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Abstract 

Researchers have recently turned their focus to time sequence 

predicting of meteorological such as daily heat in an effort to overcome 

the limitations of standard forecasting methods. Due to the difficulty of the 

task, it is difficult to create and choice an precise time-series forecast 

perfect. This is a critical factor in human life and many other areas, 

including agriculture and manufacturing. People's health will be adversely 

affected by an increase in temperatures in the highland urban heat, 

especially in the summer, as a result of this. As a result of this paper's 

research, a novel temperature prediction model based on deep learning has 

been developed (i.e., the progressive deep cascade categorization model). 

In order to achieve this, a large volume of high-quality model training data 

is required. A drawback to weather data collection is the inability to 

measure data that has been overlooked. There is a high probability of 

missing or incorrect data due to the nature of data collection. To make up 

for the lost weather data, the proposed temperature prediction ideal is 

being used to fine-tune the existing data. Research also uses a deep 

learning network for time-series data modelling because the temperature 

changes throughout the year. Various deep learning techniques are also 

being examined to verify the model's efficacy. In particular, the suggested 

model's refinement function can be used to restore lost data. The model is 

retrained using the refined data after all the missing data is refined. 

Finally, the proposed model for predicting temperature has the capability 

of doing so. The suggested model's (RMSE) root-mean-squared error, 

accuracy, precision, and recall are used to evaluate its performance. 

Keywords: Weather Data; Temperature Prediction; Time-Series 

Prediction; Missing Data; Progressive Deep Cascade Classification; 

Refining Data. 
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Introduction 

Humans have undergone a variety of weather and climate variations since the 

beginning of human history, some of which have prompted people to relocate. Dangerous 

weather phenomena, such as heat waves and torrential deluges, are becoming extra shared 

and penetrating as a result of climate alteration. Both the environment and human activities 

are harmed by these changes [1], which are potentially life-threatening. The rate of weather 

change has accelerated in the last decade, and numerous research have been done to 

determine the causes of the shift and devise solutions [2]. For example, air quality, wind 

speed, and electricity consumption can all be predicted using deep learning techniques that 

have recently gained popularity [3–5]. 

Throughout the previous few decades, there has been an upsurge in the frequency of 

thrilling weather events such cold weather, heavy snowfall, torrential rain, and drought, all of 

which cause harm to people's health and property [6]. People's lives are negatively affected 

by weather change, in other words. [7] Outdoor workers are particularly vulnerable to 

unexpectedly high temperatures. Using temperature forecasts, you can decide what to dress 

and where to work on any given day[8]. At least 10 days' forecast should be provided for 

each site or region where the temperature forecast is to be used [9]. 

Numerical weather prediction models (NWP) are commonly used by meteorological 

institutes to estimate future weather conditions [10]. Over the most part, NWP models are 

designed to forecast weather for vast geographic areas, such as they are adept at managing 

weather that is intricately linked to multiple elements that have an impact on the weather the 

next day. According to [11], the NWP has a tendency to cause temperature anomalies as the 

elevation and topographical complexity of the area increases. Furthermore, NWP models 

have difficulty predicting temperature changes in places with complicated topography [12]. 

A temperature forecast model based on DL is the goal of this project, which uses real-

time meteorological data. When it comes to constructing a neural network, a cascade network 

is used in this approach. Weather data is better suited to a proposed architecture because of its 

time-series features [13]. When training deep learning models, a lot of training data is 

required, but it must be free of any errors. The collection of meteorological data, however, 

has a constraint in that we can't measure data that we have missed. There is a high probability 

of missing or incorrect data due to the nature of data collection. The projected temperature 

prediction model therefore adds a missing data function into the PDC framework in order to 

replace lost meteorological data. The four phases of the suggested model are as follows. The 

model's initial step is to determine if any input data is missing. Using all of the training data, 

a PDC-based refinement model is built in the second stage of model training. In the third 

phase of the projected model, the temperature of the missing vector mechanisms is attempted 

to be estimated. The final phase is to use the improved data to retrain the temperature 

prediction model. 

According to this structure, the rest of the paper is: Section 2 focuses on existing 

methods, whereas Section 3 explains the proposed paradigm with PDC description. Section 4 

depicts the experimental analysis used to test the proposed model's classification accuracy. 

