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Abstract. The article is dedicated to the solution of the problems of water, gas and 

oil mixture filtration in homogeneous porous medium. The basic equations of the 

filtration theory are transformed into a special type for numerical approximation by 

the smoothed particle hydrodynamics. The numerical difference scheme is 

constructed based on the smoothed particle hydrodynamics. The algorithm of 

setting boundary conditions is proposed and isothermal one-dimensional and two-

dimensional test numerical calculations of the process of water, gas and oil mixture 

filtration are given.     
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Basic equations of the theory of mixture filtration in porous medium  

The problem of numerical modeling of multicomponent medium dynamics based on [1] is 

considered. It is assumed that the continuous medium contains the system of pores, cracks and 

breaks whose typical dimensions are small in comparison with the physical size of the whole 

problem. The ratio between the pores volume and the total volume serves as the numerical 

characteristic of the medium porosity:  

     m = Vp/V 

where m – porosity coefficient, Vp– pores volume, V – total volume of the given medium 

element.  The multicomponent mixture flow through porous bodies is called filtration. Here, 

the part of the mixture having own physical and chemical properties and not changing its phase 

state during the modeling process is called the component one.   

Pressure, temperature and saturation of each of the components are the main characteristics of 

the system motion. Saturation Sk
 
of pore space of k component is the share of the pores volume 

occupied by this component in the elementary volume:   

    Sk =
ΔVk

ΔVp
, k = 1,2. . . n  
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n – number of components in the mixture. The total of saturations of all components in the 

volume element equals 1: 

∑
k=1

n

Sk = 1 (1) 

The minimum saturation exists for each component. These values are called “residual 

saturations” and are designated with index r. The simultaneous flow of phases is possible only 

in a certain interval of saturations. The notion of effective saturations of the components (are 

designated with the upper line symbol) is introduced for the work in this interval. The effective 

saturation of k component can be presented as follows:  

     Sk =
Sk−Skr

1− ∑
i=1

n
Sir

 

The main filtration law (Darcy’s law) establishes the connection between the filtration velocity 

vector and pressure difference, which causes the filtration flow. The projection of filtration 

velocity uk for each component in the space point along the arbitrary direction equals the ratio 

between the component volume rate and the side area perpendicular to this direction. It should 

be pointed out that Darcy’s law plays the same role in the filtration theory as Fourier’s law for 

the heat flow in thermal conductivity theory. Darcy’s equation for k component, not taking into 

account the gravitation force, is written down as follows:   

𝐮k = −K
ck(Sn)

μk
∇Pk, (2) 

where K – characteristic of the porous medium called “absolute permeability”, which does not 

depend on the mixture properties; μk – coefficient of the dynamic viscosity of k component 

μk = μk(T) );  ck = ck (Sn) – relative phase permeability of k component (can depend on the 

saturation of other components); Pk – pressure in k component. According to [2], there are 

limits to   Darcy’s law applicability.  

Mass conservation law is another fundamental relationship in the filtration theory. The mass 

conservation law for each component is as follows:  

∂(mρkSk)

∂t
+ div(ρk𝐮k) = 0, (3) 

here ρk – density of k component. By substituting (2) to expression (3), we obtain the basic 

equation of the filtration theory: 

∂(mρkSk)

∂t
= ∇(ρkK

ck

μk
∇Pk) (4) 

The equation (4) will be further used for approximation with the help of smoothed particle 

hydrodynamics.  
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Equation of liquid and gas state 

The problem of modeling the three-component mixture consisting of gas, water and oil, taking 

their compressibility into account, is set in the work. The following index notations for different 

components will be further used for convenience: w – water, n – naphtha (light oil), g – gas. 

