Asymptotic Behaviour and Boundedness of Fourth Order Difference Equations

G. Jayabarathy ${ }^{1}$, J. Daphy Louis Lovenia ${ }^{2 *}$, A. P. Lavanya ${ }^{3}$, D. Darling Jemima ${ }^{4}$

G. Jayabarathy ${ }^{1}$, Research Scholar, Department of Mathematics, Karunya Institute of Technology and Sciences, Coimbatore, India. jayabarathyg @karunya.edu.in
J. Daphy Louis Lovenia ${ }^{2 *}$, Professor, Corresponding Author, Department of Mathematics, Karunya Institute of Technology and Sciences, Coimbatore, India. daphy @karunya.edu

A. P. Lavanya ${ }^{3}$, Assistant Professor, Department of Mathematics, Sri Krishna College of Engineering and Technology, Coimbatore, India. algebralavanya@gmail.com

D. Darling Jemima ${ }^{4}$, Assistant Professor, Department of Computer Science and Engineering, Sri Krishna College of Technology, Coimbatore, India. darlingjemima.d@skct.edu.in

Article Info

Page Number: 940-950
Publication Issue:
Vol. 71 No. 3s (2022)

Article History

Article Received: 22 April 2022
Revised: 10 May 2022
Accepted: 15 June 2022
Publication: 19 July 2022

Abstract

We study the asymptotic behavior and boundedness of fourth order difference equation of the form, $\Delta\left(r_{n} \Delta\left(s_{n} \Delta\left(q_{n} \Delta x_{n}\right)\right)\right)+p_{n} g\left(x_{n-t+1}\right)-p_{n+1} g\left(x_{n-t+1}\right)=\tau_{n}$ where $\mathrm{r}_{\mathrm{n}}>0, \mathrm{~s}_{\mathrm{n}}>0, \mathrm{q}_{\mathrm{n}}>0, \mathrm{p}_{\mathrm{n}}>0, \mathrm{p}_{\mathrm{n}+1}>0, \tau_{\mathrm{n}}>0$. The necessary and sufficient conditions for asymptotic behavior and boundedness of above nonlinear difference equation are obtained using summation averaging technique and comparison method. Examples are also provided.

Keywords: Difference equations, asymptotic behavior, boundedness.

1. Introduction:

This paper deals with the study of asymptotic behavior and boundedness of fourth order nonlinear difference equation of the form,
$\Delta\left(\mathrm{r}_{\mathrm{n}} \Delta\left(\mathrm{s}_{\mathrm{n}} \Delta\left(\mathrm{q}_{\mathrm{n}} \Delta \mathrm{x}_{\mathrm{n}}\right)\right)\right)+\mathrm{p}_{\mathrm{n}} \mathrm{g}\left(\mathrm{x}_{\mathrm{n}-\mathrm{t}+1}\right)-\mathrm{p}_{\mathrm{n}+1} \mathrm{~g}\left(\mathrm{x}_{\mathrm{n}-\mathrm{t}+1}\right)=\tau_{\mathrm{n}}$
where $\left\{r_{n}\right\},\left\{s_{n}\right\},\left\{\mathrm{t}_{\mathrm{n}}\right\},\left\{\mathrm{p}_{\mathrm{n}+1}\right\},\left\{\mathrm{p}_{\mathrm{n}}\right\},\left\{\tau_{\mathrm{n}}\right\}$ are sequences of positive real numbers with $\mathrm{r}_{\mathrm{n}}>0$, $\mathrm{s}_{\mathrm{n}}>0, \mathrm{q}_{\mathrm{n}}>0, \mathrm{p}_{\mathrm{n}}>0, \tau_{\mathrm{n}}>0, \mathrm{~g}$ is real valued function and τ is positive integer. The nontrivial solution of (1) is oscillatory if the terms of sequence $\left\{x_{n}\right\}$ are neither eventually positive nor eventually negative and nonoscillatory otherwise. Also, (1) becomes almost oscillatory if every solution $\left\{\mathrm{x}_{\mathrm{n}}\right\}$ is either oscillatory or satisfies $\lim _{\mathrm{n} \rightarrow \infty} \Delta^{\mathrm{i}} \mathrm{x}_{\mathrm{n}}=0$ for $\mathrm{i}=$ $0,1,2$. The purpose of this paper is to establish necessary and sufficient conditions for asymptotic behavior and boundedness of fourth order nonlinear difference equations. The difference equations are applied in the field of statistics, economics, biology, etc see for example [1-8]. The results achieved from this paper motivate the studies on higher order
difference equations. The paper is organised as follows: In section 2, the methodology is stated. In section 3, the conditions of almost oscillatory solutions of (1) are obtained. This is followed by determining the conditions for boundedness and asymptotic behavior of (1). In section 4, the conclusion is provided. We illustrate the results with few examples.

2. Methodology

The asymptotic behavior and boundedness of fourth order nonlinear difference equations are studied by means of contraction mapping principle, summation averaging technique and comparison method.

3. Main Results

Theorem 1: Let $r_{n}=s_{n}=q_{n}=1$ and assume there exists a positive sequence $\left\{\phi_{n}\right\}$ and an oscillatory sequence $\left\{\psi_{\mathrm{n}}\right\}$ such that $\Delta\left(\mathrm{r}_{\mathrm{n}} \Delta\left(\mathrm{s}_{\mathrm{n}} \Delta\left(\mathrm{q}_{\mathrm{n}} \Delta \mathrm{x}_{\mathrm{n}}\right)\right)=\tau_{\mathrm{n}}\right.$ with $\lim \Delta^{\mathrm{i}} \Psi_{\mathrm{n}}=0$ for $\mathrm{i}=$ $0,1,2,3$. If

$$
\begin{equation*}
\sum_{\mathrm{n}=\mathrm{n}_{0}}^{\infty} \mathrm{n}^{3}\left(\mathrm{p}_{\mathrm{n}}-\mathrm{p}_{\mathrm{n}+1}\right)=\infty \tag{2}
\end{equation*}
$$

then (1) is almost oscillatory for every bounded solution $\left\{x_{n}\right\}$.
Proof: If $\mathrm{x}_{\mathrm{n}}>0$ and $\mathrm{x}_{\mathrm{n}-\mathrm{t}+1}>0$ for all n then from (1) we have,

$$
\Delta\left(\mathrm{r}_{\mathrm{n}} \Delta\left(\mathrm{~s}_{\mathrm{n}} \Delta\left(\mathrm{q}_{\mathrm{n}} \Delta \mathrm{x}_{\mathrm{n}}\right)\right)\right)=\tau_{\mathrm{n}}+\mathrm{p}_{\mathrm{n}+1} \mathrm{~g}\left(\mathrm{x}_{\mathrm{n}-\mathrm{t}+1}\right)-\mathrm{p}_{\mathrm{n}} \mathrm{~g}\left(\mathrm{x}_{\mathrm{n}-\mathrm{t}+1}\right)
$$

