On the Detour Based Indices

Gopika S. ${ }^{1}$, Lakshmi Anil ${ }^{\dagger}$, P. D. Aiswarya ${ }^{2}$, Supriya Rajendran ${ }^{3}$

Article Info

Page Number: 951-966
Publication Issue:
Vol. 71 No. 3s (2022)

Article History

Article Received: 22 April 2022
Revised: 10 May 2022
Accepted: 15 June 2022
Publication: 19 July 2022

Abstract

Topological index is a real value associated with a graph that should be structurally invariant. Many topological indices were defined, and many among them have been used to model chemical and pharmacological properties, as well as many other features of molecules. We study two topological indices based on detour distance. Detour index for any graph that is connected is defined as maximum distances or detour distances between every unordered paired vertices of G. Detour Harary index for any graph that is connected is defined as the sum of reciprocal of the maximum distances or detour distances between every unordered paired vertices of G. Here, in this paper we establish formulae to calculate the Detour index and detour Harary index of a few graph structures and also corona product of two particular graphs. Also we compare the results for both these indices

1 Introduction

Let G be a simple connected graph with $V(G)$ as the vertex set and $E(G)$ as the edge set. If any two vertices $a, b \in V(G)$ are considered, the distance between them, denoted by $d(a, b)$, is defined as the length of the shortest path between a and b in G, whereas the detour distance, denoted by $\mathrm{D}(\mathrm{a}, \mathrm{b})$, is defined as the length of the longest path between a and b in G .

Topological index is a real value associated with a graph that should be structurally invariant. Many topological indices were defined, and many among them have been used to model chemical and pharmacological properties, as well as many other features of molecules. [1].

Wiener index [2] for any graph that is connected is defined to be the sum of shortest distances or simple distances between every unordered paired vertices of G .
$\mathrm{W}(\mathrm{G})=\sum_{1 \leq \mathrm{i} \leq \mathrm{j} \leq \mathrm{n}} \quad \mathrm{d}(\mathrm{vi}, \mathrm{vj})$
Wiener index is known as the first mathematical invariant which reflects a molecular graph's topological structure. It is one of the most widely used topological indices which have high interdependence with numerous physical and chemical properties of molecular compounds (for more on Wiener index refer [3] and [4]). This index was introduced by Harold Wiener and he developed this to find out the physical properties of paraffin in 1947.

[^0]If we are using the distance matrix (an $\mathrm{n} \times \mathrm{n}$ matrix consisting of all distances between vertices v_{i} and v_{j} with vertex set $\left.\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{n}}\right\}\right)$ then, the Wiener index is half the sum of the distance matrix's off-diagonal elements.

Detour index [5] for any graph that is connected is defined to be the sum of maximum distances or detour distances between every unordered paired vertices of G.
$\omega(\mathrm{G})=\sum_{1 \leq i \leq j \leq n} \quad \mathrm{D}(\mathrm{vi}, \mathrm{vj})$.
The graphs with minimal and maximum detour indices for the n-vertex unicyclic graphs with cycle length r (where $3 \leq r \leq n-2$ for $n \geq 5$) were found in [6], as were the bounds for the detour index.

If we are using the detour matrix (an $\mathrm{n} \times \mathrm{n}$ matrix consisting of all detour distances between vertices v_{i} and v_{j} with vertex set $\left.\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{n}}\right\}\right)$ then, the detour index is half the sum of the detour matrix's off-diagonal entries. Frank Harary [7] proposed the detour index into mathematical literature in 1969 and it was discussed by Buckley and Harary [8] in 1990. It was instigated into chemistry under the title "the maximum path matrix of a molecular graph" [$9,10,11,12,13]$ in 1994 and theoretical graph theory contribution to find some interest in chemical literature $[14,15,16,17,18,19,20,21,22]$.

Another important index which we are discussing here is the Harary index, $\mathrm{H}(\mathrm{G})$, which was established in 1993 by Plavi et al. [23] and Ivanciuc et al. [24] independently. On the occasion of Professor Frank Harary's $70^{\text {th }}$ birthday, the Harary index was named after him. The Harary index is defined as, sum of the reciprocal of distances between unordered pair of vertices of G.
$H(G)=\sum_{1 \leq i<j \leq n} \frac{1}{d\left(v_{i}, v_{j}\right)}$.
The Harary index is equal to half the sum of the reciprocal of the off-diagonal components of the distance matrix while using the distance matrix.

Detour Harary index [25], $\omega \mathrm{H}(\mathrm{G})$ for any graph that is connected is defined to be sum of the reciprocal of maximum distances or detour distances between every unordered paired vertices of G.
$\omega H(G)=\sum_{1 \leq i<j \leq n} \frac{1}{D\left(v_{i}, v_{j}\right)}$.
The detour Harary index is half the sum of the reciprocal of the detour matrix's off-diagonal components while using the detour matrix.

In [25], it is mentioned that the Detour-Harary index and Harary index of a tree graph are the same and they studied the Detour-Harary index for some topological structures containing cycles. In this paper we are establishing the formulae to calculate Detour index for complete graph, cycle, wheel, friendship graph, lollipop graph, starred complete graph, n-partite graph and a graph obtained by performing the graph operation corona and found the formula to calculate the Detour Harary index for complete graph, wheel, friendship graph, starred
complete graph, n-partite graph and a graph obtained by performing the graph operation corona.