The initial values of saturation, temperature and pressure are defined for each component. The 

densities are calculated by the corresponding equations of state for each component depending 

on the pressure and temperature. Water and oil components are considered as low-compressible 

and linearly dependent on the temperature and pressure difference:   

ρk = ρ0k(1 + βk(Pk − P0) + αk(T − T0)),     (5) 

where k = w, n and   ρ0k– known density value of k component corresponding to the value of 

pressure P0 and temperature T0.  

The equation of ideal gas state is assumed as true for the gas.  

ρg = ρ0g

P

P0

T0

T
 (6) 

Such physical and chemical parameters of the mixture as relative phase permeabilities and 

dynamic viscosities of the components are used during modeling. The relative phase 

permeabilities are found in accordance with Stone’s approximation [2] and are presented in the 

analytical form. According to [2], the expression for the relative phase permeability of water 

is as follows: (нет выражения!)   

where q=3.25. The relative phase permeabilities for oil and gas are similarly the analytical 

functions from the corresponding saturations. The dynamic viscosities for the mixture 

components are the analytical functions depending only on the temperature. According to [2], 

the dynamic viscosity of water is demonstrated by the following analytical expression: 

μw(T) =
1

29.21 ∙  T − 7506.64
. 

The dependence of the relative phase permeability of water is given in Figure 1. The effective 

water saturation in the range from 0 to 1 is shown along the X-axis.  

 

Fig. 1. Graph of the dependence of the relative phase permeability of water on the effective 

saturation  
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The graphic dependence of the water dynamic viscosity is given in Figure 2. The temperature 

measured in degrees K is shown along the X-axis. The dynamic viscosity is measured in 

Pa*sec. 

 

 

Fig. 2. Graph of the dependence of the water dynamic viscosity on the temperature. 

Thus, the system of equations (4), (5), (6) is a closed one and is solved relative to the pressure, 

densities and saturations of the corresponding components.  

Approximation of equations with smoothed particle hydrodynamics 

Smoothed particle hydrodynamics (SPH) [3] is based on the smoothed integral interpolation of 

any scalar or vector magnitude defined in space. Smoothed interpolation ASPH(r) of some 

magnitude A(r) is expressed in the form of integral: 

ASPH(r) = ∫ A(r′)W(r − r′, h)dr′, (7) 

where W(r − r′, h) - even function, also called “interpolation kernel”, distributed around the 

space point r with typical size h. The integral from the smoothed function in the whole space 

equals 1.  

∫ W(r, h)dr = 1 

When h tends to zero, function W(r,h) is converted into the delta-function. The graphic images 

of function W(r,h) (solid line) and its derivative Wˈ(r, h) (dotted line) are demonstrated in 

Figure 3.  

Pa*sec 

http://philstat.org.ph/


Vol. 71 No. 3s2 (2022) 
http://philstat.org.ph 

Mathematical Statistician and Engineering Applications 

  ISSN: 2094-0343 
2326-9865 

840 

 

 

 

 

Fig. 3. View of smoothed function W and its derivative Wˈ 

The region, in which the problem is solved, is split into N elements with coordinates ri, where 

i = 1,N. Each element is further called “a smoothed particle”. Turning from the integration to 

summation in the expression (7) and replacing volume element dr′  by smoothed particle 

volume Vj, we obtain the basic formula for difference approximation of arbitrary function A(ri) 

in the defined space point ri 

A(ri) =  VjA(rj)W(ri − rj, h)

N

j=1

               (8) 

Consequently, arbitrary function A(ri) by i is as follows:  

∇A(ri) = ∑
j=1

N

VjA(rj)∇W(ri − rj, h).                              (9) 

The equations (8) and (9) are fundamental in the theory of smoothed particle hydrodynamics.  

Historically, smoothed particle hydrodynamics (SPH) was proposed to solve astrophysical 

problems, for example, the universe divergence problem. Starting from 1990s, it has been 

widely used for modeling problems in hydrodynamics [4], in the solution of which high speeds 

and large deformations of continuous medium occur. At present, the researches on SPH 

application in different physical fields are being conducted. The algorithm of numerical 

solution of thermal conductivity problems with the help of smoothed particle hydrodynamics 

was proposed in [5], providing the basis for applying the difference algorithm of SPH in the 

filtration theory. This is connected with the fact that the differential equations of filtration and 

thermal conductivity have a similar mathematical form.  

