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Abstract 

Research with the title: An Upper Bound on The Partition 

Dimension of Comb Product Graph Wheel and Path. This 

research is the development of the results of calculations, 

research methods with a qualitative model approach to the 

partition dimensions of the comb product between the wheel 

and path graph investigated in this study. The main objective 

in this research is to determine the partition dimension of the 

upper bound of this graph. To achieve optimal results, the 

researcher expands the wheel graph completion partition to 

find the comb product graph completion partition. The results 

of this study provide an upper bound on the partition 

dimensions of the comb product graph between the wheel 

graph and the path as the main result, throughout this section, 

the graphs Wn for n ≥ 3 is the wheel graph with n+1 vertices. 

The path graphs Pm for m≥1 is a graph with V(Pm ) =

{v1, v2, … , v_m } and E(Pm ) = {v1, v2, v2, v3, … , vm−1, vm }. 

The lower limit of the partition dimensions should be examined 

further in future research. 

Keywords: Partition dimensions, comb product graph, wheel 

and path. 

 

1. Introduction  

Assume G is a connected graph. Let v, w ∈ V(G), the distance d(v, w) is the length of a shortest 

path between them. It is well known that the concept of distance between two vertices in a 

connected graph can be used to describe the vertices in two ways. First, every vertex in V(G) 

can be represented by the metric with respect to a subset of V(G). The second representation is 

the metric with respect to a partition of V(G). For an ordered subset W = {w1, w2, … , wk} of 

V(G) and a vertex w of G the metric representation of v with respect to W is r(w|W) =

(d1, d2, … , dk), where di = d(w, wi). Slater (Slater, 1975) and Harrary and Melter (F. Harary, 

1976) independently introduced this representation. Finding the metric dimension and a 
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resolving set of connected graphs is the key difficulty in this area. If every vertex in G have 

distinct representations with regard to W, W is called a resolving set for G. A basis for G is a 

resolving set with the minimum cardinality. The metric dimension of G is the number of 

elements in a basis for G, which is denoted by β(G). The β(G) is studied in (G. Chartrand L. 

E., 2000), (G. Chartrand C. P., 2000), (J. Caceres C. H., 2005), (J. Caceres C. H., 2007), 

(Tomescu, 2008). In chemistry, the idea of metric dimension is used to represent chemical 

compounds (S. Khuller, 1996) and has certain applications in robot navigation (S. Khuller, 

1996). (G. Chartrand L. E., 2000). This principle can also be seen in coin weighing problems 

(A. Sebo, 2004) and Mastermind game techniques (Goddard, Static Mastermind, 2003). 

(Goddard, Mastermind revisited, 2004). 

A variation representation of the previous one is the metric vector of a vertex with respect 

to a partition of V(G). We define the distance d(v, S) between v and S by d(v, S) =

min{d(v, w)|w ∈ S} for every vertex v ∈ V(G) and every subset S of V(G). Given an ordered 

partition Ω = {S1, S2, … , Sk} of V(G), the partition representation of a vertex v with respect to 

the partition Ω is r(v|Ω) = (d(v, S1), d(v, S2), … , d(v, Sk)). If any pair of different vertices 

u, v ∈ V(G) has a distinct vector representation with regard to the partition Ω, that is r(u|Ω) ≠

r(v|Ω), we call Ω a resolving partition of G. For a graph G, the partition dimension pd(G), is 

the least number of sets in any resolving partition. Chartrand et.al introduced partition 

dimension and resolving partition of a connected graph (G. Chartrand E. S., 2000). (M. Fehr, 

2006), and (Tomescu, 2008) also investigates pd(G). It is natural to think that β(G) and pd(G) 

are linked. It is proved in (G. Chartrand E. S., 2000) that for all connected graph G that isn’t 

trivial, we have pd(G) ≤ β(G) + 1. 

The pd(G) for some specific classes of graphs have been known up to now. The values of 

the partition dimension is usually the results achieved but some other graph only get the bound 

of the partition dimension. Rodríguez et.al (Juan A. Rodríguez-Velázquez, 2014) put an upper 

bound of pd(T) where T is a tree. For circulant graphs, its partition dimension investigated by 

Grigorius et.al (Cyriac Grigorious, 2014). Tomescu et.al (I. Tomescu, 2007) provide a bound 

for pd(Wn) with n ≥ 4.  

Theorem 1. Let n > 3 be an integer. If p is the lowest prime number with p(p − 1) ≥ n, 

then ⌈(2n)1/3⌉ ≤ pd(Wn) ≤ p + 1. In graph theory, there are known operations of one graph 

such as subgraphs, subdivision. Also, there are operations between two or more graphs, for 

example the corona product, Cartesian product, union, normal, addition, and comb product. 

