
Vol. 71 No. 3s2 (2022)
http://philstat.org.ph

Mathematical Statistician and Engineering Applications

 ISSN: 2094-0343

2326-9865

915

Analyzing Latency Performance of Different Cache Methods for

Microservice Architecture

Nur Ayuni Nor Sobri1, Mohamad Aqib Haqmi Abas1, Ihsan Mohd Yassin2*, Megat Syahirul

Amin Megat Ali2, Nooritawati Md Tahir3, Azlee Zabidi4, Zairi Ismael Rizman5

1School of Electrical Engineering, College of Engineering, Universiti Teknologi MARA,

40450 Shah Alam, Selangor, Malaysia

2Microwave Research Institute, Universiti Teknologi MARA, 40450 Shah Alam, Selangor,

Malaysia

3Research Nexus UiTM, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia

4Faculty of Systems & Software Engineering, College of Computing & Applied Sciences,

Universiti Malaysia Pahang, 26600 Pekan, Pahang, Malaysia

5School of Electrical Engineering, College of Engineering, Universiti Teknologi MARA,

23000 Dungun, Terengganu, Malaysia

Corresponding author: ihsan.yassin@gmail.com

Article Info

Page Number: 915 – 927

 Publication Issue:

Vol. 71 No. 3s2 (2022)

Article History

Article Received: 28 April 2022

Revised: 15 May 2022

Accepted: 20 June 2022

Publication: 21 July 2022

Abstract

Nowadays, due to popularization of the internet, the demands for a robust

and scalable application system are increasing rapidly. Underlying backend

of the application system are required to be scalable to allow thousands of

users to be served concurrently. With the rise of microservice architecture,

load balancing strategy can be used efficiently to distribute load evenly

between service instances for service that runs on high load. Moreover,

cache technology is also used heavily to reduce the load impact on databases.

This paper investigates the use and performance result of cache layer as

opposed to database only for storing data in a microservice setting where we

propose on running multiple instances of our services for load balancing

purposes in production. The result we obtained for a normal architecture that

runs a single service instance in-process memory cache would be the most

beneficial, while for microservice architecture with service that runs on

multiple instances, Redis would give the best performance and data integrity.

Keywords: Backend application system; microservice; load balance; cache.

Introduction:

Research background

In the past decade, the software architecture paradigms have started to shift from a monolithic

architecture that contains tightly coupled logic with a more modular, loose-coupled

microservice architecture. Microservice architecture has been found by many to have

http://philstat.org.ph/

Vol. 71 No. 3s2 (2022)
http://philstat.org.ph

Mathematical Statistician and Engineering Applications

 ISSN: 2094-0343

2326-9865

916

tremendous positive impacts on software architecture development and deployment. In

development, it gives the developers agility and independent development capability as each

service only concerns a small logic of the whole system [1-3]. As for the system that is created

with microservice architecture, it results in a more efficient, flexible, robust, modular and

scalable system [4-11].

In microservice architecture, the services are small in size where they consist of small loosely-

coupled business logic that are bounded by small and similar domains. This has a huge positive

impact as it allows for independence between services. In the development and maintenance

phase of the software system, it promotes agility and flexibility for developers as it would be

easier to debug for issues and also to add newer features to the service as the domain logic is

small and easier to reason about [5]. When deploying the service, since it is independent from

other services, unlike in monolith architecture, the services can be deployed independently and

the configuration can be very flexible, where services that are most frequently used in the

system can be tweak to increase the number of instance for load balance purpose or we can

increase its resource of cpu cycle and memory. This promotes a highly scalable system and

increases high availability and fault tolerance of the system [5, 12-15].

Since the services have their own bounded domain logic, each service would have their own

state [16]. In other words, they would have their own database and cache store separate from

other systems. Microservice architecture supports heterogeneity of language and technology to

be used when developing for each service, this includes the programming language used to

develop the system and the data store technology [7, 16, 17].

Cache allows for storing and retrieval of data at a faster speed compared to normal database

store technology. Many applications nowadays require the system to serve requests with low

latency. Having cache to store and serve the data plays an important role in this situation as

end users typically consume more data that they generate [18, 19]. Redis (Remote Dictionary

Server) is an in-memory key-value NoSQL datastore and one of the most popular technologies

that is used as cache for applications nowadays [18, 20-24]. Redis can also be used as database,

queue and message broker apart from the standard use as cache [25-27].