2 Detour Index

A complete graph is a simple undirected graph with a unique edge connecting every distinct pair of vertices. K_{n} denotes the complete graph with n vertices. [26]

Theorem 2.1 If $\mathrm{G} \cong \mathrm{K}_{\mathrm{n}}$, with $\mathrm{n} \geq 3$ then,
$\omega(G)=\frac{n(n-1)^{2}}{2}$

Proof:

Consider K_{n} with vertex set, $\mathrm{V}(\mathrm{G})=\left\{\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right\}$.
Distance between any pair of vertices $\left(\mathrm{x}_{\mathrm{i}}, \mathrm{x}_{\mathrm{j}}\right)$ where $(\mathrm{i}, \mathrm{j}) \in[1, \mathrm{n}]$ with $\mathrm{j}>\mathrm{i}$
i.e, $d\left(\mathrm{x}_{\mathrm{i}}, \mathrm{x}_{\mathrm{j}}\right)=1$.

Detour distance between any pair of vertices $\mathrm{x}_{\mathrm{i}}, \mathrm{x}_{\mathrm{j}}$ is $\mathrm{n}-1$.

$$
\mathrm{D}\left(\mathrm{x}_{\mathrm{i}}, \mathrm{x}_{\mathrm{j}}\right)=\mathrm{n}-1
$$

Consider a vertex x_{i},
Distance from x_{i} to all other vertices [i.e, $\left.(n-1)\right]$ vertices is then $(n-1)^{2}$.
Total number of vertices in $K_{n}=n$.
Sum of detour distances of every pair of vertices,

$$
\sum_{i, j=1}^{n} D\left(x_{i}, x_{j}\right)=n(n-1)^{2}
$$

therefore Detour index,
$\omega(G)=\frac{n(n-1)^{2}}{2}$
A cycle graph C_{n}, sometimes simply known as an n -cycle, is a graph with n vertices and a single cycle that passes through all nodes. [27]

Theorem 2.2 If $G \cong C_{n}$, with $n \geq 3$, then,
when n is odd, $\quad \omega(G)=\frac{n}{8}(n-1)(3 n-1)$
when n is even, $\omega(G)=\frac{n^{2}}{8}(3 n-4)$

Proof:

Consider C_{n} with vertex set, $\mathrm{V}(\mathrm{G})=\left\{\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right\}$.

Case 1: When n is odd

$$
\begin{aligned}
& D\left(x_{i}, x_{i+1}\right)=(n-1) n \\
& D\left(x_{i}, x_{i+2}\right)=(n-2) n
\end{aligned}
$$

$D\left(x_{i}, x_{i+\left(\frac{n-1}{2}\right)}\right)=\left(n-\left(n-\frac{1}{2}\right)\right) n$
In general,
$D\left(x_{i}, x_{j}\right)=n\left[(n-1)+(n-2)+\ldots+\left(n-\left(\frac{n-1}{2}\right)\right)\right]$.
Therefore,
$\sum_{i<j} D\left(x_{i}, x_{j}\right)=n\left[\sum_{k=1}^{\frac{n-1}{2}}(n-k)\right]$.
So, the detour index $\omega(\mathrm{G})$ is defined as,

$$
\begin{aligned}
& \omega(G)=\sum_{i<j} D\left(x_{i}, x_{j}\right) \\
& \quad=n\left[\sum_{k=1}^{\frac{n-1}{2}}(n-k)\right] \\
& =\frac{n}{8}(n-1)(3 n-1)
\end{aligned}
$$

which is the detour index of cycle with odd number of vertices.
Case 2: When n is even

$$
\begin{aligned}
& \mathrm{D}\left(\mathrm{x}_{\mathrm{i}}, \mathrm{x}_{\mathrm{i}+1}\right)=(\mathrm{n}-1) \mathrm{n} \\
& \mathrm{D}\left(\mathrm{x}_{\mathrm{i}}, \mathrm{x}_{\mathrm{i}+2}\right)=(\mathrm{n}-2) \mathrm{n}
\end{aligned}
$$

$D\left(x_{i}, x_{i+\left(\frac{n-1}{2}\right)}\right)=\left(n-\left(n-\frac{1}{2}\right)\right) n$
$D\left(x_{i}, x_{i+\frac{n}{2}}\right)=\left(\frac{n}{2}\right) n$
In general,
$D\left(x_{i}, x_{j}\right)=n\left((n-1)+(n-2)+\ldots+\left(n-\left(\frac{n-1}{2}\right)\right)+\frac{n}{2}\right)$.
Therefore,
$\sum_{i<j} D\left(x_{i}, x_{j}\right)=n\left[\sum_{k=1}^{\frac{n-2}{2}}(n-k)+\frac{n}{2}\right]$.
So, the detour index $\omega(\mathrm{G})$ is defined as,
$\omega(G)=\sum_{i<j} D\left(x_{i}, x_{j}\right)=n\left[\sum_{k=1}^{\frac{n-2}{2}}(n-k)+\frac{n}{2}\right]=\frac{n^{2}}{8}(3 n-4)$
which is the cycle's detour index when the number of vertices are even.
A wheel graph is a graph formed by connecting a single vertex to all vertices of a cycle. While some authors [28] use W_{n} to denote a wheel graph with n vertices ($n \geq 4$) some others [29] use W_{n} to denote a wheel graph with $n+1$ vertices ($n \geq 3$), which is formed by connecting a single vertex to n vertices of a cycle. In the rest of this article, we use the latter notation.