Many authors have looked into the graph's partition dimension from graph operations, 

including as corona product graphs (E. T. Baskoro, 2012), Cartesian product graphs (I. G. Yero 

J. A.-V., 2010), strong product graphs (I. G. Yero M. J., 2014), subdivision of complete graphs 

(Amrullah, 2015). In addition, Haryeni et.al (D. O. Haryeni, 2017) have studied the partition 

dimensions of disconnected graphs. Especially for the comb product graphs, Suhadi et al. 

conducted research on the graph's metric dimension (Suhadi W. S., 2017). While the partition 

dimensions of the comb product graphs in some cases have been studied in (Alfarisi, 2017), 

(Faisal, 2019).  

Comb product graphs were originally introduced by Hora and Obata (Akihito Hora, 2007). 

These graphs are interesting to study because the structure is similar to chemical molecules, so 

it can be used to model specific chemical molecules. Consider two connected graphs, G and Γ. 
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Assume that o is a vertex in Γ. The comb product between G and Γ, denoted by G ⊳ Γ, is the 

graph with V(G ⊳ Γ) = {(x, y)|x ∈  V (G), y ∈  V (Γ)} and (x, y)(w, z) ∈  E(G ⊳ Γ) 

whenever x =  w and yz ∈  E(Γ), or xw ∈  E(G) and y =  z =  o. In this work, we give an 

upper bound for pd(Wn ⊳o Pm) where Wn ⊳o Pm is the comb product of the wheel and path 

graph. For n ≥ 3, wheel graph Wn is a graph built by linking the single vertex in graph K1 to 

all vertices of the cycle Cn with V(Cn) = {c0, c1, … , cn−1}. As a result, Wn has n + 1 vertices. 

The center is the single vertex of K1 in the Wn, while the rim is the vertices of V(Cn). We 

consider the partition dimension of Wn ⊳o Pm where Pm is a path with m vertices and o is a 

vertex of Pm with degree 1. 

 

2. Method  

This type of research is qualitative research. This research aims to check the partition 

dimensions for a special graph class, namely the graph of the comb product between two 

connected graphs. In this study, we take a comb product between wheel graphs and a path. We 

gain an upper bound on the pd(Wn ⊳o Pm) this scenario. The first step in this investigation is 

to review the literature on the pd(Wn). Then we construct a resolving partition of Wn ⊳o Pm 

using resolving partition of Wn to obtain the upper bound of pd(Wn ⊳o Pm).  

 

3. Result and Discussion  

Throughout this section, the graphs Wn for n ≥ 3 is the wheel graph with n + 1 vertices. The 

path graphs Pm for m ≥ 1 is a graph with V(Pm) = {v1, v2, … , vm}, and E(Pm) =

{v1v2, v2v3, … , vm−1vm}. We denote by 𝟏𝐢 the vector whose coordinates are all 1, except one 

that equals 0 in the i-th coordinate. In general, we denote 𝐤i vector whose coordinates are all 

k, except one that equals 0 in the i-th coordinate. 

Lemma 1. If Ω = {S1, S2, … , Sk} is a resolving partition for Wn with c ∈ St then r(c|Ω) =

𝟏𝐭 ∈ ℤk.  

Proof. It is clear that d(c, St) = 0. Since d(c, v) = 1 for every v ∈ V(Wn) with v ≠ c, hence 

d(v, Si) = 1 for every i ≠ t. 

Lemma 2. Let Ω = {S1, S2, … , Sk} be a minimal resolving partition for Wn and let c, cj ∈ Sℓ. 

There exist Su with u ≠ ℓ such that d(cj, Su) = 1 if and only if cj−1 ∉ Sℓ or cj+1 ∉ Sℓ for every 

j ∈ ℤn.  

Proof. Since d(cj, cj−1) = d(cj, cj+1) = 1, there exists Su ∈ Ω with u ≠ ℓ such that 

d(cj, Su) = 1 if and only if cj−1 ∈ Su or cj+1 ∈ Su. 

Corollary 1. Let Ω = {S1, S2, … , Sk} be a minimal resolving partition for Wn such that ci ∈

St and either ci−1 ∉ St or ci+1 ∉ St for every i ∈ ℤn. Then there is no v ∈ V(Wn) such that 

r(v|Ω)2(𝟏𝐣) ∈ ℤk for every. Type equation here. 

Proof. If v = c then (v|Ω) ≠ 2(𝟏𝐣). Let v = ci ∈ St for i ∈ ℤn and suppose, without 

sacrificing generality, that c ∈ S1. If v is not in S1, then d(v, S1) = d(v, c) = 1. Hence, 

r(v|Ω) ≠ 2(𝟏𝐣). If v ∈ S1 then d(v, S1) = 0. By Lemma 2, there is a number u different with 

t such that d(v, Su) = 1. Therefore, r(v|Ω) ≠ 2(𝟏𝐣). 
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Lemma 3. Let Ω = {S1, S2, … , Sk} be a resolving partition for Wn and define Si
′ =

{(v, vj)|v ∈ Si, 1 ≤ j ≤ m} for every i. If Ω′ = {S1
′ , S2

′ , … , Sk
′ } then r((v, v1)|Ω′) = r(v|Ω) for 

every v ∈ V(Wn). 

