
Vol. 71 No. 3s (2022) 

http://philstat.org.ph 

Mathematical Statistician and Engineering Applications 

  ISSN: 2094-0343 

2326-9865 

940 

Asymptotic Behaviour and Boundedness of Fourth Order Difference 

Equations 

G. Jayabarathy1, J. Daphy Louis Lovenia2∗, A. P. Lavanya 3, D. Darling Jemima 4 

G. Jayabarathy1, Research Scholar, Department of Mathematics, Karunya Institute of 

Technology and Sciences, Coimbatore, India.  jayabarathyg@karunya.edu.in 

J. Daphy Louis Lovenia2∗, Professor, Corresponding Author, Department of Mathematics, 

Karunya Institute of Technology and Sciences, Coimbatore, India. daphy@karunya.edu 

A. P. Lavanya 3, Assistant Professor, Department of Mathematics, Sri Krishna College of 

Engineering and Technology, Coimbatore, India. algebralavanya@gmail.com 

D. Darling Jemima 4, Assistant Professor, Department of Computer Science and Engineering, 

Sri Krishna College of Technology, Coimbatore, India. darlingjemima.d@skct.edu.in 

Article Info 

Page Number: 940-950 

 Publication Issue: 

Vol. 71 No. 3s (2022) 

 

 

 

 

Article History 

Article Received: 22 April 2022 

Revised: 10 May 2022 

Accepted: 15 June 2022 

Publication: 19 July 2022 

Abstract: We study the asymptotic behavior and boundedness of fourth 

order difference equation of the form,  

∆(rn∆(sn∆(qn∆xn))) + png(xn−t+1
 ) − pn+1g(xn−t+1

 ) = τn  

where rn > 0, sn > 0, qn > 0, pn > 0, pn+1 > 0, τn > 0. The necessary 

and sufficient conditions for asymptotic behavior and boundedness of 

above nonlinear difference equation are obtained using summation 

averaging technique and comparison method. Examples are also provided.  
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1. Introduction:  

This paper deals with the study of asymptotic behavior and boundedness of fourth order 

nonlinear difference equation of the form,  

∆(rn∆(sn∆(qn∆xn))) + png(xn−t+1
 ) − pn+1g(xn−t+1

 ) = τn   (1) 

where {rn}, {sn}, {tn}, {pn+1}, {pn}, {τn} are sequences of positive real numbers with rn > 0, 

sn > 0, qn > 0, pn > 0, τn > 0, g is real valued function and τ is positive integer. The 

nontrivial solution of (1) is oscillatory if the terms of sequence {xn} are neither eventually 

positive nor eventually negative and nonoscillatory otherwise. Also, (1) becomes almost 

oscillatory if every solution {xn} is either oscillatory or satisfies limn→∞ Δixn = 0 for i =

0,1,2.  The purpose of this paper is to establish necessary and sufficient conditions for 

asymptotic behavior and boundedness of fourth order nonlinear difference equations. The 

difference equations are applied in the field of statistics, economics, biology, etc see for 

example [1-8]. The results achieved from this paper motivate the studies on higher order 
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difference equations. The paper is organised as follows: In section 2, the methodology is 

stated. In section 3, the conditions of almost oscillatory solutions of (1) are obtained. This is 

followed by determining the conditions for boundedness and asymptotic behavior of (1). In 

section 4, the conclusion is provided. We illustrate the results with few examples.  

2. Methodology 

The asymptotic behavior and boundedness of fourth order nonlinear difference equations are 

studied by means of contraction mapping principle, summation averaging technique and 

comparison method.  

3. Main Results 

Theorem 1: Let rn = sn = qn = 1 and assume there exists a positive sequence {ϕn} and an 

oscillatory sequence {ψn} such that ∆(rn∆(sn∆(qn∆xn)) = τn with lim Δi ψn = 0 for i =

0,1,2, 3. If 

∑ n3

∞

n=n0

(pn − pn+1) = ∞                                            (2) 

then (1) is almost oscillatory for every bounded solution {xn}.  