We consider $\left\{\Delta^{3} \mathrm{x}_{\mathrm{n}}\right\}$ as,

$$
\begin{aligned}
\Delta^{3} \mathrm{x}_{\mathrm{n}}= & \left(\mathrm{p}_{\mathrm{n}}-\mathrm{p}_{\mathrm{n}+1}\right) \phi_{\mathrm{n}+3} \mathrm{~g}\left(\mathrm{x}_{\mathrm{n}-\mathrm{t}+1}\right)-3 \Delta \phi_{\mathrm{n}+2} \Delta\left(\mathrm{~s}_{\mathrm{n}} \Delta\left(\mathrm{q}_{\mathrm{n}} \Delta \mathrm{x}_{\mathrm{n}}\right)+3 \Delta^{2} \phi_{\mathrm{n}+1} \Delta\left(\mathrm{q}_{\mathrm{n}} \Delta \mathrm{x}_{\mathrm{n}}\right)\right. \\
& -\Delta^{3} \phi_{\mathrm{n}}\left(\mathrm{q}_{\mathrm{n}} \Delta \mathrm{x}_{\mathrm{n}}\right)
\end{aligned}
$$

Let $\left\{x_{n}\right\}$ be a nonoscillatory solution such that $\left\{x_{n}\right\}$ is positive. Define a function y_{n} as,
$\mathrm{y}_{\mathrm{n}}=\mathrm{x}_{\mathrm{n}}-\psi_{\mathrm{n}}$
To prove the theorem we define the following 2 cases:
Case 1: If $\left\{y_{n}\right\}$ is positive then $\left\{\Delta y_{n}\right\},\left\{\Delta^{2} y_{n}\right\}$ and $\left\{\Delta^{3} y_{n}\right\}$ are eventually of one sign and monotonic, hence $\left\{\Delta^{3} y_{n}\right\}$ is an increasing sequence. To prove this we assume $\left\{\Delta^{3} y_{n}\right\}$ to be eventually negative. Since $\left\{\Delta y_{n}\right\}$ is decreasing, then eventually it must become negative. This is a contradiction and thus $\left\{\Delta^{3} \mathrm{y}_{\mathrm{n}}\right\} \geq 0$.

Case 2: If $\left\{\Delta y_{n}\right\}$ is negative then $\lim _{n \rightarrow \infty} x_{n}=\lim _{n \rightarrow \infty} y_{n}=h$ where h is a nonnegative number. In order to prove this we take $\left\{\Delta \mathrm{y}_{\mathrm{n}}\right\}$ to be positive then $\left\{\Delta^{3} \mathrm{y}_{\mathrm{n}}\right\} \geq 0$. This implies $\left\{\mathrm{y}_{\mathrm{n}}\right\}$ to be unbounded and gives a contradiction. Thus $\left\{\Delta y_{n}\right\}$ must be eventually negative. Now to show $\lim _{\mathrm{n} \rightarrow \infty} \mathrm{x}_{\mathrm{n}}=\lim _{\mathrm{n} \rightarrow \infty} \mathrm{y}_{\mathrm{n}}=\mathrm{h}$ it is sufficient to prove $\mathrm{h}=0$. Consider $\Delta \mathrm{x}_{\mathrm{n}}$ with the positive sequence $\left\{\phi_{\mathrm{n}}\right\}$ and taking summation from n to j by the fact $\left\{\Delta^{3} \mathrm{y}_{\mathrm{n}}\right\} \geq 0$ then,

$$
-\Delta^{3} \mathrm{y}_{\mathrm{n}}+\sum_{\mathrm{v}=\mathrm{n}}^{\mathrm{j}}\left(\mathrm{p}_{\mathrm{v}}-\mathrm{p}_{\mathrm{v}+1}\right) \mathrm{g}\left(\mathrm{x}_{\mathrm{v}-\mathrm{t}+1}\right) \leq 0
$$

Now summing from j to k we have

$$
-\Delta^{2} y_{n}+\sum_{n=j}^{k}\left(\sum_{v=n}^{j}\left(p_{v}-p_{v+1}\right) g\left(x_{v-t+1}\right)\right) \leq 0
$$

Repeating the above procedure we get,

$$
\Delta y_{n}+\sum_{n=j}^{k}\left(\sum_{v=n}^{j}(v-n+1)\left(p_{v}-p_{v+1}\right) g\left(x_{v-t+1}\right)\right) \leq 0
$$

Taking summation from to ∞,

$$
\Delta y_{n}+\sum_{k=n}^{\infty}\left(\sum_{j=n}^{k}\left(\sum_{v=n}^{j} \frac{(v-n+1)(v-n+2)}{2}\right)\right)\left(p_{v}-p_{v+1}\right) g\left(x_{v-t+1}\right) \leq 0
$$

Or a final summation from N to ∞ yield,

$$
h-y_{n}+\sum_{v=N}^{\infty}\left(\frac{(v-N+1)(v-N+2)(2 v-2 N+3)}{6}\right)\left(p_{v}-p_{v+1}\right) g\left(x_{v-t+1}\right) \leq 0
$$

where h is a positive constant. From (2) and above equation we get,

$$
\liminf _{\mathrm{n} \rightarrow \infty} \inf _{\mathrm{n}} \mathrm{~g}\left(\mathrm{x}_{\mathrm{n}-\mathrm{t}+1}\right)=\lim _{\mathrm{n} \rightarrow \infty} \mathrm{y}_{\mathrm{n}}=0
$$

This contradicts our assumption and the theorem is proved.
Example-1: We consider the following difference equation,

$$
\begin{equation*}
\Delta^{4} \mathrm{x}_{\mathrm{n}}-\frac{2^{\mathrm{n}-4}}{900}\left(30-21(-1)^{\mathrm{n}}\right) \mathrm{x}_{\mathrm{n}}^{2}=\frac{21(-1)^{\mathrm{n}}}{2^{\mathrm{n}+4}} \tag{3}
\end{equation*}
$$

It satisfies all the conditions of Theorem 1 with $\left\{\psi_{\mathrm{n}}\right\}=\left\{\frac{(-1)^{\mathrm{n}}}{2^{\mathrm{n}}}\right\}$. Hence the bounded solutions of (3) are almost oscillatory and $\left\{\mathrm{x}_{\mathrm{n}}\right\}=\left\{\frac{30}{2^{n}}\right\}$ is one such solution.

ASYMPTOTIC BEHAVIOR OF DIFFERENCE EQUATION

The necessary and sufficient conditions of asymptotic behavior of (1) are obtained. We do not require $\mathrm{p}_{\mathrm{n}}>0$ and $\mathrm{p}_{\mathrm{n}+1}>0$. Let $\mathrm{R}_{\mathrm{n}}, \mathrm{S}_{\mathrm{n}}, \mathrm{Q}_{\mathrm{n}}, \mathrm{D}_{\mathrm{n}}$ be defined by
$\mathrm{R}_{\mathrm{n}}=\sum_{\mathrm{t}=\mathrm{n}_{0}}^{\mathrm{n}-1} \frac{1}{\mathrm{r}_{\mathrm{t}}}, \quad \mathrm{S}_{\mathrm{n}}=\sum_{\mathrm{t}=\mathrm{n}_{0}}^{\mathrm{n}-1} \frac{1}{\mathrm{~S}_{\mathrm{t}}}, \mathrm{Q}_{\mathrm{n}}=\sum_{\mathrm{t}=\mathrm{n}_{0}}^{\mathrm{n}-1} \frac{1}{\mathrm{q}_{\mathrm{t}}}, \mathrm{D}_{\mathrm{n}}=\sum_{\mathrm{t}=\mathrm{n}_{0}}^{\mathrm{n}-1} \frac{\mathrm{R}_{\mathrm{t}} \mathrm{S}_{\mathrm{t}}}{\mathrm{q}_{\mathrm{t}}}$

