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Abstract  

A study of the dynamics of Marder type cosmological model based on 

bulk viscous strings in the paradigm of f(R) gravity theory is described in 

this article. The solution for the field equations has been obtained by using 

the proportionality condition between the shear scalar  (σ) and the 

expansion scalar (θ),  that gives a relation betwixt metric potentials, and 

other being the use Hybrid expansion law (HEL). The kinematic and 

geometrical properties of our model namely deceleration parameter (DP) 
(q), “cosmographic parameters jerk (j), snap (s) and lerk (l)”, squared 

speed of sound (vs
2), (r − s), (r − q) statefinder plane and the energy 

conditions have been examined. After the graphical analysis of the 

dynamical features of the constructed model it is found that the model 

gives the description for the Universe’s accelerated expansion and this is 

significant as these theoretical results are in accordance with the 

astronomical observations. 

Keywords: Marder type space-time; f(R) theory; Bulk viscosity; 

Cosmological strings. 

 

 

1 Introduction 

The research-based achievements of millennium emphasizes that cosmology and gravitation 

have been developed during the past few centuries, where the contemporary observational 

data such as “type 1a supernovae [1–3], baryonic oscillations [4, 5] and large-scale structures 

[6]”, reveals the phenomenon of Universe’s accelerated expansion. The root cause for this 

acceleration is unknown and is supposed to be because of the mysterious component called 

Dark energy (DE), which contributes about 70% of the total Universe energy-mass. In an 

approach to explain this cosmic acceleration, one can propose and study various dynamical 

DE models on the right side of Einstein field equation. And another proposition is to alter left 

side of the Einstein field equation. A mathematical framework has been well made for 

describing gravitational field properties by incorporating Riemann geometry into general 

relativity (GR). Howsoever, this still has shortcomings on large scales, which has been 

established by current observational data. Some apprehensions regarding the absolute validity 

of the classical GR has been questioned. As mentioned earlier, the adjustment to Einstein’s 

field equation’s gravitational part, to explain the acceleration, we come down to the modified 

theories of gravity. Hitherto, various modified theories past GR, such as the f(R, T) gravity 

[7–10], the f(T, B)  gravity [11, 12], the f(R, G) gravity [13, 14] and the f(R) gravity [15–17] 

have been put into focus. 

Amongst these, f(R) theory of gravity (where Lagrangian density is an arbitrary function of 

Ricci scalar R), is a possibility to explicit the idea of exotic matter and accelerating Universe 

[18] and can be modified in a simplest way from the geometrical aspect which do interpret the 

cosmic acceleration of the Universe in early phase and as well as in the late time accelerated 
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expansion phase. It is clear that the Einstein-Hilbert-Lagrangian can be understood as f(R), is 

an analytic function of the Ricci scalar R as opposed to the R itself in the forward 

modification of GR. From the reviews of Clifton et al. [19] Sotiriou and Faraoni [20], Nojiri 

and Odintsov [21], Nojiri et al. [22] a concise idea of the accomplishments and the demerits of 

the study of f(R)modification can be concluded. It can be said that the f(R) theory is analogous 

to the GR theory when f(R) = R. There have been diverse models of  f(R) gravity suggested in 

the literature which explain the concept of exotic matter [23]. In the f(R) theory of gravity, 

Santhi and Naidu [24] have “studied strange quark matter cosmological models attached to 

string cloud”. Shah and Samanta [25] have discussed cosmological dynamics of f(R) models 

in dynamical system analysis. Beesham and Bamba [26] have examined inflationary Universe 

from anomaly-free f(R) gravity. Santhi et al. [27] have investigated some Bianchi type bulk 

viscous string cosmological models in  f(R) gravity. Ozdemir and Aktas [28] have 

investigated generalized anisotropic Universe models for magnetized strange quark matter 

distribution in the framework of f(R) gravitation theory. 