Theorem 2.3 If $\mathrm{G} \cong \mathrm{W}_{\mathrm{n}}$, with $\mathrm{n} \geq 3$, then,
$\omega(G)=\frac{1}{2} n^{2}(n+1)$

Proof:

Consider W_{n}, with vertex set $V(G)=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$.
The detour distance between any two pair of vertices $\left(\mathrm{x}_{\mathrm{i}}, \mathrm{x}_{\mathrm{j}}\right)=\mathrm{n}$
Total number of such pairs $=\sum_{i=1}^{n} i$

$$
\begin{gathered}
\omega(G)=\sum_{i<j} D\left(x_{i}, x_{j}\right) \\
=n \sum_{i=1}^{n} i=n \times \frac{1}{2}(n(n+1))=\frac{1}{2} n^{2}(n+1)
\end{gathered}
$$

The friendship graph (or Dutch windmill graph) $\mathrm{F}_{\mathrm{n}}[31]$ is a planar undirected graph with $2 \mathrm{n}+$ 1 vertices and 3n edges [30] which can be formed by joining n clones of the cycle graph C_{3} at a common vertex.

Theorem 2.4 If $G \cong F_{n}$ with $n \geq 1$, then,

$$
\omega(G)=2 n(4 n-1)
$$

Proof:

Consider F_{n} having vertex set $\mathrm{V}(\mathrm{G})=\left\{\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{2 \mathrm{n}+1}\right\}$
The detour distance between any two pair of vertices $\left(\mathrm{x}_{\mathrm{i}}, \mathrm{x}_{\mathrm{j}}\right)$ is denoted by
$\mathrm{D}\left(\mathrm{x}_{\mathrm{i}}, \mathrm{x}_{\mathrm{j}}\right)$ where $(\mathrm{i}, \mathrm{j}) \in[1, \mathrm{n}] \quad$ with $\mathrm{i}<\mathrm{j}$
case 1: Detour distance from the central vertex to all another vertex $=2$
There are 2 n such vertices.
Therefore, the sum of detour distance from central vertex to all other $=2 \times 2 n=4 n$
case 2: Detour distance from non-central vertex to other non-central vertices of
a) Same cycle $=2$

There are n such vertices
Therefore, the sum of detour distances of such vertices $=2 \times n=2 n$
b) Different cycle $=4$

Number of such vertices

$$
\begin{aligned}
& =\sum_{i=1}^{n} 4(i-1) \\
& =2 n(n-1)
\end{aligned}
$$

Therefore,
the sum of detour distance of such vertices $=4 \times 2 n(n-1)=8 n(n-1)$
$\omega(G)=4 n+2 n+8 n(2)-8 n=2 n(4 n-1)$.
An (n, m)lollipop graph [32] is a special type of graph consisting of a complete graph on n vertices and a path graph with m vertices, connected with a bridge.

Theorem 2.5 If $\mathrm{G} \cong \mathrm{K}_{\mathrm{n}} \mathrm{P}_{\mathrm{m}}$, with $n \geq 3, m \geq 2$,
then,
$\omega(G)=\frac{n}{2}(n-1)^{2}+\frac{m}{6}(m+1)(m+2)+\frac{m}{2}(n-1)(2 n+m-1)$

Proof:

Consider K_{n} with vertex set $\left\{y, x_{1}, x_{2}, \ldots, x_{n-1}\right\}$ and $P_{m} \quad$ with vertex set $\left\{y, y_{1}, y_{2}, \ldots, y_{m}\right\}$
Let y be the vertex common to K_{n} and P_{m}
From Theorem 2.1, Detour index of complete graph
$K_{n}=\frac{n}{2}(n-1)^{2}$
From Result, Detour index of path
$P_{m}=\frac{m}{6}\left(m^{2}-1\right)$
Here, by definition of lollipop graph, there is an extra edge(bridge) from the vertex u.
So, Considering the path $y-y_{1}-y_{2}-\ldots-y_{m}$,
Detour index of path
$P_{m+1}=\frac{(m+1)}{6}\left((m+1)^{2}-1\right)=\frac{m}{6}(m+1)(m+2)$
Consider vertex x_{1}
Detour distance from x_{1} to $\mathrm{y}=\mathrm{n}-1$
So, Detour distance from x_{1} to $\mathrm{y}_{\mathrm{i}}=(\mathrm{n}-1)+\mathrm{i} \quad[$ where, $1 \leq \mathrm{i} \leq m]$
Sum of detour distances between pair of vertices

$$
\left(\mathrm{x}_{1}, \mathrm{y}_{\mathrm{i}}\right)=\sum_{\mathrm{i}=1}^{\mathrm{m}}(\mathrm{n}-1+\mathrm{i})
$$

Since there are $\mathrm{n}-1$ such $x_{i}^{\prime} s$, total sum of detour distances between pair of vertices $\left(\mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{j}}\right)$

$$
\begin{aligned}
& =(n-1) \times \sum_{i=1}^{m}(n+i-1) \\
& =(n-1)\left[m n-m+\frac{\left.m^{2}+m\right)}{2}\right] \\
& =\frac{m}{2}(n-1)(2 n+m-1)
\end{aligned}
$$

Detour Index of $K_{n} P_{m}$,
$\omega(G)=\frac{n^{3}-2^{n}+n}{2}+\frac{m\left(m^{2}+3 m+2\right)}{6}+\frac{m}{2}(n-1)(2 n+m-1)$
Let K_{n} be a complete graph on n vertices. The graph obtained by identifying one vertex of K_{n} with central vertex of star $\mathrm{K}_{1, \mathrm{~m}}$ is called starred complete graph [33]. It is represented as $\mathrm{K}_{\mathrm{n}} \mathrm{S}_{\mathrm{m}}$.