 The general flow for a web server that has both cache and disk-system data stores to retrieve

data is by first looking in the cache, if the data is not present, then it will initiate a second step,

to look in the main data store. The reason being, normally cache system gives a faster retrieval

and in most cases lives in-memory instead of in a disk-based database. Hence, this gives a

significant latency boost and would easily allow the web server to serve at scale [18]. Even

though cache is good, in some cases, bad implementation of cache could cause problems such

as cache stampede that could severely limits the performance of the web server and database

[28]; and incorrect data output which is usually caused by miss update when any mutation

(update or delete) happens to the data in the system or failure on handling concurrent requests

correctly.

http://philstat.org.ph/

Vol. 71 No. 3s2 (2022)
http://philstat.org.ph

Mathematical Statistician and Engineering Applications

 ISSN: 2094-0343

2326-9865

917

This paper investigates the use and performance result of cache layer as opposed to database

only for storing data in a microservice setting where we propose on running multiple instances

of our services for load balancing purposes in production.

Related works

We have found some relevant studies that are related to our work in using cache. In [29], the

author proposed a novel Redis-based Web server cluster session maintaining technology. It is

to ensure the web cluster can scale more easily and provide a highly available service to the

end user. The author compares between multiple session maintaining methods such as cookie-

based, session replication, session sticky and cache server. The experiment done by the author

shows the cache server using Redis strikes the best balance of performance and stability for the

system compared to other session maintaining methods.

The study in [20] compares Redis as a database store with MariaDB relational database. The

author designed a few sets of experiments with large amounts of data and compared the

efficiency of operations like insert, update, delete and select from various aspects on the same

dataset. The study shows that Redis gives a better run time performance compared to MariaDB.

However, Redis has disadvantages with regular querying and updating that apply to an

extensive dataset. MariaDB is also good when involving a smaller amount of data. The author

suggested that Redis is to be used in the form of a temporary database to enhance performance

of the database system.

 In [25], the author reviewed Redis and its various module extension such as RedisSearch,

RedisGear, RedisJSON, RedisAI, RedisGraph, RedisTimeSeries and few more which makes

Redis to be capable not only as a cache and database but also supporting to build power

applications with functionalities like search, real-time monitoring, analytics, gaming and many

more.

Methodology:

For our application system, we want to ensure the system would be reliable, scalable and highly

available. From Section I-B, based on our study from the literature on microservices

architecture, we propose migrating the monolithic application system of our application to

microservice architecture as it provides the benefits that align with our goal for the application.

Furthermore, to ensure a better scalability and high availability of the system, we propose

running multiple instances of each service in our production environment. This is to ensure we

can load balance the HTTP request that each of our services will be receiving from the API

gateway. Fig. 1 shows the example of our proposed architecture between API gateway service

and the role and permission service. The API gateway service acts as an intermediary service

that routes the HTTP request from external to specific service that is being requested. In Fig.

1, we only use one service to display as example, which is the role and permission service, but

in the whole system context, there could be hundreds or thousands of services that serves logic

based on their specific domain and API gateway is going to be the main interface with the all

http://philstat.org.ph/

Vol. 71 No. 3s2 (2022)
http://philstat.org.ph

Mathematical Statistician and Engineering Applications

 ISSN: 2094-0343

2326-9865

918

requests and redirect them to the domain specific service.

Fig. 1 Requests flow to and from API gateway service to role and permission service

Each of the services that we run on the system can be independently deployed and configured.

We can tweak the number of resources such as the CPU cycle, memory allocation, storage

space and number of instances to run based on how often the service is being hit by the end

user. Microservice architecture is flexible and does not impose any hard requirements on the

database as we can also replicate the database to provide load balance and backup capabilities

between the master and its replica. It would help to reduce the load of only a single database

being hit. However, it does not affect the latency when the database executes the query as it

would have to retrieve the data from its disk store.

We propose on using cache data store as it would help tremendously in reducing the load of

the Postgres database being hit from the application, improve application performance by

having significantly better latency and increase the read throughput by having to access the data

only in-memory instead of in the disk.

In this experiment we will be experimenting on the performance difference in latency when we

retrieve the data from Postgres database, Redis cache and in-process cache when having a

single instance service and three instances service. We perform the experiment using two

different scenarios (single and three instances service) to check the difference of performance

between normal method and load balanced method and the effect of using different cache

mechanisms.

