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Abstract 

In this paper, we propose a prediction technique for future signal 

to noise ratio based on deep learning in tactical wireless 

communication systems. The communication system considered in 

this paper receives with multiple antennas and transmits in the 

future using the same antenna. We propose a deep learning model 

that predicts SNR for each transmit antenna in future transmission 

situations based on SNR received from multiple receive antennas 

in the past. Received ratio or a recorded ratio of a received SNR is 

set to 10 to 100 %. If there is no received record nor SNR record, 

the received SNR is set through linear interpolation of the 

previously received SNR and the subsequent received SNR. 

According to the simulation results, wideband signals (4MHz) 

show better predictive performance than the narrowband signals 

(25kHz). In case of wideband, the proposed method is about 0.37 

dB  to 0.98 dB  superior to the conventional method when the 

moving speed is over 20 km/h . For narrowband signals, the 

proposed method is about 0.29 dB  to 0.88 dB  better than the 

conventional method for the moving speed over 20 km/h. Those 

result indicates that the proposed prediction technique can be 

applied to antenna selection problem that provides the best SNR. 

Keywords: SNR prediction, CNN, rayleigh, rician, regression, 

TDD. 

 

1. Introduction 

Tactical wireless communication system is popular nowadays to transmit large amounts of 

voice, data, and video while moving fast (Mourougayane, K. et al., 2020, Riihonen, T. et al., 
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2018, Zou, X. et al., 2020). In the mobile wireless communication environments, reliable 

communication is difficult because the line of sight is rarely guaranteed (Wang, H. et al., 2019). 

The channel environment is similar to the general multipath fading channels (Matolak, D.W. 

et al., 2011), and a problem occurs in that the quality of the signal changes time to time (Lima 

Filho, V.C. et al., 2021). Rapid SNR change can severely degrade communication reliability 

(Sun, W. et al., 2020). To solve this problem, there is a method using multiple antennas (Ahn, 

S.J. et al., 2021). Although the method of receiving using multiple antennas in a mobile 

environment is a promising technique, transmitting using all of the multiple antennas is not. 

The signals from multiple antennas may interfere with each other, resulting in a multipath 

fading effect. Therefore, it is important to select  one optimum antenna and transmit, rather 

than using all the multiple antennas (Gao, Y. et al., 2017). 

In this paper, we propose a technique for predicting the signal to noise ratio (SNR) of the 

future at the time of transmission for each antenna in an environment where multiple patchy 

directional antennas are attached to the communication vehicle to communicate with the other 

party. Through this, it is possible to select and transmit an antenna having the best SNR. 

Although the directional antenna can transmit and receive in only one direction, it has a high 

gain and a high effect in preventing interference (George, R. et al., 2020). The proposed method 

predicts the SNR at the transmission time for each antenna in the future using convolutional 

neural network (CNN) based on the past received SNR information for each antenna in a 

mobile wireless communication environment (Jeong, E.R. et al., 2020). In this paper, we 

presume a TDD method in which transmitting and receiving antennas share time separately at 

the same frequency (Jose, J. et al., 2011). Since the receiving SNR may be recorded only when 

received, performance according to the receiving ratio is important. Therefore, in this paper, 

the reception ratio or the reception SNR recording ratio is varied from 10 to 100 %. If there is 

no received record and there is no SNR record, the received SNR is established through linear 

interpolation of the previously received SNR and the subsequent received SNR. 

The performance of existing and proposed techniques is verified through computer 

simulation and evaluated according to the speed of the communication vehicle. The 

performance indicator uses the Mean Absolute Error (MAE) between the actual SNR and the 

predicted SNR. As a result of simulation, wideband performance is better than narrowband. 

For wideband, the proposed method is superior to about 0.37 dB to 0.98 dB based on speed of 

above 20 km/h. For narrowband, the proposed method is superior to about 0.29 dB to 0.88 dB 

based on speed above 20 km/h. 

This paper is organized as follows. Section 2 describes the overall system model. In section 

3, SNR prediction methods for conventional and proposed methods are introduced. Section 4 

compares the performance of the proposed method and the conventional method. Finally, 

section 5 concludes the paper. 
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2. System Model 

 

Fig. 1; Communication System Mode 

The communication system considered in this paper is as follows. The node receives and 

transmits using multiple directional antennas attached to a communication vehicle. When 

receiving, all antennas are used for data reception and store the received SNR at that time. 