Theorem 2.6 If, $\mathrm{G} \cong \mathrm{K}_{\mathrm{n}} \mathrm{S}_{\mathrm{m}}$ with, $\mathrm{n} \geq 3, \mathrm{~m} \geq 1$, then,
$\omega(G)=\frac{n(n-1)^{2}}{2}+m^{2}+n(n-1) m$

Proof:

Consider K_{n} with vertex set $\left\{\mathrm{u}, \mathrm{u}_{1}, \mathrm{u}_{2}, \ldots, \mathrm{u}_{\mathrm{n}-1}\right\}$ and S_{m} be a star with vertex set $\left\{u, v_{1}, v_{2}, \ldots, v_{n}\right\}$

Let u be the identified vertex which is common to K_{n} and S_{m}.
Detour index of complete graph
$K_{n}=\frac{n(n-1)^{2}}{2}$
Detour index of star $S_{m}=(m-1)^{2}$, where m is the number of vertices of star.
But in the graph $\mathrm{K}_{\mathrm{n}} \mathrm{S}_{\mathrm{m}}$ we are considering m as the number of leaf vertices of the star.
So here, $\mathrm{m}=\mathrm{m}+1$.
Therefore, Detour index of $S_{m}=m^{2}$
Now, Detour distance from u_{i} 's to v_{i} 's and vice versa is, $(\mathrm{n}-1)+1=\mathrm{n}$
Since there are $(n-1) m$ such pairs,
Sum of detour distances between all such pairs of vertices $=n(n-1) m$.
Therefore, Detour index of starred complete graph
$\omega(G)=\frac{n(n-1)^{2}}{2}+m^{2}+n(n-1) m$

An n-partite graph [34] is a graph whose graph vertices can be partitioned into n disjoint sets so that no two vertices within the same set are adjacent.

Theorem 2.7 If, $\mathrm{G} \cong \mathrm{K}_{1,2, \ldots, \mathrm{n}}$ with $\mathrm{n}>3$, then, $\omega(\mathrm{G})=\left(\mathrm{S}_{\mathrm{n}}-1\right) \mathrm{S}_{\mathrm{n}} \mathrm{C}_{2}$
where S_{n} is the sum of elements in each set of $K_{1,2, \ldots, n}$.

Proof:

Consider $\mathrm{K}_{1,2, \ldots, \mathrm{n}}$ be an n-partite graph having vertex set
$\left\{\mathrm{u}_{11}, \mathrm{u}_{12}, \ldots, \mathrm{u}_{1 \mathrm{k}_{1}}\right\} \cup\left\{\mathrm{u}_{21}, \mathrm{u}_{22}, \ldots, \mathrm{u}_{2 \mathrm{k}_{2}}\right\} \cup \ldots \cup\left\{\mathrm{u}_{\mathrm{n} 1}, \mathrm{u}_{\mathrm{n} 2}, \ldots, \mathrm{u}_{\mathrm{nk}_{\mathrm{m}}}\right\}$ where, $\mathrm{n}>3$.
Detour distance from every $u_{n_{k}}$ to every $u_{n k_{k+1}}=S_{n}-1$
And there are $\mathrm{S}_{\mathrm{n}} \mathrm{C}_{2}$ such possibilities
Therefore, Detour index of n-partite graph,
$\omega(\mathrm{G})=\left(\mathrm{S}_{\mathrm{n}}-1\right) \mathrm{S}_{\mathrm{n}} \mathrm{C}_{2}$
The corona product [35] of two graphs G and H is defined as the graph obtained by taking one copy of G and $|V(G)|$ copies of H and joining the $i^{\text {th }}$ vertex of G to every vertex in the $i^{\text {th }}$ copy of H .

Theorem 2.8 If $G \cong K_{n \odot} P_{1}$, where K_{n} is a complete graph with $n \geq 3$ and P_{1} is a path with 1 vertex, then,
$\omega(G)=n\left[\frac{(n-1)^{2}}{2}+n(n-1)+\frac{n^{2}-1}{2}+1\right]$

Proof:

Consider K_{n} with vertex set $\left\{\mathrm{u}_{1}, \mathrm{u}_{2}, \ldots, \mathrm{u}_{\mathrm{n}}\right\}$ and let $\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{n}}\right\}$ represent the outer vertices P_{1}.

From theorem(2.1), detour index for complete graph is
$\frac{n}{2}(n-1)^{2}$
Consider vertex u_{1}
Detour distance from u_{1} to $v_{i}=(n-1)+1=n$
Since there are $(n-1)$ such u_{i} 's
Therefore, Total of detour distances between pair of vertices

$$
\begin{gathered}
\left(u_{i}, v_{j}\right)=n(n-1) \times n \\
=n^{2}(n-1)
\end{gathered}
$$

Consider v_{1}
Detour distance from v_{1} to $\mathrm{v}_{\mathrm{i}}=\mathrm{n}+1$
Therefore, Total detour distance between pair of vertices

$$
\left(\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{j}}\right)=(\mathrm{n}+1)(\mathrm{n}-1) \times \mathrm{n}=\mathrm{n}(\mathrm{n}-1)(\mathrm{n}+1)
$$