Fig. 2 HTTP request flow for single service instance calls to Postgres database directly

http://philstat.org.ph/

Vol. 71 No. 3s2 (2022)
http://philstat.org.ph

Mathematical Statistician and Engineering Applications

 ISSN: 2094-0343

2326-9865

919

Fig. 2 shows the first situation where the service instance makes a direct query to the Postgres

database.

Fig. 3 HTTP request flow for single service instance calls to Redis cache, then Postgres to

retrieve data

Fig. 3 shows the second situation where the service instance makes a call to Redis cache to

retrieve the data, if the data is absent in Redis, then it will make the second call to Postgres

database.

Fig. 4 HTTP request flow for single service instances call to its in- process cache, then

Postgres to retrieve data

Fig. 4 shows the third situation where the service instance will first try to find the data from its

own in-process memory, and if it’s absent, it will then make a query to Postgres database to

retrieve the data. Fig. 2 to 4 shows the experiment for the first scenario where we handle the

requests with only a single instance of the service.

http://philstat.org.ph/

Vol. 71 No. 3s2 (2022)
http://philstat.org.ph

Mathematical Statistician and Engineering Applications

 ISSN: 2094-0343

2326-9865

920

Fig. 5 HTTP request flow for three service instance directly call to Postgres database

Fig. 5 shows the fourth situation where there will be 3 service instances to handle the HTTP

requests and all three of them directly calls to Postgres database without having any cache in

between.

Fig. 6 HTTP request flow for three service instance calls to Redis cache, then Postgres to

retrieve data

Fig. 6 shows the fifth situation where there will be 3 service instances to handle the HTTP

requests and all three of them will first call the Redis cache to retrieve the data, if the data is

absent, they will then call to Postgres database.

The sixth situation will be similar as shown in Fig. 5, but instead of calling directly to Postgres,

the service instances will first find the data in their own in- process memory, if the data is

absent, it will call the Postgres database.

From Fig. 2 to Fig. 6, the call made to Postgres and Redis requires the application service

instance to call to different port on the local machine (default to port 5432 and 6379

respectively), while the in-process key-value cache would be from the same application and

same process memory itself.

http://philstat.org.ph/

Vol. 71 No. 3s2 (2022)
http://philstat.org.ph

Mathematical Statistician and Engineering Applications

 ISSN: 2094-0343

2326-9865

921

Fig. 7 Roles and Permission table

Fig. 7 shows the roles and permissions table with its intermediary many-to-many table. We are

using a role based access control (RBAC) authorization model for our system. In RBAC, users

have access to an object/page/module based on their respective assigned role in the system [30].

Roles are commonly assigned based on job function and permissions are defined based on job

authority and responsibility of the job. The database tables from Fig. 7 is from the example we

previously used in Fig. 1, where the service instance state (data) is being stored on. The reason

that role/permission service are chosen for this paper is due to this service being one of the

most used in the system. Multiple endpoints in the system require authorization checks on

whether a specific user has the necessary role and permission needed to access the endpoint.

The load testing is going to be performed with Arm64v8 CPU architecture. The limitation of

the platform applies to this project. We also limit the go runtime to use a single CPU (with

GOMAXPROCS = 1) and 256MB of memory (ulimit), however neither limiting the CPU and

RAM gives any effect in our experiment as none of the tests would even hit the limit of

bottleneck. However, the situation will be different in production servers when we deploy the

services where we have a more limited amount of CPU cycles and RAM configuration for our

machine. In this test, we are using the default setting of Postgres database and Redis cache as

will be in production without tuning any configuration, if needed Postgres and Redis are very

flexible and can be tweaked easily in postgresql.conf file and command-line tools respectively.

Only one API endpoint will be tested for this experiment, which is the “/roles” endpoint that

will give all the roles in the database table, including its permissions relation. We will test the

endpoint using a HTTP load tester, vegeta, which is written in Go for 10 requests per second

and get the latency reading for each experiment step shown in Fig. 2, 3 and 4. The reason we

make 10 requests per second was to inspect the latency of calling the database and subsequent

calls to cache (where applicable).