Theorem 2: Let $f(\alpha)$ be non-decreasing and $h>0$ be a constant such that $r_{n} \geq h$ for all $n \geq$ n_{0}. If

$$
\sum_{n=n_{0}}^{\infty}\left[D_{n+1}+R_{n+1} S_{n+1} Q_{n+1}\right]\left|\tau_{n}\right|<\infty
$$

and

$$
\sum_{n=n_{0}}^{\infty}\left[D_{n+1}+R_{n+1} S_{n+1} Q_{n+1}\right]\left|p_{n}-p_{n+1}\right|<\infty
$$

then (1) has bounded nonoscillatory solution that approaches a nonzero limit.
Proof: Take $\mathrm{x}_{\mathrm{n}-\mathrm{t}+1} \geq \mathrm{h} / 2$ for $\mathrm{h}>0$ then we have,

$$
\sum_{n=n_{0}}^{\infty}\left[D_{n+1}+R_{n+1} S_{n+1} Q_{n+1}\right]\left|\tau_{n}\right|<\frac{h}{4}
$$

and

$$
\sum_{n=n_{0}}^{\infty}\left[D_{n+1}+R_{n+1} S_{n+1} Q_{n+1}\right]\left|p_{n}-p_{n+1}\right|<\frac{h}{4 f(2 h)}
$$

Let \mathbb{B}_{N} be the Banach space and $\ell \subseteq \mathbb{B}_{\mathrm{N}}$ and define $\mathrm{W}: \ell \rightarrow \mathbb{B}_{\mathrm{N}}$,

$$
\begin{gathered}
(W X)_{n}=\frac{3 h}{2}+\frac{1}{2} \sum_{v=n}^{\infty}\left((v-n+1)(v-n+2)\left(\left(p_{v} g\left(x_{v-t+1}\right)-p_{v+1} g\left(x_{v-t+1}\right)\right)-\tau_{v}\right)\right) \\
(W X)_{n}=\frac{3 h}{2}+\sum_{v=n}^{\infty} K(v, n)\left(\left(p_{v}-p_{v+1}\right) g\left(y_{v-t+1}\right)-\tau_{v}\right)
\end{gathered}
$$

where $K(v, n)=D_{v+1}-D_{n}-R_{n} S_{v+1} T_{v+1}-R_{v+1} S_{v+1} T_{n}-R_{v+1} S_{n} T_{v+1}+R_{v+1} S_{v+1} T_{v+1}$. From Theorem 1 we observe that $\mathrm{X}=\left\{\mathrm{x}_{\mathrm{n}}\right\}$. Thus (1) has nonoscillatory solution that approaches a nonzero limit.

Example-2: Consider the following difference equation,

$$
\begin{align*}
& \Delta^{2}\left(n^{2} \Delta^{2} x_{n}\right)-2^{-n}\left(1+\frac{(-1)^{n}}{2^{n}} x_{n-m}^{2 \gamma-1}\right)\left(\frac{43 n^{2}-76 n-60}{8}\right) \\
& =\frac{(-1)^{n+1}}{2^{2 n+4}}\left(\frac{1}{2^{n-m}}\right)^{\gamma}\left(43 n^{2}-76 n-60\right) \tag{4}
\end{align*}
$$

where γ is a ratio of the odd positive integers. Every condition of Theorem 2 are satisfied so (4) has a bounded nonoscillatory solution that approaches a nonzero limit.

The succeeding theorem is a special case of Theorem 2. We provide examples for proving the results.

Theorem 3: Let $\mathrm{r}_{\mathrm{n}}=\mathrm{s}_{\mathrm{n}}=\mathrm{q}_{\mathrm{n}} \equiv 1$ and g be non-decreasing. If

$$
\sum_{\mathrm{n}=\mathrm{n}_{0}}^{\infty} \mathrm{n}^{2}\left|\mathrm{p}_{\mathrm{n}}-\mathrm{p}_{\mathrm{n}+1}\right|<\infty
$$

and

$$
\sum_{n=n_{0}}^{\infty} n^{2}\left|\tau_{n}\right|<\infty
$$

then (1) has nonoscillatory solution that approaches a non-zero real number as $n \rightarrow \infty$.
Proof: Let $\mathrm{h}>0$ be given so that

$$
\sum_{n=N}^{\infty} n^{2}\left|p_{n}-p_{n+1}\right|<\frac{h}{2} \frac{1}{g(2 h)}
$$

and

$$
\sum_{n=N}^{\infty} n^{2}\left|\tau_{n}\right|<\frac{h}{2}
$$

Let \mathbb{B}_{N} be a Banach space for every real sequence $X=\left\{x_{n}\right\}$ with norm,

$$
\|X\|=\sup _{n \geq N}\left|x_{n}\right|
$$

Define $\mathrm{W}: \mathrm{l} \rightarrow \mathbb{B}_{\mathrm{N}}$ and by $\mathrm{h} \leq \mathrm{x}_{\mathrm{n}} \leq 2 \mathrm{~h}$ we get,

$$
\begin{aligned}
(W X)_{N}=\frac{3 h}{2} & +\sum_{\mathrm{v}=\mathrm{n}}^{\infty}\left(\frac { (\mathrm { v } - \mathrm { n } + 1) (\mathrm { v } - \mathrm { n } + 2) (2 \mathrm { v } - 2 \mathrm { n } + 3) } { 6 } \left(\mathrm{p}_{\mathrm{v}} \mathrm{~g}\left(\mathrm{x}_{\mathrm{v}-\mathrm{t}+1}\right)-\mathrm{p}_{\mathrm{v}+1} \mathrm{~g}\left(\mathrm{x}_{\mathrm{v}-\mathrm{t}+1}\right)\right.\right. \\
& \left.\left.-\tau_{\mathrm{n}}\right)\right)
\end{aligned}
$$

Thus ℓ is closed, bounded and convex subset of \mathbb{B}_{N}. Now to show T maps ℓ into itself then,

$$
\left|(W X)_{N}-\frac{3 h}{2}\right| \leq \sum_{\mathrm{t}=\mathrm{n}}^{\infty} \mathrm{v}^{2}\left(\left|p_{\mathrm{v}}-\mathrm{p}_{\mathrm{v}+1}\right| \mathrm{g}(2 \mathrm{~h})+\left|\tau_{\mathrm{v}}\right|\right) \leq \frac{\mathrm{h}}{2}
$$

Let $Y=\left\{y_{n}\right\}$ and $X^{i}=\left\{X_{n}^{i}\right\}$ such that $\left\|X^{i}-Y\right\|=0$ then the continuity of g shows that

$$
\lim _{i \rightarrow \infty}\left\|\left(W X^{i}\right)_{N}-(W Y)_{N}\right\|=0
$$

Hence W is continuous. Now to show $\mathrm{W} \ell$ is relatively compact. Let $\mathrm{X}=\left\{\mathrm{x}_{\mathrm{n}}\right\} \in \ell$ for any $\mathrm{k}>\mathrm{n}>\mathrm{N}$ and $\mathrm{W} \ell$ is uniformly Cauchy we have,

$$
\left|W x_{n}-W x_{k}\right| \leq \sum_{t=n}^{\infty} v^{2}\left(\left|p_{v}-p_{v+1} \lg (2 h)+\left|\tau_{v}\right|\right)\right.
$$

For given ε there exist an integer N_{1} such that $k>n \geq N_{1}$ then $\left|W x_{n}-W y_{k}\right|<\varepsilon$. Thus $\mathrm{W} \ell$ is uniformly Cauchy and hence $\mathrm{W} \ell$ becomes relatively compact. Thus (1) has nonoscillatory solution for $\mathrm{X}=\left\{\mathrm{x}_{\mathrm{n}}\right\}$ with required properties.