 

Distance, r/h 
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Smoothed particle hydrodynamics for Laplace equation  

The first part of the equation (4) should be reconstituted for further approximation with 

smoothed particle hydrodynamics. Denoting ϕ = −K
с

μ
, the right part in the equation (4) is 

identically reconstituted.  

∇(ϕ∇A) =
1

2
(∇2(ϕA) − A∇2ϕ + ϕ∇2A).                 (10) 

The right part of the identity (10) contains the total of three Laplace differential operators, 

which should be numerically approximated by SPH. For the numerical approximation of 

Laplace operator, scalar magnitude A(r) is expanded in Taylor’s series in neighboring space 

points ri and rj: 

A(rj) − A(ri) = ∇A(ri) ⋅ (rj − ri) +
1

2
∇2A(ri) ⋅ (rj − ri)

2 +
1

6
∇3 А(ri)(rj − ri)

3 + O(rj

− ri)
4 

Dropping the terms of order 4 and higher, both parts of the equation are multiplied by the 

expression:  

(rj − ri) ⋅ ∇jW(rj − ri, h)

|rj − ri|2
 

Denoting further rij = rj − ri  and Wij = W(rj − rih)  and integrating by rj , we obtain the 

integral representation for Laplace operator.  

∇2A(ri) = −2∫
A(rj) − A(ri)

|rji|2
rij∇jWijd

3rj  

Turning from the integration to summation in the last formula and replacing volume element 

d3rj by smoothed particle volume Vj, we have the difference equation for the approximation of 

the integral representation of Laplace operator:  

∇2Ai = −2  Vj

N

j=1 j

Aj − Ai

|rji|2
rij∇jWij (11) 

Laplace operators in the right part of the identity (10) are replaced by the expression (11). After 

uncomplicated arithmetical simplifications this identity is converted as follows:  

∇(ϕi∇Ai) =  Vj

N

j=1 j
j

(ϕi + ϕj)(Aj − Ai)

|rji|2
rij∇jWij (11) 

Consequently, the equation (4) acquires the final difference form  

http://philstat.org.ph/


Vol. 71 No. 3s2 (2022) 
http://philstat.org.ph 

Mathematical Statistician and Engineering Applications 

  ISSN: 2094-0343 
2326-9865 

842 

∂(ρkiSki)

∂t
=

K

m
 Vj

N

j=1 ⬚
⬚

(ρki
cki
μki

+ ρkj

ckj

μkj
)(Pj − Pi)

|rji|2
rij∇jWij, (12) 

 Let us point out that the first derivative of smoothing function Wij is used in the first 

part of the filtration difference equation (12).  

 The graph of derivative Wˈ(r, h), which is odd and equals zero beyond the interval 

ሾ−2,2ሿ, is shown with the dotted line in Figure 3 above. If smoothing function W is represented 

by the analytical expression  

  W(s, h) = σi

⬚ (2 − s)3 − 4(1 − s)3 , 0 ≤ s < 1

ሼ⬚ (2 − s)3 , 1 ≤ s < 2

⬚ 0 , 2 ≤ s

,   

where s = r/h and σ1 = 1/(6h), σ2 = 15/(14πh2)and σ3 = 1/(4πh3) for the cases of one-

dimensional, two-dimensional and three-dimensional space, respectively, then its derivative is 

calculated by the formula: 

  Wˈ(s) =
3σi

h
ሼ

⬚ (2 − s)2 − 4(1 − s)2 , 0 ≤ s < 1

⬚ (2 − s)2 , 1 ≤ s < 2

⬚ 0 , 2 ≤ s

, 

Time integration 

The explicit difference scheme is used for the numerical calculation of thermodynamic 

parameters at the next time step. Denoting the right part of the expression (4) as Fki, we get the 

following differential equation:   

∂(ρkiSki)

∂t
= Fki (13) 

The difference scheme of the first order of accuracy at the next time layer for the equation (13) 

is as follows:  

Pki
n+1Ski

n+1 = ρki
n Ski

n + Δt ⋅ Fki (14) 

where superscript n means the value of the corresponding magnitude at the time layer t = tn. 