An extensive study has been done by many authors [29–31] and they did try to elucidate the 

inflation in the early stage of the cosmos and its evolution in late times. Eckart [32] was first 

to formulate the theory of dissipative fluids in relative thermodynamics; and the influence of 

these dissipative parameters incorporating heat transport, shear viscosity and bulk viscosity 

has a vital role in the cosmic evolution; which was further modified by Landau and Lifshifz 

[33]. Deviations from thermodynamic equilibrium of the first order is what described in 

Eckart theory, whereas Israle and Stewart [34] introduced dissipative thermodynamic theory 

called as the casual theory of relativistic viscosity. Dissipative variables are used in order to 

account non-equilibrium states, causing this theory to be a casual and stable theory. In recent 

years, viscous DE models have been suggested as one way of understanding the growth of 

the Universe. The LRS Bainchi type-I cosmological model 

filled with bulk viscous cosmological fluid in f(R) gravity has been studied by Rakesh et al. 

[35], in 

the presence of time varying gravitational and cosmological constant. Bulk viscous string 

cosmological models have been discussed by Mishra and Dua [36] especially in the Saez-

Ballester theory of gravity under a time-dependent DP. Archana et al. [37] have investigated 

anisotropic bulk viscous string cosmological models of the Universe. A spatially 

homogeneous and anisotropic Kantowski-Sachs space-time, was examined by Prasanthi and 

Aditya [38], that is filled with bulk 

viscous fluid, containing one-dimensional cosmic strings within the framework of f(R) 
modified 

theory gravity. 

A study of the Universe using modern technological tools has revealed that there are a 

number of strings in the early Universe which were stable topological structures occurring 

during the phase transition when the temperature dropped below some critical temperatures. 

The strings containing the stress energy, combined with gravitational fields; exhibits the 

Universe’s anisotropic behavior. Although they are not visible today and don’t threaten 

cosmological models, strings lead to remarkably exhilarating astrophysics results, as 

contrasting to domain walls and monopolies. Strings are effective in explaining the nature as 

well as the fundamental configuration of the earstwhile cosmos, as all the matter and forces 

are integrated as theory, thus elucidating the formation of the Universe based on strings. The 

gravitational effect caused by strings may also be worth investigating, since strings can 

couple to a gravitational field and possess stress energy. Also a report by GUT (grand unified 

theories) [39–44], these strings appeared, as the temperatures dropped below critical point 

after the big bang explosion, because of the symmetry breaking during the phase transition. 

http://philstat.org.ph/
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Nowadays considerable number of researchers are concerned on the investigation of 

cosmological models with strings of the cosmos, to have an extensive apprehension on the 

development of the cosmos. 

By inspiring with the above works, we work in the modified theory of gravity. A 

cosmological model of the Marder type is characterized by a bulk viscous string. The article 

is fully described as follows: In section 2, we study the mathematical formalism of the model. 

In section 3, we study the dynamical behaviour of the model. The results are summarized in 

the last section 4.. 

 

2 Mathematical formalism of the model 

The emergence of spatially homogeneous and anisotropic cosmological models have recently 

attracted much attention, because such models can provide important insights into its infancy, 

the structure of the Universe on a large-scale. We consider a spatially homogeneous Marder 

type metric of the form (Marder [45]) 

    ds2 = p1
2dx2 + p2

2dy2 + p3
2dz2 − p1

2dt2,      

 (1) 

where p1, p2and p3 are functions of time t only. Aygun et al. [46] have investigated energy 

momentum of Marder Universe in Teleparallel Gravity. Aktas et al. [47, 48] have discussed 

behaviors of DE and mesonic scalar field for anisotropic Universe in f(R)gravity and the 

magnetized strange quark matter solutions are obtained for a Marder type Universe using 

constant DP. Aygun [49] have investigated tachyon and k-essence DE candidates with 

varying G and Λ for Marder Universe in f(R, T) gravitation theory. Recently, Pawar and 

Shahare [50] have examined an anisotropic Tilted Marder cosmological model is investigated 

in the f(R, T) theory of gravity and very recently, wet dark fluid (WDF) model have been 

studied by Pawar et al. [51] in an anisotropic homogeneous space-time namely Marder space-

time. 

 

The following action gives the field equations of f(R)gravity 

    𝒮 = ∫ (ℒm +
f(R)

16πG
)√−gd4x,         (2) 

where f(R) is a Ricci scalar general function and the matter Lagrangian is given as ℒm. 