Proof. Pick a fix vertex v ∈ St, we know that 0 ≤ d(v, Si) ≤ 2 for every i. Consider any 

vertex w in Wn with w ∉ St. It follows that d ((v, v1), (w, vj)) ≥ 2 for j ≥ 2. Consequently, 

d((v, v1), St
′) = 0 and for i ≠ t d((v1, v), Si

′) = d((v1, v), (w, v1)) for some w ∈ Si.Therefore, 

d((v1, v), Si
′) = d((v, v1), (v1, w)) = d(v, w) = d(v, Si).  

Lemma 4. Let Ω be a minimal resolving partition that satisfy the necessary condition in 

Corollary 1. If Wn ⊳o Pm is a comb product graph where o is a vertex of Pm with degree 1, 

then pd(Wn ⊳o Pm) ≤ pd(Wn). 

Proof. Let Ω = {S1, S2, … , Sk} is a minimal resolving partition for Wn. Let c be the central 

vertex and c0, c1, … , cn−1 be the rim vertices of Wn. Let v1, v2, … , vm be the vertices of Pm and 

E(Pm) = {v1, v2, … , vm}. We assume that V(Wn ⊳o Pm ) = {(ck, vl)|k ∈ [1, n]}, and l ∈

[1, m]} ∪ {(c, vk)|, k ∈ {1, … , m]}. The resolving partition Ω will induces a resolving partition 

of Wn ⊳o Pm. We define a subset of V(Wn ⊳o Pm) as follows: Si
′ = {(v, vj)|v ∈ Si, j ∈ [1, m]} 

for all i. Therefore, Ω′ = {S1
′ , S2

′ , … , Sk
′ } is a partition of V(Wn ⊳o Pm). Consider Ω′ as an 

ordered partition, we claim that Ω′ is a resolving partition. Assume, without losing generality, 

that c ∈ S1. We have that r ((c, vj)|Ω′) = j(𝟏𝟏) for 1 ≤ j ≤ m. Let 𝐱, 𝐲 ∈ St
′ for some t. Let 𝐱 

and 𝐲 be two vertices of Wn ⊳o Pm with 𝐱, 𝐲 ∈ St
′. Case 1. 𝐱 = (c, vj), 𝐲 = (ci, vℓ) with ci ∈ S1 

We have that r(𝐲|Ω′) = r(ci|Ω) + (ℓ − 1)(𝟏𝟏) for 1 ≤ ℓ ≤ m. By Lemma 2, there exists 

some coordinates in r(ci|Ω) whose value are equal to 1. Since Ω is a resolving partition, there 

exist some coordinates of r(ci|Ω) whose value are equal to 2. Hence, r(ci|Ω) ≠ s(𝟏𝟏) for all 

integer s. We conclude, r(𝐱|Ω′) is not the same as r(𝐲|Ω′).  

Case 2. 𝐱 = (ci, vj), 𝐲 = (ci, vℓ) with j ≠ ℓ. 

Since r(𝐱|Ω′) = r(ci|Ω) + (j − 1)(𝟏𝐭) and r(𝐱|Ω′) = r(ci|Ω) + (ℓ − 1)(𝟏𝐭), we can 

deduce that r(𝐱|Ω′) ≠ r(𝐲|Ω′).  

Case 3. 𝐱 = (ci, vj), 𝐲 = (cq, vℓ) with i ≠ q. 

We have that r(𝐱|Ω′) = r(ci|Ω) + (j − 1)(𝟏𝐭) and r(𝐲|Ω′) = r(cq|Ω) + (ℓ − 1)(𝟏𝐭). 

Assume that r(𝐱|Ω′) = r(𝐲|Ω′). We know that, every nonzero coordinate of r(ci|Ω) is either 1 

or 2. If there exist a natural number u such that the u-th coordinate of r(ci|Ω) is equal to the u-

th coordinate of r(cq|Ω), then j = ℓ. It follows that, r(ci|Ω) = r(cq|Ω), a contradiction. Next, 

by Lemma 2, we may assume that there exist natural numbers u and v such that d(ci, Su) =

1, d(ci, Sv) = 2 and d(cq, Su) = 2, d(cq, Sv) = 1. From the u-th coordinate, ℓ + 1 = j and 

from the v-th coordinate we have that, 

ℓ = j + 1  

Therefore, j is equal to j + 2, a contradiction. 

