solve Eq. 

(4.15). When 𝑠 = 𝑚 + 1, the one-step MMLP is 

 𝑦̂𝑚+1 = (1 +
𝑝(𝑞̂−1)

𝑝−1
)

−1/𝑝̂

                                                         (4.16) 

4.3 Conditional Median Predictor 

Let 𝑌̂𝐶𝑀𝑃 be the conditional median predictor of 𝑦𝑠. Assuming that  𝑌̂𝐶𝑀𝑃 = 𝑘(𝑦𝑚; 𝑝, 𝑞)  is a 

function of 𝑦𝑚, then 𝑃(𝑦𝑠|𝑦𝑚; 𝑝, 𝑞) ≤ 𝑘(𝑦𝑚, 𝑝, 𝑞) =
1

2
= 𝑃(𝑦𝑠|𝑦𝑚; 𝑝, 𝑞) ≥ 𝑘(𝑦𝑚, 𝑝, 𝑞). As a result 

of Eq. (4.2), we have 

 

∫
𝑝𝑞𝑠−𝑚

Ґ(𝑠 − 𝑚)
[ln(1 − 𝑦𝑚

𝑝 )
𝑘(𝑦𝑚,𝑝,𝑞)

𝑦𝑚

− ln(1 − 𝑦𝑠
𝑝)]𝑠−𝑚−1

[1 − 𝑦𝑠
𝑝]𝑞−1

(1 − 𝑦𝑚
𝑝 )𝑞

𝑦𝑠
𝑝−1𝑑𝑦𝑠 =

1

2
 

(4.17) 

 

Let 𝑡 = [ln(1 − 𝑦𝑚
𝑝 ) − ln(1 − 𝑦𝑠

𝑝)], then 𝑑𝑡 =
𝑝𝑦𝑠

𝑝−1

1−𝑦𝑠
𝑝 𝑑𝑦𝑠 and the integral equation (4.17) 

becomes 

 ∫
𝑞𝑠−𝑚

Ґ(𝑠−𝑚)
𝑡𝑠−𝑚−1𝑒−𝑡𝑞𝑑𝑡 =

1

2

ln(1−𝑦𝑚
𝑝

)−ln[1−𝑘(𝑦𝑚;𝑝,𝑞)𝑝]

0
.  

 

Thus, 

 log(1 − 𝑦𝑚
𝑝 ) − log[1 − 𝑘(𝑦𝑚; 𝑝, 𝑞)𝑝] = 𝐹−1 (

1

2
) = 𝑀𝑒𝑑(𝑊) (4.18) 
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Where 𝐹  is the cumulative distribution function of 𝑊~𝐺𝑎𝑚𝑚𝑎(𝑠 − 𝑚,
1

𝑞
). 

Solving Eq. (4.18) for 𝑘(𝑦𝑚; 𝑝, 𝑞), the conditional median predictor is 

 𝑌̂𝐶𝑀𝑃 = [1 − (1 − 𝑦𝑚
𝑝 )𝑒−𝑀𝑒𝑑 (𝑊)]

1
𝑝 (4.19) 

Assume that we are interested in predicting the first future record, i.e., 𝑠 = 𝑚 + 1, 

then 𝑊~𝐸𝑥𝑝(𝑞), with𝑀𝑒𝑑 (𝑊) =
1

𝑞
log 2, therefore 

               𝑌̂𝐶𝑀𝑃 = [1 − (1 − 𝑦𝑚
𝑝 )𝑒

−
1

𝑞
log 2

]

1

𝑝

= [1 − (1 − 𝑦𝑚
𝑝 )2

−
1

𝑞]

1

𝑝

                                    (4.20). 

If  𝑝 and 𝑞 are unknown, they are replaced by their MLEs, in which case an approximate CMP is 

derived from (4.20). 

5 Real data application 

In this section, we analyze the rainfall for the month of January recorded at the Changi Climate 

Station in Singapore. Monthly data available from 1982 to 2021 were downloaded from the open 

source https://data.gov.sg/dataset/rainfall-monthly-total. For the month of January, the rainfalls in 

millimeter are: 

107.1, 246.0, 251.2, 111.1, 308.2, 568.6, 237.5, 189.7, 147.4, 123.9, 83.9, 176.4, 56.9, 349.4, 

173.2, 15.4, 268.8, 193.9, 275.2, 425.8, 221.2, 444.2, 600, 9, 163.2, 454.4, 450.1, 262.6, 38.3, 

69.5, 513.2, 106.1, 262.0, 75.4, 79.6, 126.6, 197.6, 287.0, 63.6, 88.4, 692.8. 