When transmitting, only one antenna is selected among all the antennas and transmits using the 

antenna. Transmission and reception are performed with the same frequency but different time, 

i.e., time division duplexing (TDD) technique. Therefore, the optimal antenna sould be selected 

for transmission to increase the communication data rate or reliability. To this end, the system 

proposed in this paper predicts the SNR of each antenna at future transmission time based on 

the SNR information received in the past. Figure 1 shows a system model for predicting the 

SNR of the future transmission antenna. The detailed scenario is as follows. In figure 1, Node 

A transmits signal to Node B through Rayleigh Channel or Rician Channel. In Node B, the 

SNRs of all the received antennas are calculated and stored from the received antennas. Based 

on the SNRs received from multiple antennas, we predict the future SNRs through artificial 

intelligence (AI) and select the optimal transmission antenna.  

Hereafter, we explain the preprocessing for the AI input. In preprocessing, the received 

SNRs recorded previously is vectorized, and the received SNR vectors for each antenna are 

combined to generate a received SNR matrix. First, the SNR simultaneously received at 

multiple antennas are expressed as follows. 

xn = [x0,n, x1,n, … , xM−1,n]T (1) 

where 𝐱n is a received SNR vector, n is a time index of a received packet, and M is the total 

number of antennas. After combining the SNR vectors from all the antennas, the received SNR 

matrix is given by 

𝐗𝐍 = [

x0,0 x0,1 ⋯ x0,N−1

x1,0 x1,1 ⋯ x1,N−1

⋮ ⋮ ⋱ ⋮
xM−1,0 xM−1,1 ⋯ xM−1,N−1

]  (2) 

where XN is a past received SNR matrix of size M × N for predicting SNR at the future 

transmission time (or time index) N. Each row represents an SNR received from an antenna, 
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and each column represents SNR of all antennas obtained at a specific reception time, n. 

Therefore, the size of the SNR matrix XN depends on the number of operating antennas and the 

length of the past received SNR observation time. 

 

Fig. 2; Example of Received SNR Matrix 

Figure 2 shows example of the received SNR matrix. Bearing in mind that the transmit and 

receive antennas communicate at different time but the same frequency, received SNR does 

not exist in some time indexes. In Figure 2, the dark areas 𝐱0, 𝐱N−3, 𝐱N−2, etc. indicate that the 

packet is received and the SNR is recorded, and the bright areas indicate that the SNR could 

not be recorded because there was no received packet. In Figure 2, 𝐱1, 𝐱N−1 is the case where 

the packet is not received. Under this realistic scenario, the problem is to predict the SNR of 

each antenna (𝐱N) when transmitting at the future time index N. 

Assuming that the symbol rate of the communication signal is Rs  and the number of 

symbols in one packet is Ns, the symbol period and the packet length are expressed as (3) and 

(4), respectively. 

Ts =  
1

Rs
 (3) 

TP =  Ts × Ns (4) 

This paper consider two types of signals: wideband and narrowband signals. The wideband 

signal has a small packet length Tp because the symbol rate is relatively high compared to the 

narrowband signal. Tp  is determined by the bandwidth of the signal and has an inversely 

proportional to the bandwidth. Assuming that the number of symbols in packet is the same 

regardless of signal bandwidth, the narrowband signal requires longer time to construct the 

SNR matrix in Figure 2. 

 

Fig. 3; Received SNR over Time in Rician Channel (a) Wideband Signal (b) 

Narrowband Signal 
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Fig. 4; Received SNR over Time in Rayleigh Channel (a) Wideband Signal (b) 

Narrowband Signal 

Figure 3 and 4 show the SNR of the received signal over time in Rician Fading and Rayleigh 

Fading channels, respectively. Figure 3(a) and 4(a) show the SNRs for the wideband signal, 

and Figure 3(b) and 4(b) show the SNRs for the narrowband signal. In the figure, the x-axis is 

time and the y-axis is the received SNR at each antenna. The Rician fading channel has the line 

of sight so that the direct wave and reflected waves exist simultaneously. The Rayleigh fading 

channel does not have line of sight so that the received signal is composed of only reflected 

waves. As shown in Figure 3 and 4, the wideband signal has a relatively short SNR 

measurement period compared to the narrowband signal. It is observed that the channel change 

speed of the wideband signal is slow over time, while the channel of the narrowband signal is 

rapidly changing. 