Example-3: We consider the following difference equation,

$$
\begin{equation*}
\Delta^{4} \mathrm{x}_{\mathrm{n}}-2^{\mathrm{n}}\left(\frac{1}{16}+(-1)^{\mathrm{n}} 2^{(\mathrm{n}+1) / 2}\right) \mathrm{x}_{\mathrm{n}}^{2}=(-1)^{\mathrm{n}+1} 2^{\left(\frac{1-\mathrm{n}}{2}\right)} \tag{5}
\end{equation*}
$$

for $\mathrm{n} \geq 3$ that satisfies all the conditions of Theorem 3. Thus (5) has nonoscillatory solution that approaches a nonzero real number. In fact, $\left\{x_{n}\right\}=\left\{\frac{1}{2^{n}}\right\}$ is one such solution.

BOUNDED SOLUTION OF DIFFERENCE EQUATION

We establish the necessary and sufficient conditions of boundedness of every nonoscillatory solution of (1). Assume the following,

$$
\sum_{n=1}^{\infty} \frac{1}{r_{n}}=\sum_{n=1}^{\infty} \frac{1}{s_{n}}=\sum_{n=1}^{\infty} \frac{1}{q_{n}}<\infty
$$

then solutions of (1) are either type (i) or type (ii).
Lemma 1: Any nonnegative solution $\left\{\mathrm{x}_{\mathrm{n}}\right\}$ of (1) belong to the below classes:
If $\mathrm{x}_{\mathrm{n}}>0$ and $\Delta \mathrm{x}_{\mathrm{n}}>0$ then $\Delta\left(\mathrm{s}_{\mathrm{n}} \Delta\left(\mathrm{q}_{\mathrm{n}} \Delta \mathrm{x}_{\mathrm{n}}\right)\right)>0$
If $\mathrm{x}_{\mathrm{n}}>0$ and $\Delta \mathrm{x}_{\mathrm{n}}>0$ then $\Delta\left(\mathrm{s}_{\mathrm{n}} \Delta\left(\mathrm{q}_{\mathrm{n}} \Delta \mathrm{x}_{\mathrm{n}}\right)\right)<0$
If $\mathrm{x}_{\mathrm{n}}>0$ and $\Delta \mathrm{x}_{\mathrm{n}}<0$ then $\Delta\left(\mathrm{s}_{\mathrm{n}} \Delta\left(\mathrm{q}_{\mathrm{n}} \Delta \mathrm{x}_{\mathrm{n}}\right)\right)>0$
If $\mathrm{x}_{\mathrm{n}}>0$ and $\Delta \mathrm{x}_{\mathrm{n}}<0$ then $\Delta\left(\mathrm{s}_{\mathrm{n}} \Delta\left(\mathrm{q}_{\mathrm{n}} \Delta \mathrm{x}_{\mathrm{n}}\right)\right)<0$
for all sufficiently large n.
Proof: Assume $\left\{x_{n}\right\}$ to be an nonnegative solution of (1). From (1) we have $\Delta\left(q_{n} \Delta x_{n}\right)>0$ and $\Delta\left(\mathrm{r}_{\mathrm{n}} \Delta\left(\mathrm{s}_{\mathrm{n}} \Delta\left(\mathrm{q}_{\mathrm{n}} \Delta \mathrm{x}_{\mathrm{n}}\right)\right)>0\right.$ so $\left\{\Delta\left(\mathrm{s}_{\mathrm{n}} \Delta\left(\mathrm{q}_{\mathrm{n}} \Delta \mathrm{x}_{\mathrm{n}}\right)\right)\right\},\left\{\Delta \mathrm{x}_{\mathrm{n}}\right\}$ and $\left\{\mathrm{x}_{\mathrm{n}}\right\}$ are eventually of one sign. Hence the lemma is proved.

We consider solutions of types (i) and (ii) only for proving the rest of the theorems.

Theorem 4: If g is an increasing function and $\mathrm{g}(\mathrm{x}) / \mathrm{x}$ is a decreasing function for $\mathrm{x}>0$ then,

$$
\begin{equation*}
\sum_{\mathrm{l}=1}^{\infty} \frac{1}{\mathrm{q}_{1}} \sum_{\mathrm{k}=1}^{\infty} \frac{1}{\mathrm{~s}_{\mathrm{k}}} \sum_{\mathrm{j}=1}^{\mathrm{k}-1} \frac{1}{\mathrm{r}_{\mathrm{j}}} \sum_{\mathrm{i}=1}^{\mathrm{j}-1}\left(\tau_{\mathrm{i}}-\left(\mathrm{p}_{\mathrm{i}}-\mathrm{p}_{\mathrm{i}+1}\right)\right)<\infty \tag{E}
\end{equation*}
$$

Here every solution of type (i) is said to be bounded.
Proof: Assume $\left\{\mathrm{x}_{\mathrm{n}}\right\}$ to be an unbounded solution of (1) and if $\mathrm{x}_{\mathrm{n}}>0, \Delta \mathrm{x}_{\mathrm{n}}>0$, $\Delta\left(\mathrm{s}_{\mathrm{n}} \Delta\left(\mathrm{t}_{\mathrm{n}} \Delta \mathrm{x}_{\mathrm{n}}\right)\right)>0$ then,