 

Therefore, the upper rainfall records are 107.1, 246, 251.2, 308.2, 568.6, 600.9, and 692.8. 

 

To test the randomness of the data, we performed the Wald-Wolfowitz Runs test, and a p-value of 

0.786 was calculated, suggesting that the data are random. A histogram of the precipitation data 

and a graph of the smoothed empirical distribution overlaid with the cumulative distribution, 

evaluated at the MLEs, are shown in Figure 1 and Figure 2, respectively. 

 

https://data.gov.sg/dataset/rainfall-monthly-total
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Figure1: Histogram for the January rainfall data recorded at the Changi Climate Station 

in Singapore for the period 1982-2021. 

 

Figure2: The smoothed empirical distribution (blue) overlaid with the Kumaraswamy 

cumulative distribution (red), evaluated at the MLEs, for the January rainfall data 

recorded at the Changi Climate Station in Singapore for the period 1982-20 

 

We will apply the following parametric bootstrap procedure on the Anderson-Darling (AD) test to 

test the conformity of the rainfall data with the Kumaraswamy distribution: 
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a) Assuming the data is from 𝐾(𝑝, 𝑞), obtain the MLEs of 𝑝  and𝑞, say 

𝑝̂  and 𝑞̂. 

b) Evaluate the AD test, say 𝑇𝐴𝐷, at the MLEs obtained in (1) 

c)  Simulate 10000 bootstrap samples from 𝐾(𝑝̂, 𝑞̂), and for each 

sample, find the MLEs of 𝑝 and 𝑞 and the corresponding value of the 

AD test, say  𝑇∗
𝐴𝐷 . 

d) Calculate the p-value of the test as the proportion of times the value 

of  𝑇∗
𝐴𝐷 exceeds 𝑇𝐴𝐷. 

 

Thus, the first step is to find the MLEs of 𝑝 and 𝑞. The likelihood function for an observed sample 

𝑥1, … , 𝑥𝑛  from 𝐾(𝑝, 𝑞) is 

𝐿(𝑝, 𝑞|𝑥1, … , 𝑥𝑛) ≡ 𝐿(𝑝, 𝑞) = 𝑝𝑛𝑞𝑛 ∏ 𝑥𝑗
𝑝−1(1 −

𝑛

𝑗=1

𝑥𝑗
𝑝)𝑞−1 

hence, the log-likelihood function is 

𝑙(𝑝, 𝑞) = 𝑛 log 𝑝 + 𝑛 log 𝑞 + (𝑝 − 1) ∑ log  𝑥𝑗 + (𝑞 − 1) ∑ log (1 − 𝑥𝑗
𝑝)𝑛

𝑗=1
𝑛
𝑗=1 . 

Therefore, the likelihood equations are: 

𝜕𝑙(𝑝, 𝑞)

𝜕𝑝
=

𝑛

𝑝
+ ∑ log  𝑥𝑗 − (𝑞 − 1) ∑

𝑥𝑗
𝑝 log 𝑥𝑗

(1 − 𝑥𝑗
𝑝)

 

𝑛

𝑗=1

𝑛

𝑗=1

= 0 
(5.1) 

 

𝜕𝑙(𝑝, 𝑞)

𝜕𝑞
=

𝑛

𝑞
+ ∑ log (1 − 𝑥𝑗

𝑝) = 0

𝑛

𝑗=1

 
(5.2) 

Solving Eq. (5.2) for 𝑞, we have 

 

𝑞 = −
𝑛

∑ log (1 − 𝑥𝑗
𝑝)𝑛

𝑗=1

 (5.3) 

 

Replacing Eq. (5.3) in Eq. (5.1), we get 

  

                                   
𝑛

𝑝
+ ∑ log  𝑥𝑗 + (

𝑛

∑ log (1−𝑥𝑗
𝑝)𝑛

𝑗=1

+ 1) ∑
𝑥𝑗

𝑝 log 𝑥𝑗

(1−𝑥𝑗
𝑝)

 𝑛
𝑗=1

𝑛
𝑗=1 = 0         (5.4)                                            

The MLEs for p and q are obtained by first solving 𝐸𝑞. (5.4) numerically for p and then solving 

eq. (5.3) for q. 
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A scale parameter should be incorporated in the Kumaraswamy model for the rainfall data under 

consideration. The maximum observed value (692.8) could be considered an approximation of this 

parameter. Although the maximum value may not necessarily be the MLE of the scale parameter, 

it is a good approximation, especially for large observations. To avoid logarithms of zero or zero 

denominator, we rescaled the data by dividing by 700 instead of 692.8. Based on the rescaled data, 

the MLEs of p and q are calculated as 𝑝̂ = 0.56 and 𝑞̂ = 1.09. 