Detour distance between pair of adjacent vertices u_{i} and $v_{i}=1$
There are n such pairs
Therefore, Sum of detour distances between $\left(u_{i}, v_{i}\right)=1 \times n=n$ Therefore, Detour Index of $\mathrm{K}_{\mathrm{n}} \odot \mathrm{P}_{1}$ is,

$$
\begin{gathered}
\omega(G)=\frac{n}{2}(n-1)^{2}+n^{2}(n-1)+n(n-1)(n+1)+n \\
=n\left[\frac{(n-1)^{2}}{2}+n(n-1)+\frac{n^{2}-1}{2}+1\right]
\end{gathered}
$$

3 Detour Harary Index

Theorem 3.1 Let $\mathrm{G} \cong \mathrm{K}_{\mathrm{n}}$, where K_{n} represents a complete graph having $\mathrm{n} \geq 3$. Then,
$\omega H(G)=\frac{n}{2}$

Proof:

Consider K_{n} to be a complete graph having its vertex set as $\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{n}}\right\}$
Reciprocal of detour distance between vertices v_{i} and $v_{j}, 1 \leq i, j \leq n$ in a complete graph is,
$\frac{1}{D\left(v_{i}, v_{j}\right)}=\frac{1}{n-1}$
Consider vertex v_{1}
Since there are $n-1$ pair of vertices with v_{1}, sum of reciprocals of the detour distance between vertex v_{1} and all other vertices will be
$\frac{1}{n-1} \times n-1=1$
Total number of vertices in $\mathrm{K}_{\mathrm{n}}=\mathrm{n}$
Sum of reciprocals of detour distance between all the paired vertices is,
$\sum_{i, j=1}^{n} \frac{1}{D\left(v_{i}, v_{j}\right)}=n \times 1=n$
Detour Harary index of K_{n},
$\omega H(G)=\sum_{1 \leq i<j \leq n} \frac{1}{D\left(v_{i}, v_{j}\right)}=\frac{n}{2}$
Theorem 3.2 Let $\mathrm{G} \cong \mathrm{W}_{\mathrm{n}}$, where W_{n} represents a wheel graph with $\mathrm{n} \geq 3$. Then,
$\omega H(G)=\frac{n+1}{2}$

Proof:

Consider W_{n} to be a wheel graph with its vertex set $\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{n}}\right\}$.
The reciprocal of detour distances between the vertices $\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{j}}, 1 \leq \mathrm{i}, \mathrm{j} \leq \mathrm{n}$ is,
$\frac{1}{D\left(v_{i}, v_{j}\right)}=\frac{1}{n}$
Total number of such pairs are
$\sum_{k=1}^{n} k$
Detour Harary index of W_{n},
$\omega H(G)=\sum_{i<j} \frac{1}{D\left(v_{i}, v_{j}\right)}=\frac{1}{n} \times \sum_{k=1}^{n} k=\frac{1}{n} \times \frac{n(n+1)}{2}=\frac{n+1}{2}$
Theorem 3.3 If $G \cong F_{n}$, where F_{n} is a friendship graph, with $\mathrm{n} \geq 1$ then,
$\omega H(G)=\frac{n(n+2)}{2}$

Proof:

Consider F_{n} to be a friendship graph with the vertex set $\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{2 \mathrm{n}+1}\right\}$.
Case 1: Reciprocal of detour distance from the central vertex to all another vertex is $\frac{1}{2}$ There are 2 n such vertices.

Sum of reciprocal of detour distances from central vertex to all other vertices $=n$
Case 2: Reciprocal of detour distance form non-central vertex to other non-central vertices of
a) Same cycle $=\frac{1}{2}$

There are n such vertices.
Sum of reciprocal of detour distances between such pair of vertices $=\frac{n}{2}$
b) Different cycle $=\frac{1}{4}$

Number of such vertices,
$\sum_{i=1}^{n} 4(i-1)$
$=2 n(n-1)$
Sum of reciprocal of detour distances between such vertices $=\frac{1}{4} \times 2 n(n-1)=\frac{n(n-1)}{2}$
Detour Harary index of F_{n},
$\omega H(G)=n+\frac{n}{2}+\frac{n(n-1)}{2}=\frac{n(n+2)}{2}$

Theorem 3.4 If $\mathrm{G} \cong K_{n} S_{m}$, where $K_{n} S_{m}$ represents the starred complete graph with $n \geq$ $3, \mathrm{~m}>3$ then,
$\omega H(G)=\frac{n}{2}+m+\frac{m(m-1)}{4}+\frac{m}{n}(n-1)$

Proof:

Consider K_{n} to be a complete graph having its vertex set as $\left\{\mathrm{u}, \mathrm{u}_{1}, \mathrm{u}_{2}, \ldots, \mathrm{u}_{\mathrm{n}-1}\right\}$ and S_{m} be considered to be a star graph having it's vertex set as $\left\{u, v_{1}, v_{2}, \ldots, v_{m}\right\}$ Consider u to be the identified vertex that is common to K_{n} and S_{m}