Section 5 concludes the investigation with a summary of the findings.  
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2. Literature Review 

When it comes to climate data, Curceac et al. (2019) [14] use both a kernel-based 

regression model and a SARIMA model. There is an overview of several models, from neural 

networks to SVM to Markov chains that they provide in a quick but comprehensive literature 

review. Graf et al. (2019) [15] anticipate river temperature using wavelets and artificial 

neural networks. Using an ensemble of 12 independent forecasting models, Hassani et al. 

(2018) [16] emphasis on weather irregularities. 

Aladin-HIRLAM was used to estimate air temperatures. Predicting temperature 

variations in complicated terrain over time and space remains a difficulty for NWP models. 

According to Frnda et al. [18], the European Centre for Medium-Range Weather Forecasts 

(ECMWF) could benefit from a neural network-based model to increase its output accuracy 

and highlight the potential of neural network for weather forecast development. As a result of 

this, artificial neural networks (ANNs) have become increasingly popular in recent years as a 

means of forecasting the weather. It was discovered by Fahimi et al. [19] that the most 

accurate model with the least error and the greatest correlation coefficient used five different 

neural network models to estimate Tehran's winter maximum temperature. They used this 

model with three variables: mean temperature, sunshine hours, and difference among extreme 

temperature and least temperature. 

 

3. Proposed Methodology 

With regards to training data collection, as stated in Section 1 (Introduction), the 

process is very challenging. In other words, the data gathered are likely to be partial, with 

random or long gaps. The purpose of this section is to present an alternative PDC-based 

temperature prediction model that joins a role for missing data modification to help fill in the 

data gaps. 

3.1. Investigation of Weather Factors Connected to Temperature 

The effects of the weather on temperature are examined in detail in this section. Data 

from the South Korean Meteorological Office (KMA) is used for this purpose. There are 36 

years worth of hourly temperature, wind speed and direction measurements as well as relative 

humidity and total precipitation accumulation as well as atmospheric pressure and barometric 

pressure. After that, the correlation coefficients for all 36 years of temperature and other 

weather variables are calculated (Table 1). Wind speed, direction, and humidity are all 

closely related to temperature, as you can see in the chart. As a result, this paper's 

temperature predictions rely on variables including wind speed, direction, and humidity. 

 

Table 1. Coefficients among temperature and other weather issues. 

Weather 

Factors 

Wind 

Direction 

Humidity 

Relative 

Wind 

Speed 

Vapor 

Pressure 

Cumulative 

Precipitation 

Barometric 

Pressure 

Correlation 0.71 0.64 0.69 0.25 0.38 0.30 

 

3.2. Proposed Refinement Function Using LSTM 

Temperature is linked to three weather variables (wind speed, as discussed in the 

preceding subsection. This means that if heat data are missing at certain times but other 
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weather elements are accessible, the missing data can be reconstructed by using the linked 

features. Using the PDC as a correlator between other meteorological parameters and 

temperature, a refinement function of the projected model is realised. 

In the suggested model, there are four phases of processing. During the first stage, the 

algorithm checks to see if any of the input vectors are missing, which are 4-D weather data. 

Each missing component is linearly interpolated using observed data from the past and future 

if any are lost. All training data is subjected to this procedure. Figure 1 shows the flow of the 

research work. 

 
Figure 1: Working flow of the Research Model 

 

Using all of the training data, the second stage creates a PDC refinement model that 

includes linear interpolation for any missing data. The following is a definition of the PDC-

based refining model: 

It is usual for researchers to increase the number of traits when they have no prior 

knowledge. This can lead to feature redundancy as well as an increase in computation 

complexity and a corresponding increase in computer resources. Consequently, we propose a 

progressive deep cascade classification model (PDC). 

 

3.2.1. Progressive cascade classification 

The class likelihood of a sample is used to classify PDC. Random forest is an 

collective learning process that employs averaging to increase predictive accuracy and 

control overfitting to fit a number of decision tree classifiers on numerous sub-samples of the 

dataset. A dataset with a large number of variables can be effectively processed using random 

forests. During the forest-building process, they generate an internal, unbiased guess of the 

generalisation error. Their ability to estimate missing data is also impressive. As a result, we 
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begin our categorization process with RF (Random Forest). The RF identification results may 

be influenced by the number of attribute values due to the random nature of the forest 

construction process. As a result, different RFs are used to categorise the same wavelet 

energy vector Fl in order to overcome the characteristics' bias. The classification outcomes in 

each tier of the cascade are then generated by the mean class probability distribution of these 

RFs. When the classification accuracy of PDC does not improve any more, the cascade 

classification process comes to an end. It is possible to automatically identify the number of 

cascade layers by comparing the accuracy of the categorization. By using a progressive 

cascade classification, an individual sample can be identified. 