Applying the parametric bootstrap procedure described previously, we calculate the p-value at 

0.064, indicating a significant fit of the data to the two-parameter Kumaraswamy distribution at 

the nominal level of 0.05. 

To obtain the MMLP and the CMP for the next rainfall record, we will first get the MLEs of  𝑝 

and 𝑞 based on the set of upper records. In general, given the observed records 𝑦 = 𝑦1, … , 𝑦𝑛, the 

log-likelihood function is 

𝑙(𝑝, 𝑞|𝑦) = 𝑛 log 𝑝 + 𝑛 log 𝑞 + 𝑞 log(1 −  𝑦𝑛
𝑝) + 𝑝 ∑ log 𝑦𝑖 − ∑ log(1 − 𝑦𝑖

𝑝).𝑛
𝑖=1

𝑛
𝑖=1     (5.5) 

Therefore, the likelihood equations are:  

 𝜕𝑙(𝑝,𝑞)

𝜕𝑝
=

𝑛

𝑝
−

𝑞𝑦𝑛
𝑝

log 𝑦𝑛

1−𝑦𝑛
𝑝 + ∑ log 𝑦𝑖 + ∑

𝑦𝑖
𝑝

log 𝑦𝑖

1−𝑦𝑖
𝑝 = 0𝑛

𝑖=1
𝑛
𝑖=1                                                       

      (5.6) 

𝜕𝑙(𝑝,𝑞)

𝜕𝑞
=

𝑛

𝑞
+ log(1 − 𝑦𝑛

𝑝) = 0                                                                                                

        (5.7) 

From Eq. (4.27), we have 

                                    𝑞 = −
𝑛

log(1−𝑦𝑛
𝑝

)
                                                              (5.8)   

Substitution of Eq. (4.28) in (4.26) gives, 

        
𝑛

𝑝
+

𝑛

log(1−𝑦𝑛
𝑝

)

𝑦𝑛
𝑝

log 𝑦𝑛

1−𝑦𝑛
𝑝 + ∑ log 𝑦𝑖 + ∑

𝑦𝑖
𝑝

log 𝑦𝑖

1−𝑦𝑖
𝑝 = 0𝑛

𝑖=1
𝑛
𝑖=1                                                           

(5.9) 

The MLEs, 𝑝̂𝑦 and 𝑞̂𝑦, are obtained by first solving Eq. (5.9) numerically for 𝑝 and then obtain  

𝑞̂𝑦 from Eq. (5.8). 
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Based on the set of upper precipitation records {107.1, 246, 251.2, 308.2, 568, 600.9, 692.8}, the 

MLE values for 𝑝 and 𝑞 are, respectively, 𝑝̂𝑦 = 0.38   and 𝑞̂𝑦 = 1.04. as expected, these estimates 

are different from the corresponding MLEs based on the complete sample. 

Solving 𝐸𝑞𝑠. (4.10), (4.13), and (4.14) for 𝑝, 𝑞  and 𝑦𝑚+1, one has 𝑝̂𝑀𝐿𝐸 = 0.32, 𝑞̂𝑀𝐿𝑃 = 0.88, and 

𝑦̂𝑀𝐿𝑃 = 699.8. 

The MMLP one-step predictor, obtained as the solution of Eq. (4.16) when 𝑝 and 𝑞 are, 

respectively, replaced by their MLEs, 𝑝̂𝑦 = 0.38  and 𝑞̂𝑦 = 1.04, is 747.3 ml. 

Finally, the CMP obtained from Eq. (4.20), with  𝑝̂𝑦 = 0.38  and 𝑞̂𝑦 = 1.04, is 700 ml. 

5. Conclusions 

We have studied some properties of the Kumaraswamy distribution based on upper record values. 

Exact forms and representations of the distributions, joint distributions, and conditional 

distributions were derived. We also derived exact representations for moments, mixed moments, 

conditional moments, and correlation coefficients. We further proved characterizations for 

several known continuous distributions based on a conditional functional expectation. As for the 

inference analysis, we derived the likelihood equations based on the upper records sample as well 

as for the full sample. We also derived the MLP, MMLP, and CMP predictors for future records. 

In addition, we fitted the rainfall data for the month of January recorded at the Changi Climate 

Station in Singapore for the period from 1982-2021 with the Kumaraswamy distribution. Based 

on the set of available upper rainfall records, we have predicted the next record for the month of 

January. 
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