The integration step by time Δt is selected based on the condition of the difference scheme 

stability when solving Laplace equation Δt = ch2, where с<1.   

As a result, the system of seven equations (1), (5), (6), (14) is solved relative to the seven 

unknown quantities in each smoothed particle of space ri   

Pn+1, ρk
n+1, Sk

n+1, k = ሾ w, g, nሿ. 
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 When solving this problem of seven equations in each point rj, new pressure, densities 

and saturations of the components at the next time layer t = tn+1 are calculated. It can be easily 

seen that the system of seven equations (1), (5), (6), (14) is reduced to solving the cubic 

equation relative to pressure Pn+1. 

Assuming the condition of water incompressibility ρwi
n+1 = ρwi

n , the indicated system of 

equations (1), (5), (6), (14) is reduced to solving the quadratic equation relative to pressure 

Pn+1. Consequently, assuming the condition of water and oil incompressibility ρki
n+1 = ρki

n , 

k = w, n, the system of equations (1), (5), (6), (14) is reduced to solving the linear equation 

relative to pressure Pn+1. 

Boundary conditions 

In the problems considered the boundary conditions of the first and second kind are used, which 

define the pressure on the computational region boundaries. The pressure can be defined by 

the explicit quantity P = PГ  or determined from the boundary flow condition  
∂P

∂n
 = qn. 

Saturations can be defined by the explicit value on the region boundary Sk = SkГ, k = w, n, g. 

To implement the boundary conditions, we use the algorithm of adding virtual particles, which 

are obtained with the help of the method of symmetric reflection of defined particles against 

the computational region boundary. Gas-dynamic parameters of the virtual particles are defined 

based on the boundary conditions.   

Test calculations  

The test calculations were carried out according to the described difference scheme.  

The setting of the initial conditions for test problems was taken from [7]. In all problems the 

porosity, density and absolute permeability of the rock are considered constant in the whole 

volume, the residual saturations are assumed equal to zero, the region dimensions are 1 m × 1 

m × 1 m. 

The matrix consists of gas, water and naphtha. The naphtha density is less than the water 

density. The initial values of all dynamic parameters (saturation, temperature and pressure) are 

considered as defined for each component.  

The medium is taken as isotropic in the whole volume considered, the liquid phases are 

assumed as low-compressible, the gas – ideal, the temperature and pressure are the same for 

all components of the mixture.    

The temperature is considered constant during the whole modeling process. The gravitation is 

absent.  

The following values for the parameters of the equations of state (5), (6) are used in the test 

calculations: ρ0ⱳ = 1000 kg/m, ρ0n = 850 kg/m, ρ0g = 1.4 kg/m, βⱳ = 4.4 х 10-7 1/Pа,   βn = 10-

6  1/Pа,  αⱳ = 1.32 х 10-7 1/K,   αn = 9.2 х 10-7 1/K.   
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The calculation results of one-dimensional test from [7] in graphical form are demonstrated in 

Figure 4. These calculations were made by the explicit difference scheme on the computational 

grid 50 nodes in size, regular and uniform by space. 

 

Fig. 4. Saturation profiles from [7] at the moments of time t = 5000 s (left graph) and t = 

25000 s (right graph) 

In this article, similar graphs of pressure and saturation distribution onto the corresponding 

time moments are formed based on the calculation results and the numerical modeling results 

are visually compared.  