Varying action (2) w.r.t. metric gives the following field equations: 

 RμνF(R) + gμν  F(R) −
1

2
f(R)gμν − ∇μ∇νF(R) = κTμν,     (3) 

where F(R) =
df(R)

dR
,  Tμν is the energy-momentum tensor of matter and □ = ∇μ∇μ, ∇μis the 

covariant derivative. 

Contracting field equations (3), we get 

R F(R) + 3□F(R) − f(R) 2 = κT. (4) 

The relation of f (R) and F(R) in Equation (4) can be utilized to evaluate f (R) and for the 

simplification of the field equations. By multiplying eq.(3) with gµν , we get 

                                    F(R)Rμ
μ
−
1

2
 f(R)δμ

μ
− ∇μ∇μF(R) + δμ

μ F(R)
= κTμ

μ
.                                  

(5) 

For a bulk viscous fluid containing a cosmic string in one dimension, tensor energy 

momentum is defined as follows: 

Tμν = (ρ + p)uμuν + pgμν − λxμxν, (6) 

http://philstat.org.ph/
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1 2 3 4 

p = p − 3ξH(= ωρ). (7) 

As mentioned above, the total pressure is denoted by p where the the isotropic pressure is 

included (p). ρ, ξ(t), H and λ are “the rest energy density of the system, the coefficient of 

bulk viscous pressure, the Hubble parameter of the model and the string tension density 

respectively”. A relation for the isotropic pressure and energy density is given by the equation 

of state (EoS) parameter as 

p = Ψρ, (8) 

where the EoS parameter is represented as Ψ and ω = Ψ− ζ (constant). “The vacuum 

dominated, matter dominated, radiation dominated and stiff fluid era are given respectively by 

the values of EoS Ψ = −1, 0, 1/3, 1 [38].” In the following equation, you can represent the 

anisotropic directions of the string by the four vectors of velocity uµ , and the space-like vector 

xµ as follows: 

gμνuμuν = −x
μxν = −1,    u

μxμ = 0. (9) 

Suppose that the string is on the x-axis. There is an assumption that the strings are loaded with 

particle and energy density in the form of ρp = ρ − λ. Then the components of energy 

momentum tensor are 

T1
1 = p − λ;   T2

2 = T3
3 = p;   T4

4 = −ρ. (10) 

 

With the help of Eq.(10), field Eq. (5) for metric (1) gives the following equations: 

 

(
p̈1

p1
−
ṗ1

2

p1
2 +

ṗ1ṗ2

p1p2
+
ṗ1ṗ3

p1p3
)
F

p1
2 +

f(R)

2
− (

ṗ1

p1
+
ṗ2

p2
+
ṗ3

p3
) Ḟ − F̈ = κ(λ − p). (11) 

  

 (
p̈2

p2
+
ṗ2ṗ3

p2p3
)
F

p1
2 +

f(R)

2
− (

2̇p1

p1
+
ṗ3

p3
) Ḟ − F̈ = −κp. (12) 

  

 (
p̈3

p3
+
ṗ2ṗ3

p2p3
)
F

p1
2 +

f(R)

2
− (

2̇p1

p1
+
ṗ2

p2
) Ḟ − F̈ = −κp. (13) 

  

 (
p̈1

p1
+
p̈2

p2
+
p̈3

p3
−

ṗ1
2

p1
2 −

ṗ2ṗ1

p2p1
−
ṗ3ṗ1

p3p1
)
F

p1
2 +

f(R)

2
− (

ṗ1

p1
+
ṗ2

p2
+
ṗ3

p3
) Ḟ = κρ. (14) 

The over head dot indicates differentiation with respect to t. 

(i) A relation among the metric potentials which is brought down by the proportionality 

condition between the shear scalar σ and the scalar expansion θ as given by Collins et al., [52] 

p1 = (p2p3)
m, (15) 

where m > 0 except one and maintaining the non-isotropic nature of the Universe. 