$$
\begin{aligned}
& \tau_{\mathrm{i}}-\left[\mathrm{p}_{\mathrm{n}}-\mathrm{p}_{\mathrm{n}+1}\right] \mathrm{g}\left(\mathrm{x}_{\mathrm{n}-\mathrm{m}+1}\right)=\frac{\Delta\left(\mathrm{r}_{\mathrm{n}} \Delta\left(\mathrm{~s}_{\mathrm{n}} \Delta\left(\mathrm{q}_{\mathrm{n}} \Delta \mathrm{x}_{\mathrm{n}}\right)\right)\right)}{\mathrm{g}\left(\mathrm{x}_{\mathrm{n}-\mathrm{t}+1}\right)} \\
& =\frac{\left.\mathrm{r}_{\mathrm{n}+1} \Delta\left(\mathrm{~s}_{\mathrm{n}+1} \Delta\left(\mathrm{q}_{\mathrm{n}+1} \Delta \mathrm{x}_{\mathrm{n}+1}\right)\right)\right)}{\mathrm{g}\left(\mathrm{x}_{\mathrm{n}-\mathrm{t}+1}\right)}-\frac{\left.\mathrm{r}_{\mathrm{n}} \Delta\left(\mathrm{~s}_{\mathrm{n}} \Delta\left(\mathrm{q}_{\mathrm{n}} \Delta \mathrm{x}_{\mathrm{n}}\right)\right)\right)}{\mathrm{g}\left(\mathrm{x}_{\mathrm{n}-\mathrm{t}+1}\right)} \\
& \geq \frac{\mathrm{r}_{\mathrm{n}+1} \Delta\left(\mathrm{~s}_{\mathrm{n}+1} \Delta\left(\mathrm{q}_{\mathrm{n}+1} \Delta \mathrm{x}_{\mathrm{n}+1}\right)\right)}{\mathrm{g}\left(\mathrm{x}_{\mathrm{n}-\mathrm{t}+1}\right)}-\frac{\mathrm{r}_{\mathrm{n}} \Delta\left(\mathrm{~s}_{\mathrm{n}} \Delta\left(\mathrm{q}_{\mathrm{n}} \Delta \mathrm{x}_{\mathrm{n}}\right)\right)}{\mathrm{g}\left(\mathrm{x}_{\mathrm{n}-\mathrm{t}}\right)} \\
& =\Delta\left[\frac{\mathrm{r}_{\mathrm{n}} \Delta\left(\mathrm{~s}_{\mathrm{n}} \Delta\left(\mathrm{q}_{\mathrm{n}} \Delta \mathrm{x}_{\mathrm{n}}\right)\right)}{\mathrm{g}\left(\mathrm{x}_{\mathrm{n}-\mathrm{t}}\right)}\right]
\end{aligned}
$$

Summing from $\mathrm{i}=\mathrm{N}$ to $\mathrm{i}=\mathrm{j}-1$,

$$
\sum_{i=N}^{j-1}\left(\tau_{i}-\left[p_{i}-p_{i+1}\right] g\left(x_{i-t+1}\right)\right)+\frac{r_{N} \Delta\left(s_{N} \Delta\left(q_{N} \Delta x_{N}\right)\right)}{g\left(x_{N-t}\right)} \geq \frac{r_{j} \Delta\left(s_{j} \Delta\left(q_{j} \Delta x_{j}\right)\right)}{g\left(x_{j-t}\right)}
$$

Hence,

$$
\begin{gathered}
\frac{1}{r_{j}} \sum_{i=N}^{j-1}\left(\tau_{i}-\left[p_{i}-p_{i+1}\right] g\left(x_{i-t+1}\right)\right)+\frac{r_{N} \Delta\left(s_{N} \Delta\left(q_{N} \Delta x_{N}\right)\right)}{r_{j} g\left(x_{N-t}\right)} \geq \frac{\Delta\left(s_{j} \Delta\left(q_{j} \Delta x_{j}\right)\right)}{g\left(x_{j-t}\right)} \\
\geq \frac{s_{j+1} \Delta\left(q_{j+1} \Delta x_{j+1}\right)}{g\left(x_{j-t}\right)}-\frac{s_{j} \Delta\left(q_{j} \Delta x_{j}\right)}{g\left(x_{j-t}\right)} \\
=\Delta\left[\frac{s_{j} \Delta\left(q_{j} \Delta x_{j}\right)}{g\left(x_{j-t-1}\right)}\right]
\end{gathered}
$$

Summing again from $\mathrm{j}=\mathrm{N}$ to $\mathrm{j}=\mathrm{k}-1$,

$$
\begin{gathered}
\sum_{j=N}^{k-1} \frac{1}{r_{j}} \sum_{i=N}^{j-1}\left(\tau_{i}-\left[p_{i}-p_{i+1}\right] g\left(x_{i-t+1}\right)\right)+\sum_{j=N}^{k-1} \frac{r_{N} \Delta\left(s_{N} \Delta\left(q_{N} \Delta x_{N}\right)\right)}{r_{j} g\left(x_{N-t}\right)} \\
\geq \frac{s_{k} \Delta\left(q_{k} \Delta x_{k}\right)}{g\left(x_{k-t-1}\right)}-\frac{s_{N} \Delta\left(q_{N} \Delta x_{N}\right)}{g\left(x_{N-t-1}\right)}
\end{gathered}
$$

Hence

$$
\begin{aligned}
\frac{1}{s_{k}} \sum_{j=N}^{k-1} \frac{1}{r_{j}} \sum_{i=N}^{j-1}\left(\tau_{i}-\left[p_{i}-p_{i+1}\right]\right. & \left.g\left(x_{i-t+1}\right)\right)+\frac{1}{s_{k}} \sum_{j=N}^{k-1} \frac{r_{N} \Delta\left(s_{N} \Delta\left(q_{N} \Delta x_{N}\right)\right)}{r_{j} g\left(x_{N-t}\right)}+\frac{s_{N} \Delta\left(q_{N} \Delta x_{N}\right)}{s_{k} g\left(x_{N-t-1}\right)} \\
& \geq \frac{\Delta\left(q_{k} \Delta x_{k}\right)}{f\left(x_{k-t-1}\right)} \\
& \geq \frac{q_{k+1} \Delta x_{k+1}}{g\left(x_{k-t-1}\right)}-\frac{q_{k} \Delta x_{k}}{g\left(x_{k-t-1}\right)} \\
& \geq \frac{q_{k+1} \Delta x_{k+1}}{g\left(x_{k-t-1}\right)}-\frac{q_{k} \Delta x_{k}}{g\left(x_{k-t-2}\right)} \\
& =\Delta\left[\frac{q_{k} \Delta x_{k}}{g\left(x_{k-t-2}\right)}\right]
\end{aligned}
$$

A final summation from $\mathrm{k}=\mathrm{N}$ to $\mathrm{k}=\mathrm{l}-1$ yields,