3. Proposed SNR Prediction Method 

The proposed method is to predict xn, which is the SNR for each antenna at a transmission time 

N from the received SNR matrix XN. The conventional technique is configured as follows. This 

method is first measuring the SNR of the most recently received packet and predict it (or use 

it) for the SNR at the future transmission time N. This method is a natural method when the 

channel is time-varying. 

In contrast, the proposed method utilizes all the SNR records in the past, and the received 

SNR matrix is used. In the proposed technique, when a packet is not received at certain time, 

the received SNR is filled through linear interpolation of the previously received SNR and the 

subsequently received SNR. In addition, if there is no SNR received at the start time (n = 0) of 

the SNR matrix or at the end time (n = N-1) of the SNR matrix, the received SNR is set to 0 

dB. The received SNR matrix through this preprocessing becomes the input of the proposed 

CNN predictor. 

Conventional SNR Prediction Method 

The conventional method predicts the SNR at the time of future transmission by measuring the 

SNR with the most recently received packet information among time window N of the received 

SNR matrix. For example, since the most recently received packet in the received SNR matrix 

in Figure 2 is xN−2, the SNR for each antenna at the time of transmission is predicted as xN =
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xN−2. 

Proposed CNN-based SNR Prediction Method 

In the proposed method, when the received SNR cannot be measured because there is no 

received packet, the received SNR is set through linear interpolation of the previously received 

SNR and the subsequently received SNR. Linear interpolation is performed as follows. It is 

assumed that SNR is recorded first at the k-th time and then at the l-th time, but SNR is not 

recorded between them. To perform linear interpolation, first, the amount of change (∆n) of 

adjacent packet is calculated using the SNR of the received packet. the formula to find ∆n is as 

follows. 

∆n= (xl − xk)/(l − k), (l > k) (5) 

where 𝐱l and 𝐱k represent the l-th and k-th received SNR vectors. Assuming that the index 

that did not receive the packet is p, the range of p is represented by k < p < l and linear 

interpolation is performed as 

xp = xp−1 + ∆n, (p = k + 1, k + 2, ⋯ , l − 1) (6) 

The received SNR matrix generated by the above process becomes the input of the proposed 

CNN predictor. 

 

Fig. 5; Proposed CNN Model Structure 

Figure 5 shows the proposed CNN model for the future SNR prediction. The input is the 

received SNR matrix obtained from multiple antennas and the output is the future SNR 

prediction value for each antenna. It consists of a total of 5 convolutional layers and M fully 

connected layers, and the size of the filter is 3x3 for all the convolutional layers. The depth of 

the filter consists of 64, 32, 16, 8, and 4, and after each convolutional layer, batch normalization 

layer and activation function are followed. The activation function is ReLU. Flatten is 

performed to transform the features extracted from the last convolutional layer into one-

dimensional vector, and each antenna is connected with fully connected layer. Both 

narrowband and wideband use the same CNN model. 

4. Simulation Results 

4.1.Simulation Environment 

Training and testing of the proposed CNN are performed using Tensorflow 2.0, and MATLAB 

is used for input data preprocessing. Table 1 shows the parameters of the simulation 
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environment. In case of wideband, the bandwidth is 2 MHz, the symbol period is 0.5 ms, and 

the carrier frequency is 512 MHz. In the case of narrow band, the bandwidth is 25 kHz, the 

symbol period is 40 ms, and the carrier frequency is 88 MHz. The SNR is randomly generated 

with a value between 0 dB and 30 dB. The K-factor, power ratio of direct and reflected waves 

in the Rican channel, is 14 dB. The number of antennas (M) is 4, and the number of packets (N) 

is 100. The number of symbols per packet (Ns) is set to 1,000. The probability of reception (or 

recording) is 10 to 100%. 