(ii) The power law relation previously take by Johri and Sudharsan [53] between the 

scalar field and average scale factor 

F(R) ∝ (a(t))n, (16) 

where the arbitrary constant is given by n. Therefore, F & a(t) has a power law relation with a 

proportionality constant F0 as, 

F(R) = F0[a(t)]
n. (17) 

(iii) Taking the association of the exponential law and the power law for the average 
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Vol. 71 No. 3s2 (2022) 
http://philstat.org.ph 

Mathematical Statistician and Engineering Applications 

  ISSN: 2094-0343 
  2326-9865 

1060 

scale factor 

a(t) given by Akarsu et al., [54], as 

a(t) = tαetβ, (18) 

where α > 0, β > 0and a(t) is the average scale factor as follows 

                                                                     a(t) = V
1

3 = (p1
2p2p3)

1

3.    

 (19) 

 

Now using Eqs.(15), (17)-(19) we derive the metric potentials and F as 

                 p1(t) = (tαetβ)
3m

2m+1, (20) 

 p2(t) = (tαetβ)
1

2m+1, (21) 

 p3(t) = (tαetβ)
2

2m+1, (22) 

 &  F(t) = F0(t
αetβ)

n
. (23)

String density is given by 

λ =
1

−(2m+1)2t2κ
× (6(m −

1

2
)(F0(t

αetβ)n(
−3α2

2
) + (−3tβ + m+

1

2
)α −

3t2β2

2
)

× (tαetβ)
−6m

2m+1 − (m +
1

2
)n(βt + α)2F0(t

αetβ)n).
}           (24) 

 
 

Figure 1: String density (λ ) v/s redshift (z) 

 

We get the energy density as 

ρ =
1

8(ζ−Ψ−1)κt2(m+
1

2
)2
× (12F0(t

αetβ)
−6m

2m+1
+n((

3m

4
−

1

12
)α2 + (m2

+(
3tβ

2
+ 1)m −

tβ

6
+
1

4
)α +

3β2

4
(m −

1

9
)t2) − 8(tαetβ)n(((m +

1

2
)n

−
3m

2
+
1

4
)α2 + (2tβn(m +

1

2
) − 3βmt +

βt

2
−m−

1

2
)α

+t2β2((m +
1

2
)n −

3m

2
+

1

4
))nF0(m +

1

2
)). }

  
 

  
 

                  (25)          
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 Figure 2: Energy density (ρ) v/s redshift 

(z) 

Effective pressure is given by 

 

p =
3

2κt2(ζ−Ψ−1)(m+
1

2
)2
× ((F0(t

αetβ)
−6m+n(2m+1)

2m+1 ((
3m

4
−

1

12
)α2 + (m2

+(
3tβ

2
+ 1)m −

tβ

6
+
1

4
)α +

3β2

4
(m −

1

9
)t2) −

2

3
(tαetβ)n(((m +

1

2
)n

−
3m

2
+
1

4
)α2 + (2tβn(m +

1

2
) − 3βmt +

βt

2
−m−

1

2
)α

+t2β2((m +
1

2
)n −

3m

2
+
1

4
))nF0(m +

1

2
))ω). }

  
 

  
 

                           

(26) 

 

 
Figure 3: Particle energy density (ρp) v/s redshift(z) 

 

ξ , the coefficient of bulk viscosity takes the form as 

ξ =
1

2κt(βt+α)(ζ−Ψ−1)(m+
1

2
)2
× ((F0(t

αetβ)
−6m

2m+1
+n((

3m

4
−

1

12
)α2 + (m2

+(
3tβ

2
+ 1)m −

tβ

6
+
1

4
)α +

3β2

4
(m −

1

9
)t2) −

2

3
(tαetβ)n(((m +

1

2
)n

−
3m

2
+
1

4
)α2 + (2tβn(m +

1

2
) − 3βmt +

βt

2
−m−

1

2
)α

+t2β2((m +
1

2
)n −

3m

2
+
1

4
))nF0(m +

1

2
))(ω0 −ω)). }

  
 

  
 

 (27) 

 

The proper pressure is given by 
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p =
3

2κt2(ζ−Ψ−1)(m+
1

2
)2
× ((F0(t

αetβ)
−6m+n(2m+1)