Suppose there are N data samples 𝑺𝒊 ∈ 𝑅
𝑉×𝐿(𝑖 =  1,2, … ,𝑁) confidential into 𝐾 classes by 

PDC. The feature vector of 𝑺𝑖 in the jth scale is 𝑭𝑖𝑙 = [𝑬𝒋𝟏
𝒊 , … , 𝑬𝒋𝒗

𝒊  , … , 𝑬𝒋𝒗
𝒊 ] (𝑙 =  𝐽 –  𝑗 + 1). 

Each layer includes a set of M random forests, i. e. 

𝑅𝐹𝑆
𝑙 = {𝑅𝐹1

𝑙 , 𝑅𝐹𝑚
𝑙 , … 𝑅𝐹𝑚

𝑙 } (1) 

where 𝑚 =  1, 2, … ,𝑀. Each 𝑅𝐹𝑚
𝑖 m l yields a classification probability vector 𝑝𝑚

𝑙  of 𝑆i 

according to 𝐹ij, and 𝑝𝑚
𝑙 = [𝑝𝑚1

𝑙  , 𝑝𝑚𝑘
𝑙 … , 𝑝𝑚𝑘

𝑙  ](𝑘 =  1,2, …𝐾; 𝑙 =  1,2, … , 𝐿). 

𝑝𝑚𝑘
𝑙 represents Si has a kth-class probability based on the categorization of RF m m in the lth 

layer. It is thus possible to express the probability vector (Pa) of Si in the lth layer produced 

by M random forests as 

𝑃̃ ̃𝑖
𝑙
= [𝑝1

1, … . 𝑝𝑚
𝑙 , … 𝑝𝑚

𝑙 ] (2) 

Superimposing results from numerous layers can replicate the progressive recognition 

procedure of humans if each cascade layer's categorization result is treated as one credit of S 

i. Because of this, the probability distribution (P) _il of M random forests in the higher level 

is cascaded with those in all lower layers in the lth layer. 

𝑝1
1 = [𝑃̃̃̃𝑖

𝑙 , 𝑃̃̃̃𝑖
𝑙−1, . . , 𝑃̃ ̃𝑖

1
] (3) 

Then the l layers can be printed as 

𝑝̅1
𝑙 = [𝑝̅𝑖1

𝑙 , 𝑝̅𝑖𝑘
𝑙 , … 𝑝̅𝑖𝑘

𝑙 ], where 

𝑝̅𝑖𝑘
𝑙 =

1

𝑙𝑀
∑ ∑ 𝑝𝑚𝑘

′𝑀
𝑚=1

𝑙
𝑡=1  (4) 

Sample S i's class label is established by taking the class probability p _ikl with the highest 

value. Classification result fusion of many layers thus realises human coarse-to-fine 

recognition. The classification accuracy of the present model, M l, can be determined by 

comparing the prediction outcomes of all samples. For example, let's say A l is the prediction 

accuracy of model M L in the lth cascade layer. A l and A (l-1) will be compared in every 

layer to see if the lth should be included to the model. As a result, the PDC features a 

feedback cascade design. A l is a function of the number of cascade layers, so. 

𝐻(𝐴𝑙) = {𝑙                ∆𝐴𝑙 < 0||∆𝐴𝑙 = ∆𝐴𝑙−1||𝐴𝑙 = 1

𝑙 + 1                                               𝑜𝑡ℎ𝑒𝑟𝑠      
 (5) 

where ∆𝐴𝑙 = ∆𝐴𝑙+1 − 𝐴𝑙. Eq. (5) indicates that in the following three scenarios, the 

categorization cascade comes to an end:  

❖ Next layer categorization accuracy is lower than the last layer's; 

❖ There is no increase in categorization error between successive levels; 

❖ All samples have been accurately categorised. 

According to the preceding explanation, the procedure of PDC can be summarised as follows: 
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𝑆𝑡𝑒𝑝 1. 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 

1 𝐼𝑛𝑝𝑢𝑡 𝑁1 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑺𝑖(𝑖 

=  1,2, … ,𝑁) 𝑓𝑟𝑜𝑚 𝑎𝑙𝑙 𝑠𝑎𝑚𝑝𝑙𝑒 𝑑𝑎𝑡𝑎𝑠𝑒𝑡. 𝐷𝑖𝑣𝑖𝑑𝑒 𝑁1 𝑖𝑛𝑡𝑜 𝑠𝑢𝑏

− 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑠𝑒𝑡 𝑁11 𝑎𝑛𝑑 𝑠𝑢𝑏 − 𝑡𝑒𝑠𝑡 𝑠𝑒𝑡 𝑁12. 