Proof: If xn > 0 and xn−t+1
 > 0 for all n then from (1) we have,  

∆(rn∆(sn∆(qn∆xn))) = τn + pn+1g(xn−t+1
 ) − png(xn−t+1

 ) 

We consider {∆3xn} as,  

∆3xn = (pn − pn+1)ϕn+3g(xn−t+1) − 3∆ϕn+2∆(sn∆(qn∆xn) + 3∆2ϕn+1∆(qn∆xn)

− ∆3ϕn(qn∆xn) 

Let {xn} be a nonoscillatory solution such that {xn} is positive. Define a function yn as,  

yn = xn − ψn  

To prove the theorem we define the following 2 cases:  

Case 1: If  {yn} is positive then {∆yn}, {∆2yn} and {∆3yn} are eventually of one sign and 

monotonic, hence {∆3yn} is an increasing sequence. To prove this we assume {∆3yn} to be 

eventually negative. Since {∆yn} is decreasing, then eventually it must become negative. This 

is a contradiction and thus {∆3yn} ≥ 0.  

Case 2: If {∆yn} is negative then lim
n→∞

xn = lim
n→∞

yn = h where h is a nonnegative number. In 

order to prove this we take {∆yn} to be positive then {∆3yn} ≥ 0. This implies {yn} to be 

unbounded and gives a contradiction. Thus  {∆yn} must be eventually negative. Now to show 

 lim
n→∞

xn = lim
n→∞

yn = h it is sufficient to prove h = 0. Consider ∆xn with the positive 

sequence {ϕn} and taking summation from n to  j by the fact {∆3yn} ≥ 0 then,  
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−∆3yn + ∑(pv − pv+1)g(xv−t+1
 )

j

v=n

≤ 0 

Now summing from j to k we have  

−∆2yn + ∑ (∑(pv − pv+1)g(xv−t+1
 )

j

v=n

)

k

n=j

≤ 0 

Repeating the above procedure we get,  

∆yn + ∑ (∑(v − n + 1)(pv − pv+1)g(xv−t+1
 )

j

v=n

)

k

n=j

≤ 0 

 

Taking summation from  to ∞,  

∆yn + ∑ (∑ (∑
(v − n + 1)(v − n + 2)

2

j

v=n

)

k

j=n

) (pv − pv+1)g(xv−t+1
 )

∞

k=n

≤ 0 

Or a final summation from N to ∞ yield,  

h − yn + ∑ (
(v − N + 1)(v − N + 2)(2v − 2N + 3)

6
) (pv − pv+1)g(xv−t+1

 )

∞

v=N

≤ 0 

where h is a positive constant. From (2) and above equation we get,   

lim
n→∞

inf xn g(xn−t+1
 ) = lim

n→∞
yn = 0  

This contradicts our assumption and the theorem is proved.  

Example-1: We consider the following difference equation, 

∆4xn −
2n−4

900
(30 − 21(−1)n)xn

2 =
21(−1)n

2n+4
                                   (3) 

It satisfies all the conditions of Theorem 1 with {ψn} = {
(−1)n

2n
}. Hence the bounded solutions 

of (3) are almost oscillatory and {xn} = {
30

2n
} is one such solution.  

ASYMPTOTIC BEHAVIOR OF DIFFERENCE EQUATION 

The necessary and sufficient conditions of asymptotic behavior of (1) are obtained. We do 

not require pn > 0 and pn+1 > 0. Let Rn, Sn, Qn, Dn be defined by  

Rn = ∑
1

rt

n−1
t=n0

,     Sn = ∑
1

st

n−1
t=n0

,  Qn = ∑
1

qt

n−1
t=n0

, Dn = ∑
RtSt

qt

n−1
t=n0
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Theorem 2: Let f(α) be non-decreasing and h > 0 be a constant such that rn ≥ h for all n ≥

n0. If  

∑ [ Dn+1 + Rn+1Sn+1Qn+1]

∞

n=n0

|τn| < ∞ 

and  

∑ [ Dn+1 + Rn+1Sn+1Qn+1]

∞

n=n0

|pn − pn+1| < ∞ 

then (1) has bounded nonoscillatory solution that approaches a nonzero limit. 