From theorem 3.1 detour harary index of complete graph $=\frac{n}{2}$
Sum of detour harary distance between vertex \mathbf{u} and $v_{i}=m \times \frac{1}{1}=m$
Detour Harary distance between pair of vertices $v_{i}, v_{j}=\frac{1}{2}$
Sum of the detour distance between pair of vertices $v_{i}, v_{j}=\frac{1}{2} \times \sum_{i=1}^{m-1}(m-i)$
$=\frac{1}{2} \times\left[m(m-1)-\frac{(m-1) m}{2}\right]=\frac{m}{4}(m-1)$
Detour Harary distance between pair of vertices $u_{i}, v_{j}=\frac{1}{n}$
Sum of detour Harary distance between pair of vertices $u_{i}, v_{j}=\frac{1}{n} \times(n-1) \times m=\frac{m}{n}(n-1)$
Detour Harary index of $\mathrm{K}_{\mathrm{n}} \mathrm{S}_{\mathrm{m}}$,
$\omega H(G)=\frac{n}{2}+m+\frac{m(m-1)}{4}+\frac{m}{n}(n-1)$
Theorem 3.5 If $\mathrm{G} \cong \mathrm{K}_{1,2, \ldots, \mathrm{n}}$ where, $\mathrm{K}_{1,2, \ldots, \mathrm{n}}$ represents the n -partite graph having $\mathrm{n}>3$ then,
$\omega H(G)=\frac{S_{n} C_{2}}{S_{n}-1}$
where, S_{n} represents the sum of elements in each set of $\mathrm{K}_{1,2, \ldots, \mathrm{n}}$.
Proof: Let $\mathrm{K}_{1,2, \ldots, \mathrm{n}}$ be an $\mathrm{n}-$ partite graph having vertex set
$\left\{\mathrm{u}_{11}, \mathrm{u}_{12}, \ldots, \mathrm{u}_{1 \mathrm{k}_{1}}\right\} \cup\left\{\mathrm{u}_{21}, \mathrm{u}_{22}, \ldots, \mathrm{u}_{2 \mathrm{k}_{2}}\right\} \cup \ldots \cup\left\{\mathrm{u}_{\mathrm{n} 1}, \mathrm{u}_{\mathrm{n} 2}, \ldots, \mathrm{u}_{\mathrm{nk}_{\mathrm{m}}}\right\}$ where, $\mathrm{n}>3$.
Detour Harary distance from every $\mathrm{u}_{\mathrm{nk}_{\mathrm{i}}}$ to every $u_{n k_{i+1}}=\frac{1}{S_{n-1}}$
There are $\mathrm{S}_{\mathrm{n}} \mathrm{C}_{2}$ such possibilities,
Detour Harary index of $\mathrm{K}_{1,2, \ldots, \mathrm{n}}$,
$\omega H(G)=\frac{S_{n} C_{2}}{S_{n}-1}$
Theorem 3.6 Let $G \cong K_{n} \odot \quad P_{1}$; where K_{n} represents a complete graph having $n \geq 3, P_{1}$ is a path with 1 vertex, then,
$\omega H(G)=\frac{n}{2}\left[5+\frac{(n-1)}{(n+1)}\right]-1$
Proof: Consider K_{n} to be a complete graph having vertex set $\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$. Let $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ represent outer vertices of P_{1}.

From theorem 1.9, detour harary index of complete graph $=\frac{n}{2}$
Consider vertex u_{1}.
Reciprocal of detour distance from u_{1} to $v_{1}=\frac{1}{n}$
Since there are $n-1$ such $v_{1}{ }^{\prime} s$ and n such $u_{1}{ }^{\prime} s$
Sum of reciprocal of detour distances between pair of vertices u_{i} and v_{j}

$$
=\frac{1}{n} \times(n-1) \times n=(n-1)
$$

Consider v_{1}.
Reciprocal of detour distance from v_{1} to any $v_{i}=\frac{1}{(n+1)}$
Since there are $(\mathrm{n}-1)$ such $v_{i}^{\prime} s$, total of reciprocal of detour distance between pair of vertices v_{i} and v_{j}

$$
=\frac{1}{n+1} \times(n-1) \times n=\frac{n(n-1)}{n+1}
$$

Reciprocal of detour distance between pair of adjacent vertices $u_{i}, v_{i}=\frac{1}{1}=1$
Since there are n such pairs, sum of reciprocal of detour distances between $u_{i}, v_{i}=1=n$
Detour Harary index of $G \cong K_{n} \odot \quad P_{1}$
$\omega H(G)=\frac{n}{2}+(n-1)+\frac{n(n-1)}{2(n+1)}+n=\frac{n}{2}\left[5+\frac{(n-1)}{(n+1)}\right]-1$

4 Results

Result 1: In a complete graph, the relation between Detour index and Detour Harary index is $\omega\left(\mathrm{K}_{\mathrm{n}}\right)=(\mathrm{n}-1)^{2}\left[\omega \mathrm{H}\left(\mathrm{K}_{\mathrm{n}}\right)\right]$

Proof: From theorem(2.1),

$$
\begin{equation*}
\omega\left(K_{n}\right)=\frac{n(n-1)^{2}}{2} \tag{1}
\end{equation*}
$$

From theorem(3.1),

$$
\begin{equation*}
\omega H\left(K_{n}\right)=\frac{n}{2} \tag{2}
\end{equation*}
$$

Dividing 1 by 2 ,
$\frac{\omega\left(K_{n}\right)}{\omega H\left(K_{n}\right)}=\frac{\frac{n}{2}(n-1)^{2}}{\frac{n}{2}}=(n-1)^{2}$
Therefore,
$\omega\left(\mathrm{K}_{\mathrm{n}}\right)=(\mathrm{n}-1)^{2} \times \omega \mathrm{H}\left(\mathrm{K}_{\mathrm{n}}\right)$
Result 2: In a wheel graph, the relation between Detour index and Detour Harary index is $\omega\left(\mathrm{W}_{\mathrm{n}}\right)=\mathrm{n}^{2}\left[\omega \mathrm{H}\left(\mathrm{W}_{\mathrm{n}}\right)\right]$