$$
\begin{aligned}
& \sum_{\mathrm{k}=\mathrm{N}}^{\mathrm{l}-1} \frac{1}{\mathrm{~s}_{\mathrm{k}}} \sum_{\mathrm{j}=\mathrm{N}}^{\mathrm{k}-1} \frac{1}{\mathrm{j}} \mathrm{r}_{\mathrm{j}}^{\mathrm{j}-1} \sum_{\mathrm{i}=\mathrm{N}}\left(\tau_{\mathrm{i}}-\left[\mathrm{p}_{\mathrm{i}}-\mathrm{p}_{\mathrm{i}+1}\right] \mathrm{g}\left(\mathrm{x}_{\mathrm{i}-\mathrm{t}+1}\right)\right)+\sum_{\mathrm{k}=\mathrm{N}}^{\mathrm{l}-1} \frac{1}{\mathrm{~s}_{\mathrm{k}}} \sum_{\mathrm{j}=\mathrm{N}}^{\mathrm{k}-1} \frac{\mathrm{r}_{\mathrm{N}} \Delta\left(\mathrm{~s}_{\mathrm{N}} \Delta\left(\mathrm{q}_{\mathrm{N}} \Delta \mathrm{x}_{\mathrm{N}}\right)\right)}{\mathrm{r}_{\mathrm{j}} \mathrm{~g}\left(\mathrm{x}_{\mathrm{N}-\mathrm{t}}\right)} \\
& +\sum_{\mathrm{k}=\mathrm{N}}^{\mathrm{l}-1} \frac{\mathrm{~s}_{\mathrm{N}} \Delta\left(\mathrm{q}_{\mathrm{N}} \Delta \mathrm{x}_{\mathrm{N}}\right)}{\mathrm{s}_{\mathrm{k}} \mathrm{~g}\left(\mathrm{x}_{\mathrm{N}-\mathrm{t}-1}\right)} \geq \frac{\mathrm{q}_{1} \Delta \mathrm{x}_{1}}{\mathrm{~g}\left(\mathrm{x}_{1-\mathrm{t}-2}\right)}-\frac{\mathrm{q}_{\mathrm{N}} \Delta \mathrm{x}_{\mathrm{N}}}{\mathrm{~g}\left(\mathrm{x}_{\mathrm{N}-\mathrm{t}-2}\right)} \\
& \sum_{k=N}^{l-1} \frac{1}{s_{k}} \sum_{j=N}^{k-1} \frac{1}{r_{j}} \sum_{i=N}^{j-1}\left(\tau_{i}-\left[p_{i}-p_{i+1}\right] g\left(x_{i-m+1}\right)\right)+\sum_{k=N}^{l-1} \frac{1}{s_{k}} \sum_{j=N}^{k-1} \frac{r_{N} \Delta\left(s_{N} \Delta\left(q_{N} \Delta x_{N}\right)\right)}{r_{j} g\left(x_{N-t}\right)} \\
& +\sum_{\mathrm{k}=\mathrm{N}}^{\mathrm{l}-1} \frac{\mathrm{~s}_{\mathrm{N}} \Delta\left(\mathrm{q}_{\mathrm{N}} \Delta \mathrm{x}_{\mathrm{N}}\right)}{\mathrm{s}_{\mathrm{k}} \mathrm{~g}\left(\mathrm{x}_{\mathrm{N}-\mathrm{t}-1}\right)}+\frac{\mathrm{q}_{\mathrm{N}} \Delta \mathrm{x}_{\mathrm{N}}}{\mathrm{~g}\left(\mathrm{x}_{\mathrm{N}-\mathrm{t}-2}\right)} \geq \frac{\mathrm{q}_{1} \Delta \mathrm{x}_{1}}{\mathrm{~g}\left(\mathrm{x}_{\mathrm{l}-\mathrm{t}-2}\right)}
\end{aligned}
$$

Hence,

$$
\begin{aligned}
& \frac{\Delta \mathrm{x}_{1}}{\mathrm{x}_{1}} \leq \frac{1}{\mathrm{q}_{1}} \sum_{\mathrm{k}=\mathrm{N}}^{\mathrm{l}-1} \frac{1}{\mathrm{~s}_{\mathrm{k}}} \sum_{\mathrm{j}=\mathrm{N}}^{\mathrm{k}-1} \frac{1}{\mathrm{r}_{\mathrm{j}}} \sum_{\mathrm{i}=\mathrm{N}}^{\mathrm{j}-1}\left(\mathrm{r}_{\mathrm{i}}-\left[\mathrm{p}_{\mathrm{i}}-\mathrm{p}_{\mathrm{i}+1}\right] \mathrm{g}\left(\mathrm{x}_{\mathrm{i}-\mathrm{t}+1}\right)\right)+\frac{1}{\mathrm{q}_{1}} \sum_{\mathrm{k}=\mathrm{N}}^{\mathrm{l}-1} \frac{1}{\mathrm{~s}_{\mathrm{k}}} \sum_{\mathrm{j}=\mathrm{N}}^{\mathrm{k}-1} \frac{\mathrm{r}_{\mathrm{N}} \Delta\left(\mathrm{~s}_{\mathrm{N}} \Delta\left(\mathrm{q}_{\mathrm{N}} \Delta \mathrm{x}_{\mathrm{N}}\right)\right)}{\mathrm{r}_{\mathrm{j}} \mathrm{~g}\left(\mathrm{x}_{\mathrm{N}-\mathrm{t}}\right)} \\
& \quad+\frac{1}{\mathrm{q}_{1}} \sum_{\mathrm{k}=\mathrm{N}}^{\mathrm{l}-1} \frac{\mathrm{~s}_{\mathrm{N}} \Delta\left(\mathrm{q}_{\mathrm{N}} \Delta \mathrm{x}_{\mathrm{N}}\right)}{\mathrm{s}_{\mathrm{k}} \mathrm{~g}\left(\mathrm{x}_{\mathrm{N}-\mathrm{t}-1}\right)}+\frac{\mathrm{q}_{\mathrm{N}} \Delta \mathrm{x}_{\mathrm{N}}}{\mathrm{q}_{\mathrm{l}} \mathrm{~g}\left(\mathrm{x}_{\mathrm{N}-\mathrm{t}-2}\right)}
\end{aligned}
$$

Here $g(x) / x$ is non-increasing for $x>0$, so we have,

$$
\frac{\Delta \mathrm{x}_{1}}{\mathrm{x}_{\mathrm{l}}} \leq \frac{\mathrm{g}\left(\mathrm{x}_{\mathrm{N}}\right)}{\mathrm{x}_{\mathrm{N}}} \frac{\Delta \mathrm{x}_{1}}{\mathrm{x}_{\mathrm{l}}} \leq \frac{\mathrm{g}\left(\mathrm{x}_{\mathrm{N}}\right)}{\mathrm{x}_{\mathrm{N}}} \frac{1}{\mathrm{q}_{\mathrm{l}}} \sum_{\mathrm{k}=\mathrm{N}}^{\mathrm{l}-1} \frac{1}{\mathrm{~s}_{\mathrm{k}}} \sum_{\mathrm{j}=\mathrm{N}}^{\mathrm{k}-1} \frac{1}{r_{j}} \sum_{\mathrm{i}=\mathrm{N}}^{\mathrm{j}-1}\left(\tau_{\mathrm{i}}-\left[\mathrm{p}_{\mathrm{i}}-\mathrm{p}_{\mathrm{i}+1}\right] \mathrm{g}\left(\mathrm{x}_{\mathrm{n}-\mathrm{t}+1}\right)\right)
$$

$$
\begin{gather*}
+\frac{g\left(x_{N}\right)}{x_{N}} \frac{1}{q_{1}} \sum_{k=N}^{l-1} \frac{1}{s_{k}} \sum_{j=N}^{k-1} \frac{r_{N} \Delta\left(s_{N} \Delta\left(q_{N} \Delta x_{N}\right)\right)}{r_{j} g\left(x_{N-t}\right)}+\frac{g\left(x_{N}\right)}{x_{N}}\left(\frac{1}{q_{1}}\right) \sum_{k=N}^{1-1} \frac{s_{N} \Delta\left(q_{N} \Delta x_{N}\right)}{s_{k} g\left(x_{N-t-1}\right)} \\
+\frac{g\left(x_{N}\right)}{x_{N}}\left(\frac{q_{N} \Delta x_{N}}{q_{1} f\left(x_{N-t-2}\right)}\right) \tag{E1}
\end{gather*}
$$