2 𝑆𝑒𝑡 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑣𝑎𝑙𝑢𝑒𝑠 𝑜𝑓 𝑀. 

. 𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 

1) 𝐹𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝑠𝑎𝑚𝑝𝑙𝑒 𝑖 =  1: 𝑁11 

i. 𝐼𝑛𝑝𝑢𝑡 𝐹𝑖
𝑙 𝑖𝑛 𝑡ℎ𝑒 𝑠𝑢𝑏 −

𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑠𝑒𝑡 𝑡𝑜 𝑡ℎ𝑒 𝑠𝑒𝑡 𝑜𝑓 𝑀 𝑟𝑎𝑛𝑑𝑜𝑚 𝑓𝑜𝑟𝑒𝑠𝑡𝑠 𝑅𝐹𝑠
𝑙 𝑖𝑛 𝑡ℎ𝑒 𝑙𝑡ℎ 𝑙𝑎𝑦𝑒𝑟; 

ii. 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑠 𝑡ℎ𝑒 𝑙𝑡ℎ 𝑐𝑎𝑠𝑐𝑎𝑑𝑒 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 𝑃̃̃𝑖
𝑙𝑏𝑦 𝑅𝐹𝑠

𝑙 . 

iii. 𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡 𝑡ℎ𝑒 𝑐𝑎𝑠𝑐𝑎𝑑𝑒 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 𝑖𝑛 𝑡ℎ𝑒 𝑙𝑡ℎ 𝑙𝑎𝑦𝑒𝑟 𝑃̃𝑖
𝑙 𝑎𝑛𝑑 𝑐𝑜𝑚𝑝𝑢𝑡𝑒 𝑡ℎ𝑒 𝑚𝑒𝑎𝑛 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 𝑜𝑓 𝑙 𝑙𝑎𝑦𝑒𝑟𝑠 𝑃̃𝑖

𝑙  

iv. 𝐷𝑒𝑐𝑖𝑑𝑒 𝑡ℎ𝑒 𝑐𝑙𝑎𝑠𝑠 𝑙𝑎𝑏𝑒𝑙 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒 𝑎𝑐𝑐𝑜𝑟𝑑𝑖𝑛𝑔 𝑡𝑜 𝑡ℎ𝑒 𝑙𝑎𝑟𝑔𝑒𝑠𝑡 𝑐𝑙𝑎𝑠𝑠 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑃̅̃𝑖
𝑙 . 

𝐸𝑛𝑑. 

2) 𝑂𝑢𝑡𝑝𝑢𝑡 𝑡ℎ𝑒 𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑟𝑦 𝑟𝑒𝑐𝑜𝑔𝑛𝑖𝑡𝑖𝑜𝑛 𝑚𝑜𝑑𝑒𝑙 𝑀𝑙 . 

2. 𝑃̃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 

𝑖. 𝐼𝑛𝑝𝑢𝑡 𝑁12 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑖𝑛𝑡𝑜 𝑀𝑙 . 

𝑖𝑖. 𝑃̃𝑟𝑒𝑑𝑖𝑐𝑡 𝑡ℎ𝑒 𝑐𝑙𝑎𝑠𝑠 𝑙𝑎𝑏𝑒𝑙𝑠 𝑜𝑓 𝑁12 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑎𝑐𝑐𝑜𝑟𝑑𝑖𝑛𝑔 𝑡𝑜 𝑀𝑙 . 𝑎𝑛𝑑 𝑐𝑜𝑚𝑝𝑢𝑡𝑒  𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 𝐴𝑙 . 

3. 𝐶𝑎𝑠𝑐𝑎𝑑𝑒 

𝐼𝑓 ∆𝑨𝑙 < 0 ‖∆𝑨𝑙 = ∆𝑨𝑙−1 = 0‖𝑨𝑙  =  1, 𝑡ℎ𝑒𝑛 𝐿 

=  𝑙, 𝑐𝑎𝑠𝑐𝑎𝑑𝑒 𝑖𝑠 𝑠𝑡𝑜𝑝𝑝𝑒𝑑 𝑎𝑛𝑑 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑚𝑜𝑑𝑒𝑙 𝑀𝐿𝑖𝑠 𝑎𝑐𝑐𝑜𝑚𝑝𝑙𝑖𝑠ℎ𝑒𝑑, 𝑔𝑜 𝑡𝑜 𝑆𝑡𝑒𝑝 4;  𝑒𝑙𝑠𝑒 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒 𝑐𝑎𝑠𝑐𝑎𝑑𝑒 𝑙𝑎𝑦𝑒𝑟, 𝑙 

=  𝑙 +  1, 𝑔𝑜 𝑡𝑜 𝑆𝑡𝑒𝑝 3– 1; 

𝑒𝑛𝑑. 