Proof: Take xn−t+1
 ≥ h/2 for h > 0 then we have,  

∑ [ Dn+1 + Rn+1Sn+1Qn+1]

∞

n=n0

|τn| <
h

4
 

and  

∑ [ Dn+1 + Rn+1Sn+1Qn+1]

∞

n=n0

|pn − pn+1| <
h

4f(2h)
 

Let 𝔹N be the Banach space and ℓ ⊆ 𝔹N and define W: ℓ → 𝔹N, 

(WX)n =
3h

2
+

1

2
∑ ((v − n + 1)(v − n + 2) ((pvg(xv−t+1) − pv+1g(xv−t+1)) − τv))

∞

v=n

 

(WX)n =
3h

2
+ ∑ K(v, n)((pv − pv+1)g(yv−t+1) − τv)

∞

v=n

 

where K(v, n) = Dv+1 − Dn − RnSv+1Tv+1 − Rv+1Sv+1Tn − Rv+1SnTv+1 + Rv+1Sv+1Tv+1. 

From Theorem 1 we observe that X = {xn}. Thus (1) has nonoscillatory solution that 

approaches a nonzero limit.  

Example-2: Consider the following difference equation, 

∆2(n2∆2xn) − 2−n (1 +
(−1)n

2n
x n−m

2γ−1) (
43n2 − 76n − 60

8
) 

=
(−1)n+1

22n+4
(

1

2n−m
)

γ

(43n2 − 76n − 60)                               (4) 

where γ is a ratio of the odd positive integers. Every condition of Theorem 2 are satisfied so 

(4) has a bounded nonoscillatory solution that approaches a nonzero limit. 
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The succeeding theorem is a special case of Theorem 2. We provide examples for proving the 

results.  

Theorem 3: Let rn = sn = qn ≡ 1 and g be non-decreasing. If  

∑ n2

∞

n=n0

|pn − pn+1| < ∞ 

and  

∑ n2

∞

n=n0

|τn| < ∞ 

then (1) has nonoscillatory solution that approaches a non-zero real number as n → ∞. 

Proof: Let h > 0 be given so that  

∑ n2

∞

n=N

|pn − pn+1| <
h

2
 

1

g(2h)
 

and  

∑ n2

∞

n=N

|τn| <
h

2
          

Let 𝔹N be a Banach space for every real sequence X = {xn} with norm,  

‖X‖ = supn≥N
  |xn| 

Define W: l → 𝔹N and by h ≤ xn ≤ 2h we get,  

(WX)N =
3h

2
+ ∑ (

(v − n + 1)(v − n + 2)(2v − 2n + 3)

6
(pvg(xv−t+1) − pv+1g(xv−t+1)

∞

v=n

− τn)) 

Thus ℓ is closed, bounded and convex subset of 𝔹N. Now to show T maps ℓ into itself then,  

|(WX)N −
3h

2
| ≤ ∑ v2(|pv − pv+1|g(2h) + |τv|) ≤

h

2

∞

t=n

 

 Let Y = {yn} and Xi = {xn
i } such that ‖Xi − Y‖ = 0 then the continuity of g shows that  

lim
i→∞

‖(WXi)N − (WY)N‖ = 0 
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Hence W is continuous. Now to show Wℓ is relatively compact. Let X = {xn} ∈ ℓ for any 

k > n > N and Wℓ is uniformly Cauchy we have,  

|Wxn − Wxk| ≤ ∑ v2(|pv − pv+1|g(2h) + |τv|)

∞

t=n

 

For given ε there exist an integer N1 such that k > n ≥ N1 then |Wxn − Wyk| < ε. Thus Wℓ 

is uniformly Cauchy and hence Wℓ becomes relatively compact. Thus (1) has nonoscillatory 

solution for X = {xn} with required properties.  