Results and Discussion:

The result of the experiment are as follows:

http://philstat.org.ph/

Vol. 71 No. 3s2 (2022)
http://philstat.org.ph

Mathematical Statistician and Engineering Applications

 ISSN: 2094-0343

2326-9865

922

Fig. 8a Latency when a single instance directly calls Postgres database

Fig. 9b Latency when a single instance calls to Redis cache before Postgres

Fig. 10c Latency when a single instance calls to its own in-process memory cache before

Postgres

http://philstat.org.ph/

Vol. 71 No. 3s 2 (2022)
http://philstat.org.ph

Mathematical Statistician and Engineering Applications

ISSN: 2094-0343

923

Fig. 8a, 8b and 8c show the result of the experiment for the first scenario where there is only a

single service instance to handle the load and HTTP requests. As we can see, the latency result

from Fig. 8c shows the best stability and lowest reading. This is as expected due to the data

being retrieved directly in its own process memory instead of having to call to an external

application in a different host port. In Fig. 8a, the calls to Postgres directly also gives a better

subsequent performance after the first call, this is expected due to optimization done by

Postgres internally by default, as we discussed in Section II, we did not tweak any configuration

of the shared buffer or operating system cache as we want to have a similar configuration as in

production environment.

The second and subsequent calls for Fig. 8a shows the latency to be below 5ms with 4.88ms

the highest and 2.69ms the lowest. While for Fig. 8b, the second and subsequent calls give

latency below 4ms with 3.84ms the highest and 1.44ms the lowest. The best latency result is

shown in Fig. 8c as expected, where second and subsequent calls give a constant and stable

latency below 2ms, with 1.64ms being the highest and 0.83ms the lowest.V.

Fig. 9a Latency when three service instances directly calls Postgres database

Fig. 9b Latency when three service instances calls to Redis cache before Postgres

http://philstat.org.ph/

Vol. 71 No. 3s 2 (2022)
http://philstat.org.ph

Mathematical Statistician and Engineering Applications

ISSN: 2094-0343

924

Fig. 9c Latency when three service instances calls to its own in-process memory cache

before Postgres

Fig. 9a, 9b and 9c shows the result of the experiment for the second scenario where there are

three service instances to handle the load and HTTP requests. As seen from the result, Fig. 9b

gives the best and stable latency for second and subsequent requests. This is expected as each

service instance calls to the same Redis cache for subsequent calls, compared to internal cache

where each would have to call its own in-process memory cache first before being able to show

improvement.

As shown in Fig. 9a, the second and subsequent calls give a latency of below 7ms with 6.57ms

being the highest and 2.6ms being the lowest. In Fig. 9b, we see Redis shows its advantage

with multi instance set up, where it gives a stable and constant latency of below 3ms, with

2.41ms being the highest and 1.75ms being the lowest. From Fig. 9c, we see a slightly worse

performance for internal in-process memory cache for multi instance set up compared to single

instance as shown in Fig. 8c. It gives below 4ms for its second and subsequent calls with 3.71ms

being the highest and 1.23ms for the lowest latency call.

Postgres database default optimization helps tremendously with reducing the latency as shown

in the result in Fig. 9a and 9c. For Fig. 9c, since the load is being distributed to three instances,

the subsequent instances might not have the data in their own in-process cache and requires

them to make its own call to Postgres database. As for Fig. 9a, even though other new instances

are making the direct call to Postgres itself, Postgres optimized by not having to access disk for

the data if the calls refer to the same data by using its shared buffer cache and operating system

cache. The result for the experiment run in this section can be further summarized in Table 1

and Table 2.

Table 1: Latency for each request with different caching method with single instance service

http://philstat.org.ph/

Vol. 71 No. 3s 2 (2022)
http://philstat.org.ph

Mathematical Statistician and Engineering Applications

ISSN: 2094-0343

925

Table 2: Latency for each request with different caching method with 3 instances service

From the results shown in this section, we can see that for three service instance setup as we

proposed in Section II, Redis cache would give the best performance and stability compared to

other methods. For single service instance, internal in-process memory cache gives the best

performance but in multi service instance setup it gives a slightly lower performance.

Furthermore, data invalidation would need to be handled in each service instance and this would

be tedious to handle when we increase the number of instances and it is prone to error as

improper handling of data invalidation can cause wrong data to be retrieved by the end user.

Conclusion:

In this paper, we have presented the experiment to find the best cache method to be used in our

proposed microservice architecture. Based on the result, we can conclude that Redis is the best

cache method to be used, not only due to performance, but also due to the ease of logic to

invalidate any existing cache after any mutation changes happens to the underlying data.