4. 𝐼𝑛𝑝𝑢𝑡 𝑁2 𝑡𝑒𝑠𝑡 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑖𝑛𝑡𝑜 𝑀𝐿  𝑎𝑛𝑑 𝑜𝑢𝑡𝑝𝑢𝑡 𝑡ℎ𝑒 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑟𝑒𝑠𝑢𝑙𝑡 𝑜𝑓 𝑺𝑖(𝑖 

=  1,2, … ,𝑁2). 

𝐸𝑛𝑑. 

It is in this third stage of the proposed PDC-based refining model that the temperature 

data that were already discovered are used to estimate temperatures for times when the data 

are unavailable. Refinement functions are used to replace the missing temperature data with 

the expected data. Using the refinement function, the missing data from the proposed model 

is refined and then mixed with the acquired data that has all of the necessary components to 

train the PDC. 

 

4. Results and Discussion 

4.1. UM Model 

Since 2010, the KMA has used the unified model (UM) created by the UK Met Office 

to forecast the weather. Weather forecasting at KMA is comprised of a trifecta of NWP 

systems: GDAPS, RDAPS, and the Local Data Assimilation and Prediction System 

(LDAPS). The RDAPS and LDAPS activities, whose domains are depicted in Figure 2, are 

bound by the predictions of GDAPS and RDAPS. 
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Figure 2. UM system domain, where blue and red lines signify RDAPS and LDAPS (Local 

Data Assimilation and Prediction System and Regional Data Integration and Prediction 

System, respectively). [20]. 

 

RDPAS and LDAPS, as depicted in the figure, have horizontal resolves of 12 km 12 

km and 1.5 km 1.5 km, correspondingly, and cover East Asia and South Korea. The top 

elevations of the RDAPS and LDAPS are set to 80 and 40 km, respectively, for both systems' 

70 sigma vertical layers. 

For the KMA UM-based NWP system, Table 2 provides a summary of the physical 

alternatives that can be used. This model's anticipated temperature was tested against data 

from the official data archive of the University of Michigan (UM). 

 

Table 2. Physical options of unified model based arithmetical weather prediction (NWP) 

scheme used in KMA. 

Scheme Physical Options 

Mixed-phase precipitation [22] Microphysics 

Mass flux convection with convective 

available potential energy (CAPE) 

closure [23] 

Cumulus scheme 

Met office surface exchange scheme 

(MOSES)-II land-surface [24] 
Land surface model scheme 

First-order non-local boundary layer 

scheme [25] 
Planetary boundary layer (PBL) scheme 
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Edwards-Slingo general 2-stream 

scheme [26] 
Radiation scheme 

 

4.2. Database 

Using KMA meteorological data, we compiled hourly readings of temperature, 

relative humidity, wind speed, and direction for the purposes of this investigation [27]. Over 

a period of 37 years (from November 1981 to December 2017), weather data was collected 

across Seoul, Gyeonggi, and Jeolla in South Korea. These data were split into two sets: a 

training set of 36 years (from November 1981 to December 2016), and a test set of one year 

(from January to December 2017). The test set was used to determine the accuracy of the 

model. It should be noted that the training set's period of weather data collection did not 

coincide with the test set's. If there was no extra explanation for training and testing data, 

then all prediction models in this study were trained and assessed using the training data and 

test data, correspondingly. The accuracy of the model's predictions was also averaged across 

three locations, one for each prediction model. 

 

4.3. Performances Metrics 

Here, the proposed model’s classification accuracy is tested with various DL classifiers, 

hence, the parameters are used that are discussed as follows: 

A. Accuracy: Predicted connection records are estimated by dividing the whole test dataset by 

the number of predicted records. For DL, the better the model if it has a higher level of 

precision. Using an experimental dataset with balanced classes, accuracy is a suitable 

statistic. 

B. Precision: If the attachment logs are successfully identified, then the estimated ratio of 

correctly identified attachment logs to total attachment logs is 1. If the precision is higher, the 

DL model is better than the ML model (Precision [0,1]). Accuracy is listed below. 