Example-3: We consider the following difference equation,  

∆4xn − 2n (
1

16
+ (−1)n2(n+1) 2⁄ ) xn

2 = (−1)n+12(
1−n

2
)                            (5) 

for n ≥ 3  that satisfies all the conditions of Theorem 3. Thus (5) has nonoscillatory solution 

that approaches a nonzero real number. In fact, {xn} = {
1

2n
} is one such solution.  

 

BOUNDED SOLUTION OF DIFFERENCE EQUATION 

We establish the necessary and sufficient conditions of boundedness of every nonoscillatory 

solution of (1). Assume the following,  

∑
1

rn

∞

n=1

= ∑
1

sn

∞

n=1

= ∑
1

qn

∞

n=1

< ∞ 

then solutions of (1) are either type (i) or type (ii).  

Lemma 1: Any nonnegative solution  {xn} of (1) belong to the below classes: 

If xn > 0 and  ∆xn > 0 then  ∆(sn∆(qn∆xn)) > 0  (i) 

If  xn > 0 and  ∆xn > 0 then  ∆(sn∆(qn∆xn)) < 0  (ii) 

If  xn > 0 and   ∆xn < 0 then  ∆(sn∆(qn∆xn)) > 0  (iii) 

If  xn > 0 and  ∆xn < 0 then  ∆(sn∆(qn∆xn)) < 0  (iv)  

for all sufficiently large n.  

Proof: Assume {xn} to be an nonnegative solution of (1). From (1) we have ∆(qn∆xn) > 0 

and ∆(rn∆(sn∆(qn∆xn)) > 0 so {∆(sn∆(qn∆xn))}, {∆xn} and {xn} are eventually of one 

sign. Hence the lemma is proved.  

We consider solutions of types (i) and (ii) only for proving the rest of the theorems. 
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Theorem 4: If g is an increasing function and g(x)/x is a decreasing function for x > 0 then,  

∑
1

ql

∞

l=1

∑
1

sk

∞

k=1

∑
1

rj

k−1

j=1

∑(τi − (pi − pi+1))

j−1

i=1

< ∞                                   (E) 

Here every solution of type (i) is said to be bounded. 

Proof: Assume {xn} to be an unbounded solution of (1) and if xn > 0,  ∆xn > 0, 

∆(sn∆(tn∆xn)) > 0 then,  

τi − [pn − pn+1]g(xn−m+1) =
∆(rn∆(sn∆(qn∆xn)))

g(xn−t+1
 )

 

=
rn+1∆ (sn+1∆(qn+1∆xn+1)))

g(xn−t+1
 )

−
rn∆(sn∆(qn∆xn)))

g(xn−t+1
 )

 

≥
rn+1∆ (sn+1∆(qn+1∆xn+1))

g(xn−t+1
 )

−
rn∆(sn∆(qn∆xn))

g(xn−t
 )

 

= ∆ [
rn∆(sn∆(qn∆xn))

g(xn−t
 )

]                                               

Summing from i = N  to i = j − 1, 

∑(τi − [pi − pi+1]g(xi−t+1))

j−1

i=N

+
rN∆ (sN∆(qN∆xN))

g(xN−t
 )

≥
rj∆ (sj∆(qj∆xj))

g(xj−t
 )

 

Hence,  

1

rj
∑(τi − [pi − pi+1]g(xi−t+1))

j−1

i=N

+
rN∆ (sN∆(qN∆xN))

rjg(xN−t
 )

≥
∆ (sj∆(qj∆xj))

g(xj−t
 )

 

≥
sj+1∆(qj+1∆xj+1)

g(xj−t
 )

−
sj∆(qj∆xj)

g(xj−t
 )

 

= ∆ [
sj∆(qj∆xj)

g(xj−t−1
 )

]                 