Acknowledgment

The authors would like to thank the Ministry of Higher Education, Malaysia for financial

support through the Long-term Research Grant Scheme (LRGS) 600-RMC/LRGS 5/3

(001/2020).

References

1. M. Villamizar et al., "Cost comparison of running web applications in the cloud using

monolithic, microservice, and AWS Lambda architectures," Service Oriented Computing

and Applications, vol. 11, no. 2, pp. 233-247, 2017, doi: 10.1007/s11761-017-0208-y.

2. D. Taibi, V. Lenarduzzi, C. Pahl, and A. Janes, "Microservices in agile software

development: a workshop-based study into issues, advantages, and disadvantages," in

Proceedings of the XP2017 Scientific Workshops, 2017, pp. 1-5.

3. M. Viggiato, R. Terra, H. Rocha, M. T. Valente, and E. Figueiredo, "Microservices in

practice: A survey study," arXiv preprint arXiv:1808.04836, 2018.

4. I. Asrowardi, S. D. Putra, and E. Subyantoro, "Designing microservice architectures for

scalability and reliability in ecommerce," Journal of Physics: Conference Series, 2020.

5. W. Hasselbring and G. Steinacker, "Microservice Architectures for Scalability, Agility and

Reliability in E-Commerce," presented at the 2017 IEEE International Conference on

Software Architecture Workshops (ICSAW), 2017.

http://philstat.org.ph/

Vol. 71 No. 3s 2 (2022)
http://philstat.org.ph

Mathematical Statistician and Engineering Applications

ISSN: 2094-0343

926

6. H. Khazaei, N. Mahmoudi, C. Barna, and M. Litoiu, "Performance Modeling of

Microservice Platforms," IEEE Transactions on Cloud Computing, pp. 1-1, 2020, doi:

10.1109/tcc.2020.3029092.

7. Y. Gan et al., "An Open-Source Benchmark Suite for Microservices and Their Hardware-

Software Implications for Cloud & Edge Systems," presented at the Proceedings of the

Twenty-Fourth International Conference on Architectural Support for Programming

Languages and Operating Systems, 2019.

8. N. A. Farooqui, A. K. Mishra, and R. Mehra, “IOT based Automated Greenhouse Using

Machine Learning Approach”, Int J Intell Syst Appl Eng, vol. 10, no. 2, pp. 226–231, May

2022.

9. M. Villamizar et al., "Evaluating the monolithic and the microservice architecture pattern

to deploy web applications in the cloud," in 2015 10th Computing Colombian Conference

(10CCC), 2015: IEEE, pp. 583-590.

10. D. Taibi, V. Lenarduzzi, and C. Pahl, "Architectural patterns for microservices: A

systematic mapping study," in CLOSER 2018: Proceedings of the 8th International

Conference on Cloud Computing and Services Science.

11. A. Jindal, V. Podolskiy, and M. Gerndt, "Performance modeling for cloud microservice

applications," in Proceedings of the 2019 ACM/SPEC International Conference on

Performance Engineering, 2019, pp. 25-32.

12. H. Dinh-Tuan, M. Mora-Martinez, F. Beierle, and S. R. Garzon, "Development

frameworks for microservice-based applications: Evaluation and comparison," in

Proceedings of the 2020 European Symposium on Software Engineering, 2020, pp. 12-20.

13. I. A. S. D. P. E. Subyantoro, "Designing microservice architectures for scalability and

reliability in ecommerce," Journal of Physics: Conference Series, 2020.

14. A. Singleton. (2016) The Economics of Microservices. IEEE Cloud Computing.

15. D. S. Linthicum, "Practical use of microservices in moving workloads to the cloud," IEEE

Cloud Computing, vol. 3, no. 5, pp. 6-9, 2016.

16. A. B. YILMAZ, Y. S. TASPINAR, and M. Koklu, “Classification of Malicious Android

Applications Using Naive Bayes and Support Vector Machine Algorithms”, Int J Intell

Syst Appl Eng, vol. 10, no. 2, pp. 269–274, May 2022.

17. H. Suryotrisongko, D. P. Jayanto, and A. Tjahyanto, "Design and development of backend

application for public complaint systems using microservice spring boot," Procedia

Computer Science, vol. 124, pp. 736-743, 2017.

18. S. Newman, "Building Microservices," in Building Microservices, vol. 2, no. 2): O'Reilly

Media, 2020, ch. What Are Microservices?