Proof: From theorem(2.3),

$$
\begin{equation*}
\omega\left(W_{n}\right)=\frac{n^{2}(n+1)}{2} \tag{3}
\end{equation*}
$$

From theorem(3.2),

$$
\begin{equation*}
\omega H\left(W_{n}\right)=\frac{n+1}{2} \tag{4}
\end{equation*}
$$

Dividing 3 by 4 ,
$\frac{\omega\left(W_{n}\right)}{\omega H\left(W_{n}\right)}=\frac{\frac{n^{2}(n+1)}{2}}{\frac{n+1}{2}}=n^{2}$
Therefore,
$\omega\left(\mathrm{W}_{\mathrm{n}}\right)=\mathrm{n}^{2} \times \omega \mathrm{H}\left(\mathrm{W}_{\mathrm{n}}\right)$
Result 3: In a Friendship graph, the relation between Detour index and Detour Harary index is
$\omega\left(F_{m}\right)=\frac{4(4 m-1)}{(m+2)}\left[\omega H\left(F_{m}\right)\right]$
where, ${ }^{m}=\frac{n-1}{2}$
Proof: From theorem(2.4),

$$
\begin{equation*}
\omega\left(\mathrm{F}_{\mathrm{m}}\right)=2 \mathrm{~m}(4 \mathrm{~m}-1) \tag{5}
\end{equation*}
$$

From theorem(3.3),

$$
\begin{equation*}
\omega H\left(F_{m}\right)=\frac{m(m+2)}{2} \tag{6}
\end{equation*}
$$

Dividing 5 by 6 ,
$\frac{\omega\left(F_{m}\right)}{\omega H\left(F_{m}\right)}=\frac{2 m(4 m-1}{\frac{m(m+2)}{2}}=\frac{4(4 m-1)}{(m+2)}$

Therefore,
$\omega\left(F_{m}\right)=\frac{4(4 m-1)}{(m+2)} \times \omega H\left(F_{m}\right)$
Result 4: In an n-partite graph, the relation between Detour index and Detour Harary index is
$\omega(\mathrm{K} 1,2, \ldots, \mathrm{n})=(\mathrm{Sn}-1)^{2}[\omega \mathrm{H}(\mathrm{K} 1,2, \ldots, \mathrm{n})]$
Proof: From theorem(2.7),

$$
\begin{equation*}
\omega(\mathrm{K} 1,2, \ldots, \mathrm{n})=(\mathrm{Sn}-1) \mathrm{SnC} 2 \tag{7}
\end{equation*}
$$

From theorem(3.5),

$$
\begin{equation*}
\omega H\left(K_{1,2, \ldots, n}\right)=\frac{S_{n} C_{2}}{S_{n}-1} \tag{8}
\end{equation*}
$$

Dividing 7 by 8 ,
$\frac{\omega\left(K_{1,2, \ldots, n}\right)}{\omega H\left(K_{1,2}, \ldots, n\right)}=\frac{\left(S_{n}-1\right) S_{n} C_{2}}{\frac{S_{n} C_{2}}{S_{n}-1}}=\left(S_{n}-1\right)^{2}$
Therefore,
$\omega(\mathrm{K} 1,2, \ldots, \mathrm{n})=(\mathrm{Sn}-1)^{2} \times \omega \mathrm{H}(\mathrm{K} 1,2, \ldots, \mathrm{n})$

5 Scope for further research

Topological indices for molecular structures can also be established in similar way that we established these indices for the graphs including starred complete and n-partite graph. If there exist correlation between their physical properties and these indices, it can be useful to study such properties.

We can apply the topological indices discussed here to any type of graphs that would model a molecular structure. From these indices, we can analyse the mathematical values and can also investigate certain physio-chemical properties of molecules.

During the past century, chemists started theoretically working on the uses of these topological indices for obtaining information regarding different properties of some organic substances that depends upon its molecular structure.

6 Conclusion

We established the generalised formula to calculate the Detour index and the Detour Harary index for Complete graph, Cycle graph, Wheel graph, Friendship graph, Lollipop graph, Starred complete graph and n-partite graph. Also found formula for both these indices for a graph obtained by doing the graph operation corona and the relation between the Detour and Detour Harary indices have been found for some graph.