Summing again from j = N  to j = k − 1,  

∑
1

rj

k−1

j=N

∑(τi − [pi − pi+1]g(xi−t+1))

j−1

i=N

+ ∑
rN∆ (sN∆(qN∆xN))

rjg(xN−t
 )

k−1

j=N

 

             ≥
sk∆(qk∆xk)

g(xk−t−1
 )

−
sN∆(qN∆xN)

g(xN−t−1
 )
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Hence  

1

sk
∑

1

rj

k−1

j=N

∑(τi − [pi − pi+1]g(xi−t+1))

j−1

i=N

+
1

sk
∑

rN∆ (sN∆(qN∆xN))

rjg(xN−t
 )

k−1

j=N

+
sN∆(qN∆xN)

skg(xN−t−1
 )

 

≥
∆(qk∆xk)

f(xk−t−1
 )

                           

≥
qk+1∆xk+1

g(xk−t−1
 )

−
qk∆xk

g(xk−t−1
 )

 

≥
qk+1∆xk+1

g(xk−t−1
 )

−
qk∆xk

g(xk−t−2
 )

  

= ∆ [
qk∆xk

g(xk−t−2
 )

]                     

A final summation from k = N  to k = l − 1 yields, 

∑
1

sk

l−1

k=N

∑
1

rj

k−1

j=N

∑(τi − [pi − pi+1]g(xi−t+1))

j−1

i=N

+ ∑
1

sk

l−1

k=N

∑
rN∆ (sN∆(qN∆xN))

rjg(xN−t
 )

k−1

j=N

+ ∑
sN∆(qN∆xN)

skg(xN−t−1
 )

l−1

k=N

≥
ql∆xl

g(xl−t−2
 )

−
qN∆xN

g(xN−t−2
 )

 

∑
1

sk

l−1

k=N

∑
1

rj

k−1

j=N

∑(τi − [pi − pi+1]g(xi−m+1))

j−1

i=N

+ ∑
1

sk

l−1

k=N

∑
rN∆ (sN∆(qN∆xN))

rjg(xN−t
 )

k−1

j=N

+ ∑
sN∆(qN∆xN)

skg(xN−t−1
 )

l−1

k=N

+
qN∆xN

g(xN−t−2
 )

≥
ql∆xl

g(xl−t−2
 )

 

Hence,  

∆xl

xl
≤

1

ql
∑

1

sk

l−1

k=N

∑
1

rj

k−1

j=N

∑(τi − [pi − pi+1]g(xi−t+1))

j−1

i=N

+
1

ql
∑

1

sk

l−1

k=N

∑
rN∆ (sN∆(qN∆xN))

rjg(xN−t
 )

k−1

j=N

+
1

ql
∑

sN∆(qN∆xN)

skg(xN−t−1
 )

l−1

k=N

+
qN∆xN

qlg(xN−t−2
 )

 

Here g(x)/x is non-increasing for x > 0, so we have,  

∆xl

xl
≤

g(xN
 )

xN

∆xl

xl
≤

g(xN
 )

xN

1

ql
∑

1

sk

l−1

k=N

∑
1

rj

k−1

j=N

∑(τi − [pi − pi+1]g(xn−t+1))

j−1

i=N
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+
g(xN

 )

xN

1

ql
∑

1

sk

l−1

k=N

∑
rN∆ (sN∆(qN∆xN))

rjg(xN−t
 )

k−1

j=N

+
g(xN

 )

xN
(

1

ql
) ∑

sN∆(qN∆xN)

skg(xN−t−1
 )

l−1

k=N

+
g(xN

 )

xN
(

qN∆xN

qlf(xN−t−2
 )

)                                                 (E1) 

Final summation from l = N  to k = n − 1 

∑
∆xl

xl

n−1

l=N

=
∆xn

xn
−

∆xN

xN
= log(∆xn) − log (xN) 