C. F1-Score: F1-Score is also referred to as F1. The harmonic mean is precisely defined and 

easily recalled. 

The results of the three prediction models were summed up to get an average. 

temperature were all absent from the training set, with 38 percent of the data missing. For the 

RMSE and MBE, the temperature difference between the actual and anticipated readings was 

divided by the time interval (t) to find the difference in temperature between Ytr and Ytp. 

𝑅𝑀𝑆𝐸 = √
∑ (Υ𝑡

𝑟−Υ𝑡
𝑝
)2𝑁

𝑡=1

𝑁
 (6) 

and 

𝑀𝐵𝐸 =
1

𝑁
∑ (Υ𝑡

𝑟 − Υ𝑡
𝜌
)𝑁

𝑡=1  (7) 

where N is the total sum of times for the assessment. 

4.4. Performance Evaluation of Proposed Model 

Here, two different types of validation is carried out, i.e. 60%-40% and 80%-20% of 

data are used.  
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Table.3. Comparative analysis of 60% 40% on Proposed with various existing 

algorithms. 

Algorithm Accuracy Precision Recall F-score 

Linear Regression 80.10 87.21 80.15 80.43 

Naive Bayes 85.71 84.32 85.93 83.45 

KNN 92.10 92.43 92.15 91.68 

DT 92.46 93.48 92.44 91.81 

SVM 89.52 90.21 89.54 89.03 

RNN 94.53 96.61 92.52 92.24 

LSTM 94.16 96.17 92.32 92.10 

PDC 95.62 98.32 94.62 94.53 

 

Initially, the above Table 3 and Figure 3 shows the comparative analysis of various 

models for 60%-40% of weather data. In first of Linear Regression algorithm gets an 

accuracy value of 80.10%. In another LSTM model reaches the accuracy level of 94.16% and 

finally the proposed model reaches the accuracy of 95.62%, in LSTM model is nearest 

accuracy percentage of the proposed model. 

 

 
Figure 3: Comparative Analysis of proposed model in terms of various metrics for 60:40 

 

Table.4. Comparative analysis of 80% 20% on Proposed with various existing 

algorithms. 

Algorithm Accuracy Precision Recall F-score 

Linear Regression 81.10 99.41 75.91 86.72 

Naive Bayes 87.70 99.41 85.21 91.82 

KNN 92.50 99.82 90.98 95.27 

DT 92.90 99.78 91.52 95.41 
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SVM 92.50 99.63 91.38 95.18 

RNN 92.70 99.90 91.93 95.32 

LSTM 93.27 99.91 92.47 95.63 

PDC 94.32 99.95 93.24 96.02 

 

 
Figure 4: Comparative Analysis of proposed model in terms of various metrics for 80:20 

 

A PDC-based temperature forecast ideal was then expanded to forecast 7 and 14-day 

future temperatures, and its RMSE was associated to the other models. In Table 4 and Figure 

4 mentions the Comparative analysis of 80% 20% on Proposed with various existing 

algorithms. In this procedure we compare the results of RMSE and MBE values. 

 

Table 5. Compare the RMSE and MBE of the temperature predictions made for 7 and 14 

days in advance. 

 RMSE MBE 

Model/Day 7 14 7 14 

RNN 3.15 3.61 -2.08 -3.26 

LSTM 3.05 3.21 0.93 1.68 

PDC 2.81 3.06 0.41 -0.79 

 

Table 5 shows the tendency for this long-period temperature forecast to reduce RMSE 

and MBE. Refinement of the proposed model resulted in an RMSE of 3.06 for 14-day 

forecasts, which was lower than the RNN's 14-hour prediction RMSE. 

 

5. Conclusion 

  DL-based temperature prediction model was suggested in this study to track 

temperature dissimilarities from 6 h to 14 d time periods by considering the important 

weather variables. A PDC network was used to fit the time-series data into the model. A PDC 
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framework comprising temperature, and wind direction was used to refine the missing data, 

which frequently occurs in the collected weather record. Then an experimental PDC-based 

temperature forecasting method, such as 7 and 14 days, was used to test the model. Each 

neural network model's RMSE, or root-mean-square error, between actual and forecast 

temperatures was also assessed. In addition, the missing data in this research was refined 

using weather data such as wind direction. It is our goal to develop a temperature prediction 

model that incorporates additional meteorological variables such as soil temperatures and 

aerosols in the future. That is to say, a PDC will use all of the available meteorological data 

as input features and act as a temperature predictor and missing data refiner at the same time. 
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