19. M. Mazzara, N. Dragoni, A. Bucchiarone, A. Giaretta, S. T. Larsen, and S. Dustdar,

"Microservices: Migration of a Mission Critical System," IEEE Transactions on Services

Computing, pp. 1-1, 2018, doi: 10.1109/tsc.2018.2889087.

20. V. Zakhary, D. Agrawal, and A. El Abbadi, "Caching at the Web Scale," presented at the

Proceedings of the 26th International Conference on World Wide Web Companion -

WWW '17 Companion, 2017.

21. Gill, D. R. . (2022). A Study of Framework of Behavioural Driven Development:

Methodologies, Advantages, and Challenges. International Journal on Future Revolution

http://philstat.org.ph/

Vol. 71 No. 3s 2 (2022)
http://philstat.org.ph

Mathematical Statistician and Engineering Applications

ISSN: 2094-0343

927

in Computer Science &Amp; Communication Engineering, 8(2), 09–12.

https://doi.org/10.17762/ijfrcsce.v8i2.2068

22. R. K. Singh and H. K. Verma, "Redis-Based Messaging Queue and Cache-Enabled

Parallel Processing Social Media Analytics Framework," The Computer Journal, vol. 65,

no. 4, pp. 843-857, 2022.

23. W. P. S. Puntheeranurak, "A Comparative Study of Relational Database and Key-Value

Database for Big Data Applications," in International Electrical Engineering Congress,

2017, vol. 5.

24. S. L. H. J. M. Shi, "Redis-based Web Server Cluster Session Maintaining Technology," in

International Conference on Natural Computation, Fuzzy Systems and Knowledge

Discovery, 2017, pp. 3065-3069.

25. Q. Liu and H. Yuan, "A High Performance Memory Key-Value Database Based on Redis,"

J. Comput., vol. 14, no. 3, pp. 170-183, 2019.

26. G. I. Muradova, "Security of personal medical data for the Redis concept," Problems of

information technology, pp. 62-68, 2018.

27. M. Kusuma and R. Ferdiana, "Evaluasi performa web server menggunakan varnish http

reserve proxy dan redis database cache," Prosiding SENIATI, pp. 260-B. 264, 2016.

28. R. Patel, "Data + Education. Redis Is a Cache or More?," EasyChair Preprint, 2021.

29. D. Yang and F. Kai, "The Optimization Mechanism Research of Distributed Unified

Authentication Based on Cache," in 2017 14th Web Information Systems and Applications

Conference (WISA), 2017: IEEE, pp. 297-300.

30. A. Blankstein, S. Sen, and M. J. Freedman, "Hyperbolic caching: Flexible caching for web

applications," in 2017 USENIX Annual Technical Conference (USENIX ATC 17), 2017,

pp. 499-511.

31. Pepsi M, B. B. ., V. . S, and A. . A. “Tree Based Boosting Algorithm to Tackle the

Overfitting in Healthcare Data”. International Journal on Recent and Innovation Trends in

Computing and Communication, vol. 10, no. 5, May 2022, pp. 41-47,

doi:10.17762/ijritcc.v10i5.5552.

32. A. Vattani, F. Chierichetti, and K. Lowenstein, "Optimal probabilistic cache stampede

prevention," in Proceedings of the VLDB Endowment, 2015, vol. 8, pp. 886-897.

33. S. Li, H. Jiang, and M. Shi, "Redis-based Web Server Cluster Session Maintaining

Technology," in International Conference on Natural Computation, Fuzzy Systems and

Knowledge Discovery, 2017, pp. 3065-3069.

34. N. Meghanathan, "Review of Access Control Models for Cloud Computing," presented at

the Computer Science & Information Technology (CS & IT), 2013.

35. Nouby M. Ghazaly, M. M. A. . (2022). A Review on Engine Fault Diagnosis through

Vibration Analysis . International Journal on Recent Technologies in Mechanical and

Electrical Engineering, 9(2), 01–06. https://doi.org/10.17762/ijrmee.v9i2.364

36. Yargholi M. System Level Simulation of Energy-Detection Based UWB Receivers. sjis.

2020; 2 (4) :10-14, URL: http://sjis.srpub.org/article-5-83-fa.html

http://philstat.org.ph/
http://sjis.srpub.org/article-5-83-fa.html