References

1. M.Rajesh R,KumarR and Jagadeesh Computation of topological indices of Dutch windmill graph Open J. Discrete Math. 620167481
2. H. Wiener, Structural determination of paraffin boiling points, J. Amer. Chem. Soc. 69 (1947), 17-20
3. Dobrynin, R. Entringer and I. Gutman, Wiener index of trees: theory and applications , Acta Appl. Math. 66 (2001), 211-249.
4. Dobrynin, I. Gutman, S. Klavzar and P. ` Zigert,Wiener index of hexagonal systems , Acta Appl. Math. 72 (2002), 247-294.
5. Lukovits, I. The Detour Index. Croat. Chem. Acta 1996, 69, 873-882
6. Zhou, Bo, and Xiaochun Cai. "On detour index." MATCH Commun. Math. Comput. Chem 63.84 (2010): 199-210.
7. F. Harary, Graph Theory, Addison-Wesley, Reading, Massachusetts, 1969, pp. 203-203.
8. F. Buckley and F. Harary, Distance in Graphs, Addison-Wesley,Redwood City, CA 1990, p. 213.
9. D. Amic, N. Trinajsti'c, On the detour matrix, Croat. Chem. Acta 68 (1995) 53-62.
10. O. Ivanciuc, A. T. Balaban, Design of topological indices. Part. 8. Path matrices and derived molecular graph invariants, MATCH Commun. Math. Comput. Chem. 30 (1994) 141-152.
11. S. Nikoli'c, N. Trinajsti'c, A. Juri'c, Z. Mihali'c, The detour matrix and the detour index of weighted graphs, Croat. Chem. Acta 69 (1996) 1577-1591.
12. P. E. John, Ueber die Berechnung des Wiener-Index fuer ausgewaehlte Deltadimensionale Gitterstrukturen, MATCH Commun. Math. Comput. Chem. 32 (1995) 207-219.
13. Lukovits, The detour index, Croat. Chem. Acta 69 (1996) 873-882.
14. N. Trinajsti'c, S. Nikoli'c, B. Lu ${ }^{\text {cici'c, D. Ami'c, Z. Mihali'c, The detour matrix in }}$ Chemistry, J. Chem. Inf. Comput. Sci. 37 (1997) 631-638.
15. L. B. Kier, L. H. Hall, An electrotopological state index for atoms in molecules, Pharm. Research 7 (1990) 801-807.
16. S. S. Tratch, M. I. Stankevitch, N. S. Zefirov, Combinatorial models and algorithms in chemistry. The expanded Wiener number - a novel topological index, J. Comput. Chem. 11 (1990) 899-908.
17. M. Randi'c, Hosoya matrix - A source of new molecular descriptors, Croat. Chem. Acta 67 (1994) 415-429.
18. M. Randi'c, Novel molecular descriptor for structure-property studies, Chem. Phys. Lett. 211 (1993) 478-483.
19. Pawan Kumar Tiwari, Mukesh Kumar Yadav, R. K. G. A. . (2022). Design Simulation and Review of Solar PV Power Forecasting Using Computing Techniques. International Journal on Recent Technologies in Mechanical and Electrical Engineering, 9(5), 18-27. https://doi.org/10.17762/ijrmee.v9i5.370
20. M. Randi'c, X. Guo, T. Oxley, H. Krishnapriyan, Wiener matrix: Source of novel graph invariant, J. Chem. Inf. Comput. Sci. 33 (1993) 709-716.
21. M. Randi'c, Restricted random walks on graphs, Theor. Chem. Acta 92 (1995) 97-106.
22. M. Randic, A. F. Kleiner, L. M. DeAlba, Distance/distance matrices, J. Chem. Inf. Comput. Sci. 34 (1994) 277-286.
23. D. J. Klein, M. Randi'c, Resistance distance, J. Math. Chem. 12 (1993) 81-95.
24. D. Plav̌si'c, S. Nikoli'c, N. Trinajsti'c, Z. Mihali'c on the Harary index for the characterization of chemical graphs J. Math. Chem., 12 (1993), pp. 235-250
25. O. Ivanciuc, T.S. Balaban, A.T. Balaban Reciprocal distance matrix, related local vertex invariants and topological indices J. Math. Chem., 12 (1993), pp. 309-318
26. Fang, W.; Liu, W.-H.; Liu, J.-B.; Chen, F.-Y.; Hong, Z.-M.; Xia, Z.-J. Maximum DetourHarary Index for Some Graph Classes. Symmetry 2018, 10, 608.
27. Weisstein, Eric W. "Complete Graph". MathWorld.
28. Weisstein, Eric W. "Cycle Graph". From MathWorld.
29. Weisstein, Eric W. "Wheel Graph". MathWorld.
30. Rosen, Kenneth H. (2011). Discrete Mathematics and Its Applications (7th ed.). McGrawHill. p. 655. ISBN 978-0073383095.
31. Weisstein, Eric W. "Dutch Windmill Graph". MathWorld.
32. Gallian, Joseph A. (January 3, 2007), "A dynamic survey of graph labeling", Electronic Journal of Combinatorics: DS6, doi:10.37236/27.
33. Weisstein, Eric. "Lollipop Graph". Wolfram Mathworld. Wolfram MathWorld. Retrieved 19 August 2015.
34. Supriya Rajendran,B Radhakrishnan, and Kumar Abhishek., "On Topological Integer Additive set labeled graph", DeGruyter proceedings in Mathematics. ,Accepted.
35. Weisstein, Eric W. 'k-Partite Graph." From MathWorld-A Wolfram Web Resource.
36. Yarahmadi, Zahra Ashrafi, Ali. (2012). The Szeged, vertex PI, first and second Zagreb indices of corona product of graphs. Filomat. 3. 10.2298/FIL1203467Y.
37. Nouby M. Ghazaly, M. M. A. . (2022). A Review on Engine Fault Diagnosis through Vibration Analysis . International Journal on Recent Technologies in Mechanical and Electrical Engineering, 9(2), 01-06. https://doi.org/10.17762/ijrmee.v9i2.364

[^0]: ${ }^{1}$ Department of Mathematics, Amrita School of Arts and Sciences, Kochi.
 ${ }^{\dagger}$ Department of Mathematics, Amrita School of Arts and Sciences, Kochi.
 ${ }^{2}$ Department of Mathematics, Amrita School of Arts and Sciences, Kochi.
 ${ }^{3}$ Department of Mathematics, Amrita School of Arts and Sciences, Kochi.