One-dimensional problem on gas injection under pressure 

The one-dimensional model filtration problem is considered. The mixture flows due to the 

pressure difference at the ends of the considered interval in horizontal direction. The region 

size is 1 m. The gas is injected under pressure from the left to the right. The initial conditions: 

Sw = 0.4, Sn = 0.3, Sg = 0.3, Pw = Patm, T = 285K . The boundary conditions for the 

saturations and pressure: Sg|x=0 = 0.7, Sn|x=0 = 0,15  Sw|x=0 = 0.15 , Pw|x=0 = 1.1 ∗

Patm, Pw|x=1 = Patm . The rock parameters used: K = 6.64 ⋅ 10−11 m2, m = 0.4. All values of 

the constants are given in SI system.   

The step of integration by time ∆t is selected due to the condition of difference scheme stability 

when solving Laplace equation ∆t = 0.25h2. 

The typical time interval for calculating one problem is about 1-10 hours on a 2 GHz processor 

unit.  

The calculation results with the number of particles N = 12 and typical size h = 0.15 m are 

given in Figures 5 and 6 in the form of profiles of components saturation and mixture 

distribution onto two time moments. The calculation results visually coincide with the results 

obtained when applying traditional regular grid methods taken from [7].  

x, m x, m 
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Fig. 5. One-dimensional test. Profiles of saturation (on the left) and pressure (on the right) at 

the moment of time t = 5000 s. 

 

  

Fig. 6. One-dimensional test. Profiles of saturation (on the left) and pressure (on the right) at 

the moment of time t = 25000 s. 

Two-dimensional test on gas injection under pressure 

The physical and chemical parameters and initial conditions of the computational region for 

the two-dimensional test coincide with the values of the corresponding parameters from the 

one-dimensional problem. The region size is 1 m х 1 m. The gas is injected from the bottom 

left corner of the computational region. The boundary conditions for the saturations and 

pressure: Sg|x=0 γ=0 = 0.7, Sn|x=0 γ=0 = 0.15  Sw|x=0 γ=0 = 0.15 , Pw|x=0 γ=0 = 1.1 ∗

Patm, Pw|x=1 γ=1 = Patm . 

Saturations 

Saturations 

Pressure, atm 

Pressure, atm 

Distance, m Distance, m 

Distance, m Distance, m 

Gas 

Water 

Naphtha 

Gas 

Water 

Naphtha 
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The number of smoothed particles varied during testing (from 10х10 up to 20х20). The typical 

time interval for calculating the problem was 20-100 hours. The calculation results for the two-

dimensional test at the moment of time t = 5000 s are given in Figures 7 and 8. N = 11 х 11 

particles were used in the calculations. The typical smoothing size was h = 0.15 m.  

  

 

Fig. 7. Two-dimensional test. Pressure distribution at the moment of time t = 5000 s 

 

Fig. 8. Two-dimensional test. Distribution of saturations of water (mixture) and gas (solid 

surface) at the moment of time t = 5000 s. 

 

 

Pressure, atm 

Gas 

Water 

 
Distance, m 

 Distance, m 
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Conclusion 

In the process of numerical modeling of a real filtration process (for example, oil extraction 

from an underground deposit) it is important to construct a three-dimensional computational 

grid when the grid cell size in the drilling well region equals the typical size of the well mouth 

diameter of 15-30 centimeters, and the grid cell size at the boundary of the deposit region is 

10-50 meters. This problem is solved by smoothed particle hydrodynamics. Besides, the 

smoothed particle hydrodynamics allows making the continuous computation of the physical 

processes both in the deposit and in the well.    

In the result of the researches, the difference method of smoothed particle hydrodynamics to 

solve the filtration problem was developed and tested, and the prototype of the software system 

for modeling multidimensional filtration problems was created. The authors express their 

gratitude to Prof. S.P. Bautin for the discussion of the problem mathematical setting, precious 

advice and help in writing the article. 
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