Final summation from $\mathrm{l}=\mathrm{N}$ to $\mathrm{k}=\mathrm{n}-1$

$$
\sum_{\mathrm{l}=\mathrm{N}}^{\mathrm{n}-1} \frac{\Delta \mathrm{x}_{1}}{\mathrm{x}_{\mathrm{l}}}=\frac{\Delta \mathrm{x}_{\mathrm{n}}}{\mathrm{x}_{\mathrm{n}}}-\frac{\Delta \mathrm{x}_{\mathrm{N}}}{\mathrm{x}_{\mathrm{N}}}=\log \left(\Delta \mathrm{x}_{\mathrm{n}}\right)-\log \left(\mathrm{x}_{\mathrm{N}}\right)
$$

Now summing both sides of (E1) we get,

$$
\begin{aligned}
& \sum_{\mathrm{l}=\mathrm{N}}^{\mathrm{n}-1} \frac{\Delta \mathrm{x}_{1}}{\mathrm{x}_{\mathrm{l}}} \leq \frac{\mathrm{g}\left(\mathrm{x}_{\mathrm{N}}\right)}{\mathrm{x}_{\mathrm{N}}} \sum_{\mathrm{l}=\mathrm{N}}^{\mathrm{n}-1} \frac{1}{\mathrm{q}_{\mathrm{l}}} \sum_{\mathrm{k}=\mathrm{N}}^{\mathrm{l}-1} \frac{1}{\mathrm{~s}_{\mathrm{k}}} \sum_{\mathrm{j}=\mathrm{N}}^{\mathrm{k}-1} \frac{1}{\mathrm{r}_{\mathrm{j}}} \sum_{\mathrm{i}=\mathrm{N}}^{\mathrm{j}-1}\left(\tau_{\mathrm{i}}-\left[\mathrm{p}_{\mathrm{i}}-\mathrm{p}_{\mathrm{i}+1}\right] \mathrm{g}\left(\mathrm{x}_{\mathrm{i}-\mathrm{t}+1}\right)\right) \\
& +\frac{g\left(x_{N}\right)}{x_{N}} \sum_{\mathrm{l}=\mathrm{N}}^{\mathrm{n}-1} \frac{1}{\mathrm{q}_{\mathrm{l}}} \sum_{\mathrm{k}=\mathrm{N}}^{\mathrm{l}-1} \frac{1}{\mathrm{~s}_{\mathrm{k}}} \sum_{\mathrm{j}=\mathrm{N}}^{\mathrm{k}-1} \frac{\mathrm{r}_{\mathrm{N}} \Delta\left(\mathrm{~s}_{\mathrm{N}} \Delta\left(\mathrm{q}_{\mathrm{N}} \Delta \mathrm{x}_{\mathrm{N}}\right)\right)}{\mathrm{r}_{\mathrm{j}} \mathrm{~g}\left(\mathrm{x}_{\mathrm{N}-\mathrm{t}}\right)} \\
& +\frac{g\left(x_{N}\right)}{x_{N}} \sum_{\mathrm{l}=\mathrm{N}}^{\mathrm{n}-1} \frac{1}{\mathrm{q}_{1}} \sum_{\mathrm{k}=\mathrm{N}}^{\mathrm{l}-1} \frac{\mathrm{~s}_{\mathrm{N}} \Delta\left(\mathrm{q}_{\mathrm{N}} \Delta \mathrm{x}_{\mathrm{N}}\right)}{\mathrm{s}_{\mathrm{k}} \mathrm{f}\left(\mathrm{x}_{\mathrm{N}-\mathrm{t}-1}\right)}+\frac{\mathrm{g}\left(\mathrm{x}_{\mathrm{N}}\right)}{\mathrm{x}_{\mathrm{N}}} \sum_{\mathrm{l}=\mathrm{N}}^{\mathrm{n}-1} \frac{1}{\mathrm{q}_{1}}\left(\frac{\mathrm{q}_{\mathrm{N}} \Delta \mathrm{x}_{\mathrm{N}}}{\mathrm{~g}\left(\mathrm{x}_{\mathrm{N}-\mathrm{t}-2}\right)}\right)
\end{aligned}
$$

This implies,

$$
\begin{aligned}
& \log \left(\Delta x_{n}\right)-\log \left(x_{N}\right) \leq \frac{g\left(x_{N}\right)}{x_{N}} \sum_{\mathrm{l}=\mathrm{N}}^{\mathrm{n}-1} \frac{1}{q_{1}} \sum_{\mathrm{k}=\mathrm{N}}^{\mathrm{l}-1} \frac{1}{s_{\mathrm{k}}} \sum_{\mathrm{j}=\mathrm{N}}^{\mathrm{k}-1} \frac{1}{r_{j}} \sum_{\mathrm{i}=\mathrm{N}}^{\mathrm{j}-1}\left(\tau_{\mathrm{i}}-\left[p_{\mathrm{i}}-p_{\mathrm{i}+1}\right] \mathrm{g}\left(\mathrm{x}_{\mathrm{n}-\mathrm{t}+1}\right)\right) \\
&+\frac{\mathrm{g}\left(\mathrm{x}_{\mathrm{N}}\right)}{\mathrm{x}_{\mathrm{N}}} \sum_{\mathrm{l}=\mathrm{N}}^{\mathrm{n}-1} \frac{1}{\mathrm{q}_{1}} \sum_{\mathrm{k}=\mathrm{N}}^{\mathrm{l}-1} \frac{1}{s_{\mathrm{k}}} \sum_{\mathrm{j}=\mathrm{N}}^{\mathrm{k}-1} \frac{\mathrm{r}_{\mathrm{N}} \Delta\left(\mathrm{~s}_{\mathrm{N}} \Delta\left(\mathrm{q}_{\mathrm{N}} \Delta \mathrm{x}_{\mathrm{N}}\right)\right)}{\mathrm{r}_{\mathrm{j}} \mathrm{~g}\left(\mathrm{x}_{\mathrm{N}-\mathrm{t}}\right)} \\
&+\frac{\mathrm{g}\left(\mathrm{x}_{\mathrm{N}}\right)}{\mathrm{x}_{\mathrm{N}}} \sum_{\mathrm{l}=\mathrm{N}}^{\mathrm{n}-1} \frac{1}{\mathrm{q}_{\mathrm{l}}} \sum_{\mathrm{k}=\mathrm{N}}^{\mathrm{l}-1} \frac{\mathrm{~s}_{\mathrm{N}} \Delta\left(\mathrm{q}_{\mathrm{N}} \Delta \mathrm{x}_{\mathrm{N}}\right)}{\mathrm{s}_{\mathrm{k}} g\left(\mathrm{x}_{\mathrm{N}-\mathrm{t}-1}\right)}+\frac{\mathrm{g}\left(\mathrm{x}_{\mathrm{N}}\right)}{\mathrm{x}_{\mathrm{N}}} \sum_{\mathrm{l}=\mathrm{N}}^{\mathrm{n}-1} \frac{1}{\mathrm{q}_{\mathrm{l}}}\left(\frac{\mathrm{q}_{\mathrm{N}} \Delta \mathrm{x}_{\mathrm{N}}}{\mathrm{~g}\left(\mathrm{x}_{\mathrm{N}-\mathrm{t}-2}\right)}\right)
\end{aligned}
$$

From (1) it follows the convergence of series given as,

$$
\sum_{\mathrm{l}=1}^{\infty} \frac{1}{\mathrm{q}_{\mathrm{l}}} \sum_{\mathrm{k}=1}^{\infty} \frac{1}{\mathrm{~s}_{\mathrm{k}}} \sum_{\mathrm{j}=1}^{\infty} \frac{1}{\mathrm{r}_{\mathrm{j}}}
$$

Here we observe that x_{n} converges, so $\left\{x_{n}\right\}$ is bounded which is a contradiction. Thus the proof is completed.