Theorem 2. Let Π be a minimal resolving of Wn. If Wn ⊳o Pm is a comb product graph 

where o is a vertex of Pm with degree 1, then pd(Wn ⊳o Pm) ≤ pd(Wn) + 1. 

Proof. By Lemma 4, the comb product graph Wn ⊳o Pm satisfy the inequality 

pd(Wn ⊳o Pm) ≤ pd(Wn) < pd(Wn) + 1. Next, we assume that there exist v ∈ V(Wn) such 

http://philstat.org.ph/


Vol. 71 No. 3s (2022) 
http://philstat.org.ph 

Mathematical Statistician and Engineering Applications 

    ISSN: 2094-0343 
2326-9865 

712 

that r(v|Ω) = 2(𝟏𝓵) for some ℓ. It is clear that v ≠ c where c is the center of the graph Wn. Let 

Ω = {S1, S2, … , Sk}. Assume, without loss of generality, that c ∈ S1. We define the subsets of 

V(Wn ⊳o Pm) listed below: S1
′ = {(c, v1} ∪ {(v, vj)|v ∈ S1, v ≠ c, j ∈ [1, m]}, Si

′ =

{(v, vj)|v ∈ Si, j ∈ [1, m]} for every i ≥ 2, and Sk+1
′ = {(c, vj)| 2 ≤ j ≤ m}. It follows that 

Ω′ = {S1
′ , S2

′ , … , Sk
′ , Sk+1

′ } is a partition of V(Wn ⊳o Pm). The next step is to show Ω′ is a 

resolving partition. 

It is obvious to verify that r[(c, v1)|Ω′] = (r(c|Ω), 1) = (𝟏𝟏, 1) = (0,1,1, … ,1) ∈ ℤk+1 and 

r[(v, v1)|Ω′] = (𝟐𝓵, 2) = (2, . .2,0,2, … ,2) ∈ ℤk+1. If 𝐱 ∈ Sk+1
′ , then r[(c, vj)|Ω′] = (j −

1, j, j, … , j, 0) ∈ ℤk+1. We conclude that r[(c, v1)|Ω′] ≠ r[(v, v1)|Ω′]. Since d((ci, vj), Sk+1
′ ) =

j + 1 ≥ 2, we also have that r[(c, v1)|Ω′] ≠ r[(ci, vj)|Ω′]. Note that r[(v, v1)|Ω′] =

(r(v|Ω), 2) and r[(ci, v1)|Ω′] = (r(ci|Ω), 2). Since Ω is a resolving partition, r[(v, v1)|Ω′] ≠

r[(ci, v1)|Ω′] for all i. For j ≥ 2, we have that d[(ci, vj), Sk+1
′ ] = j + 1 ≥ 3. Therefore, 

r[(v, v1)|Ω′] ≠ r[(ci, vj)|Ω′] for all j ≥ 2. Let 𝐱 and 𝐲 be two vertices of Wn ⊳o Pm with 𝐱, 𝐲 ∈

St
′. It is obvious that r(𝐱|Ω′) ≠ r(𝐲|Ω′) if 𝐱, 𝐲 ∈ Sk+1

′ . For the last case, assume that 𝐱 =

(ci, vj), 𝐲 = (cq, vℓ) ∈ St
′ with q ≠ i and k + 1 ≠ t. If j ≠ ℓ, then d((ci, vj), Sk+1

′ ) ≠

d((ci, vℓ), Sk+1
′ ). Hence, r(𝐱|Ω′) ≠ r(𝐲|Ω′). If j = ℓ, then r(𝐱|Ω′) = (r(ci|Ω) + (j −

1)(𝟏𝐭), 1 + j) and r(𝐲|Ω′) = (r(cq|Ω) + (j − 1)(𝟏𝐭), 1 + j). If r(𝐱|Ω′) = r(𝐲|Ω′), then 

r(ci|Ω) = r(cq|Ω). This contradicts Ω as a resolving partition. We have proved that Ω′ =

{S1
′ , S2

′ , … , Sk
′ , Sk+1

′ } is a resolving partition of Wn ⊳o Pm. Consequently, pd(Wn ⊳o Pm) ≤ k +

1 = pd(Wn) + 1. 

We get the following result because of Theorem 1. 

Corollary 2. For all integer n ≥ 4 we have pd(Wn ⊳o Pm) ≤ p + 2, where p is the lowest 

prime number that has the property of p(p − 1) ≥ n.  

  

4. Conclusion  

The pd(Wn ⊳o Pm) of the comb product is closely related to pd(Wn). The partition 

dimension of the comb product graph between the wheel and path graph has an upper bound, 

which we present by constructing its resolving partition from a resolving partition of Wn. We 

have proved that if Wn ⊳o Pm is a comb product graph where o is a vertex of Pm with degree 

1, then pd(Wn ⊳o Pm) ≤ pd(Wn) + 1.  
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