Table 1. Parameters for simulation 

Parameter Value 

BW 2 MHz / 25 kHz 

Symbol Period (Ts) 0.5 ms / 40 ms 

Carrier Frequency 512 MHz / 88 MHz 

Average SNR 0~30 dB 

K-factor 14 dB 

Num. of Antenna (M) 4 

Num. of Packet (N) 100 

1 Packet (Ns) 1,000 symbols 

Packet Ratio 10 ~ 100 % 

 

4.2.Training CNN 

For the training data, 80,000 data set is generated randomly in the speed range from 0 to 100 

km/h, and the 20,000 test data is generated at 10 km/h intervals from 0 to 100 km/h to examine 

the prediction performance by speed. The size of XN is set to 4×100. That is, the artificial neural 

network input signal corresponds to the length of 100 packets. The parameters used for training 

are batch size 512 and epoch 2,000. Optimizer is Adagrad, and learning rate is 0.01. The loss 

function is mean square error (MSE) 

MSE =
1

Dtrain
∑ (𝐱N,i − 𝐱̂N,i)

2

Dtrain

i=1

 (6) 

xN,i is xN in the i-th learning data, x̂N,i represents the predicted value of the i-th training data, 

and Dtrain represents the total number of learning data. The difference between the xN and the 

predicted value x̂N is squared and summed, and then divided by the total number of training 

data. 

http://philstat.org.ph/


Vol. 71 No. 3s (2022) 

http://philstat.org.ph 

Mathematical Statistician and Engineering Applications 

    ISSN: 2094-0343 

2326-9865 

574 

 

Fig. 6; Learning Curves (a) Wideband (b) Narrowband 

Figure 6 is a learning for the loss. Figure 6 (a) is the learning curve for the wideband, and 

Figure 6 (b) is the learning curve for the narrowband. The x-axis is epoch and the y-axis is loss. 

The loss converges to about 7  for wideband and to about 68 for narrowband. 

4.3.Test Results 

Figure 7 shows MAE performance according to speed. Figure 7(a) is the MAE performance 

for wideband, and 7(b) is the MAE performance for the narrowband. Equation (7) is the MAE 

equation, which is a performance indicator for the test. 

MAE =
1

Dtest
∑ |xN,i − x̂N,i|

Dtest

i=1

 (7) 

Where xN,i is xN in the i-th learning data, x̂N,i represents the predicted value of the i-th test 

data, and Dtest represents the total number of test data. The difference between the xN and the 

predicted value x̂N is obtained, and the absolute value is summed up and divide it by the total 

number of test data. 

In Figure 7, the red dotted line and regular triangle (△) marker are the case of the proposed 

method, and the blue solid line and square () marker are the case of the conventional method. 

In the wideband, the MAE of the proposed method increases from 0.29 dB to 0.98 dB in the 

speed range of 0 to 100 km/h, and the conventional method increases from about 0.01 dB to 

1.41 dB. In the narrowband case, the MAE of the proposed method increases from about 1.38 

dB to 3.78 dB in the speed range of 0 to 100 km/h, and the conventional method increases 

from about 0.14 dB to 4.66 dB. In the case of wideband, the MAE is about 0.37 dB to 0.98 dB 

at speed of above 20 km/h, and the proposed method is about 0.01 dB to 0.44 dB superior to 

the conventional method. In the case of narrowband, the MAE is about 2.47 dB to 3.78 dB at 

speed of above 20 km/h, and the proposed method is about 0.29 dB to 0.88 dB superior to the 

conventional method. Those results indicate that for slow moving speed, the conventional 

method is better than the proposed method. However, if the moving speed is over 20 km/h, the 

proposed method is superior to the conventional method, and the performance gap increases as 

the speed increases. 
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Fig. 7; Result of SNR Prediction on Speed 

5. Conclusion 

This paper proposed artificial intelligence method that predicts future SNR using receiving 

SNR of multiple antennas in tactical wireless communication environment. 

The input signal, or the received SNR, is mixture of Rician fading channel and Rayleigh 

fading channel. For slow moving speed, the conventional method is better than the proposed 

method. However, if the moving speed is over 20 km/h, the proposed method is superior to the 

conventional method, and the performance gap increases as the speed increases. If the proposed 

method is applied to an actual communication system, it will be possible to transmit at the 

highest transmission rate while increasing the communication success probability by using the 

optimal transmit antenna. 
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