Example-4: We consider the following difference equation,

$$
\begin{equation*}
\Delta^{2}\left((\mathrm{n}+1) \Delta^{2} \mathrm{x}_{\mathrm{n}}\right)=(\mathrm{n}+3) \mathrm{x}_{\mathrm{n}+4}+(5 \mathrm{n}+9) \mathrm{x}_{\mathrm{n}+2}-2\left[(2 \mathrm{n}+5) \mathrm{x}_{\mathrm{n}+3}+(\mathrm{n}+1) \mathrm{x}_{\mathrm{n}+1}\right]+1 \tag{6}
\end{equation*}
$$

Here every condition of Theorem 4 is satisfied and $\left\{x_{n}\right\}=\left\{\frac{n}{n+1}\right\}$ is one such solution of (6).

Theorem 5: If the condition (E) holds then every solution of type (ii) is bounded.
Proof: Let $\left\{\mathrm{x}_{\mathrm{n}}\right\}$ be a solution of (1). If $\mathrm{x}_{\mathrm{n}}>0$ and $\Delta \mathrm{x}_{\mathrm{n}}>0$ then $\Delta\left(\mathrm{s}_{\mathrm{n}} \Delta\left(\mathrm{q}_{\mathrm{n}} \Delta \mathrm{x}_{\mathrm{n}}\right)\right)<0$, hence summing from $\mathrm{n}=\mathrm{N}$ to $\mathrm{n}=\mathrm{i}-1$ we have,

$$
\begin{array}{r}
\mathrm{s}_{\mathrm{i}} \Delta\left(\mathrm{q}_{\mathrm{i}} \Delta \mathrm{x}_{\mathrm{i}}\right)<\mathrm{s}_{\mathrm{N}} \Delta\left(\mathrm{q}_{\mathrm{N}} \Delta \mathrm{x}_{\mathrm{N}}\right) \\
\Delta\left(\mathrm{q}_{\mathrm{i}} \Delta \mathrm{x}_{\mathrm{i}}\right)<\frac{\mathrm{s}_{\mathrm{N}} \Delta\left(\mathrm{q}_{\mathrm{N}} \Delta \mathrm{x}_{\mathrm{N}}\right)}{\mathrm{s}_{\mathrm{i}}}
\end{array}
$$

Summing again from $\mathrm{i}=\mathrm{N}$ to $\mathrm{i}=\mathrm{j}-1$ then

$$
\Delta x_{j}<\frac{s_{N} \Delta\left(q_{N} \Delta x_{N}\right)}{q_{j}} \sum_{i=N}^{j-1} \frac{1}{s_{i}}+\frac{q_{N} \Delta x_{N}}{q_{j}}
$$

Final summation from $j=N$ to $j=n-1$ then

$$
x_{n}<s_{N} \Delta\left(q_{N} \Delta x_{N}\right) \sum_{i=N}^{j-1} \frac{1}{s_{i}} \sum_{j=N}^{n-1} \frac{1}{q_{j}}+q_{N} \Delta x_{N} \sum_{j=N}^{n-1} \frac{1}{q_{j}}+x_{N}
$$

As (E) implies below condition,

$$
\sum_{\mathrm{n}=1}^{\infty} \frac{1}{\mathrm{~s}_{\mathrm{n}}}=\sum_{\mathrm{n}=1}^{\infty} \frac{1}{\mathrm{q}_{\mathrm{n}}}<\infty \text { and } \mathrm{s}_{\mathrm{N}} \Delta\left(\mathrm{q}_{\mathrm{N}} \Delta \mathrm{x}_{\mathrm{N}}\right)>0
$$

the solution $\left\{\mathrm{x}_{\mathrm{n}}\right\}$ must be bounded. This completes the proof.
Example-5: We consider the below difference equation,

$$
\begin{align*}
& \Delta\left(\mathrm{n} \Delta\left((\mathrm{n}+1) \Delta^{2} \mathrm{x}_{\mathrm{n}}\right)\right) \\
& \qquad
\end{align*}
$$

Thus every condition of Theorem 5 is satisfied. Here $\left\{x_{n}\right\}=\left\{\frac{1}{n}\right\}$ is one such solution of (7).

4. Conclusion:

From this paper we conclude that the necessary and sufficient conditions for asymptotic behavior and boundedness of (1) are established using contraction mapping principle, summation averaging technique and comparison method.

References:

1. Agarwal Ravi P, Difference Equations and Inequalities, Marcel Decker, New York (1993).
2. Graef, J. R., \& Thandapani, E. Oscillatory and asymptotic behavior of solutions of third order delay difference equations. Funkcialaj Ekvacioj Serio Internacia, 42(3), 355-370, (1999).
3. Agarwal, R. P., Grace, S., \& O'Regan, D. (2005). On the oscillation of certain third-order difference equations. Advances in Difference Equations, 2005(3), 1-23.
4. Andruch-Sobiło, A., \& MIGDA, M. Bounded solutions of third order nonlinear difference equations. The Rocky Mountain Journal of Mathematics, 23-34, (2006).
5. Vanitha, D. D. . (2022). Comparative Analysis of Power switches MOFET and IGBT Used in Power Applications. International Journal on Recent Technologies in Mechanical and Electrical Engineering, 9(5), 01-09. https://doi.org/10.17762/ijrmee.v9i5.368
6. Ibrahim, T. F. On the third order rational difference equation. Int. J. Contemp. Math. Sciences, 4(27), 1321-1334, (2009).
7. Halim, Y., Touafek, N., \& Yazlik, Y. Dynamic behavior of a second-order nonlinearrational difference equation. Turkish Journal of Mathematics, 39(6), 10041018, (2015).
8. Jayabarathy.G , J. Daphy Louis Lovenia, Survey Results On Difference Equations, Journal of Critical Reviews ISSN- 2394-5125 vol 7, issue 11, (2020).
9. Applications of "Certain Third Order Non-linear Neutral Difference Equations in Robotics Engineering", S. Sindhuja, J. Daphy Louis Lovenia, A. P. Lavanya, D. Darling Jemima, G. Jayabarathy, Journal of Physics, 1-9, (2021).
10. Pawan Kumar Tiwari, P. S. . (2022). Numerical Simulation of Optimized Placement of Distibuted Generators in Standard Radial Distribution System Using Improved Computations. International Journal on Recent Technologies in Mechanical and Electrical Engineering, 9(5), 10-17. https://doi.org/10.17762/ijrmee.v9i5.369