Now summing both sides of (E1) we get,  

∑
∆xl

xl

n−1

l=N

≤
g(xN

 )

xN
∑

1

ql

n−1

l=N

∑
1

sk

l−1

k=N

∑
1

rj

k−1

j=N

∑(τi − [pi − pi+1]g(xi−t+1))

j−1

i=N

 

+
g(xN

 )

xN
∑

1

ql

n−1

l=N

∑
1

sk

l−1

k=N

∑
rN∆ (sN∆(qN∆xN))

rjg(xN−t
 )

k−1

j=N

           

                    +
g(xN

 )

xN
∑

1

ql

n−1

l=N

∑
sN∆(qN∆xN)

skf(xN−t−1
 )

l−1

k=N

+
g(xN

 )

xN
∑

1

ql

n−1

l=N

(
qN∆xN

g(xN−t−2
 )

) 

This implies,  

log(∆xn) − log (xN) ≤
g(xN

 )

xN
∑

1

ql

n−1

l=N

∑
1

sk

l−1

k=N

∑
1

rj

k−1

j=N

∑(τi − [pi − pi+1]g(xn−t+1))

j−1

i=N

 

+
g(xN

 )

xN
∑

1

ql

n−1

l=N

∑
1

sk

l−1

k=N

∑
rN∆ (sN∆(qN∆xN))

rjg(xN−t
 )

k−1

j=N

           

                    +
g(xN

 )

xN
∑

1

ql

n−1

l=N

∑
sN∆(qN∆xN)

skg(xN−t−1
 )

l−1

k=N

+
g(xN

 )

xN
∑

1

ql

n−1

l=N

(
qN∆xN

g(xN−t−2
 )

) 

From (1) it follows the convergence of series given as, 

∑
1

ql

∞

l=1

∑
1

sk

∞

k=1

∑
1

rj

∞

j=1

 

Here we observe that xn converges, so {xn} is bounded which is a contradiction. Thus the 

proof is completed.  

Example-4: We consider the following difference equation, 
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∆2((n + 1)∆2xn) = (n + 3)xn+4 + (5n + 9)xn+2 − 2[(2n + 5)xn+3 + (n + 1)xn+1] + 1 

(6) 

Here every condition of Theorem 4 is satisfied and { xn} = {
n

n+1
} is one such solution of (6).  

 

Theorem 5: If the condition (E) holds then every solution of type (ii) is bounded. 

Proof: Let {xn} be a solution of (1). If xn > 0 and ∆xn > 0 then ∆(sn∆(qn∆xn)) < 0, hence 

summing from  n = N to n = i − 1 we have,  

si∆(qi∆xi) < sN∆(qN∆xN) 

∆(qi∆xi) <
sN∆(qN∆xN)

si
 

Summing again from  i = N to i = j − 1 then  

∆xj <
sN∆(qN∆xN)

qj
∑

1

si

j−1

i=N

+
qN∆xN

qj
 

Final summation from  j = N to j = n − 1 then  

xn < sN∆(qN∆xN) ∑
1

si

j−1

i=N

∑
1

qj

n−1

j=N

+ qN∆xN ∑
1

qj

n−1

j=N

+ xN  

As (E) implies below condition, 

∑
1

sn

∞

n=1

= ∑
1

qn

∞

n=1

< ∞    and   sN∆(qN∆xN) > 0 

the solution {xn} must be bounded. This completes the proof.  

Example-5: We consider the below difference equation,  

∆(n∆((n + 1)∆2xn))

=
(−1) n5

(n + 4)(n + 3)(n + 2)(n + 1)
[38xn

5 + 26xn
4 + 153xn

3 + 122xn
2 + 38xn

+ 4] 

(7) 

Thus every condition of Theorem 5 is satisfied. Here {xn} = {
1

n
} is one such solution of (7). 

. 
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4. Conclusion:  

From this paper we conclude that the necessary and sufficient conditions for asymptotic 

behavior and boundedness of (1) are established using contraction mapping principle, 

summation averaging technique and comparison method.  
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