2m+1 ((
3m

4
−

1

12
)α2 + (m2

+(
3tβ

2
+ 1)m −

tβ

6
+
1

4
)α +

3β2

4
(m −

1

9
)t2) −

2

3
(tαetβ)n(((m +

1

2
)n

−
3m

2
+
1

4
)α2 + (2tβn(m +

1

2
) − 3βmt +

βt

2
−m−

1

2
)α

+t2β2((m +
1

2
)n −

3m

2
+
1

4
))nF0(m +

1

2
))ω0). }

  
 

  
 

 (28) 

 

 
 

Figure 4: Pressure (p) v/s redshift (z) 

 

Hence, the metric (1) is rewritten as 

 

ds2 = (tαetβ)
6m

2m+1dx2 + (tαetβ)
2

2m+1dy2 + (tαetβ)
4

2m+1dz2 − (tαetβ)
6m

2m+1dt2. (29) 

 

3 Dynamical behavior of the framework 

In this segment, we compute the cosmological parameters of the model (29) and present their 

physical significance. 

    • Spatial volume(V), average scale factor(a(t)), the mean Hubble’s parameter (H), 
expansion  scalar(θ), shear scalar (σ) and anisotropic parameter (Ah) of the model are 

given as  

 

 V = (t3αe3tβ);       a(t) = tαetβ. (30) 

 H =
(α+βt)

t
. (31) 

 θ =
3(α+βt)(tαetβ)

−
3m
2m+1

t
. (32) 

 σ2 =
(βt+α)2(3m2−3m+1)(tαetβ)

−6m
2m+1

(2m+1)2t2
. (33) 

 &  Ah =
(24m2−12m+2)2

3(2m+1)2
. (34) 

 

Here Ah indicates the deviation from isotropic expansion and when Ah = 0, there is 

isotropical expansion of the Universe. Also, Universe’s expansion rates in the of x, y  and z 
directions are indicated by the directional Hubble’s parameters H1, H2, H3 respectively.  

    •  Deceleration parameter: The study of cosmological parameter DP helps us to 

understand the nature of the expanding Universe. It is defined as  
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 q =
d

dt
(
1

H(t)
) − 1 =

α

(α+βt)2
− 1.             

(35) 

 Universe expansion shows the standard way of deceleration phase for the positive values of 

DP. The range of DP : −1 ≤ q < 0, q < −1, “q = 0 and q = −1" current Universe has an 

accelerated expansion, “super exponential expansion", marginal inflation and finally behaves 

like de-sitter expansion respectively.  

 
 

Figure 5: Deceleration parameter (q) v/s redshift (z) 

 

• Statefinder parameters: As mentioned earlier in section (1) a mysterious force DE 

may be responsible for the cosmos to undergo an accelerated expansion at the current era. But 

as of now there is no adequate information about the DE. Hence, it becomes necessary to 

identify and understand the various properties of DE and its importance with various models 

of cosmography. Dvali et al. [55], Armendariz Picon et al. [56], Kamenschik et al. [57] and 

Ratra and Peebles [58] directed various studies to realize that different DE forms such as 

quintessence, “Chaplygin gas”, k-essence, “brane world models” that give several curves of 

scale factor a(t). As a way of categorizing the different types of DE, Sahni et al. [59] 

suggested the ‘statefinder pair’ that is based upon “the second and third order derivatives of 

a(t). We have obtained expressions for statefinder pair (r, s) for the models as” 

 

                                             r =
(α3+(3βt−3)α2+(3β2t2−3βt+2)α+t3β3)

(βt+α)3
. (36) 

  

 &  s =
2α(tβ+α−

2

3
)

(3β2t2+6αβt+3α2−2α)(βt+α)
. (37) 
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Figure 6: r −s plane 

 
  

Figure 7: q−r plane 

 

• Cosmographic parameters: A prominent number of observations have lead to the 

advancement in the study of modern cosmology. In other words, many cosmological tests are 

model dependent, and as such, it would be worthwhile to develop an independent method for 

analyzing cosmological scenarios, as it would make it possible to distinguish among the best 

models and set bounds where appropriate. Cosmography, which is the study of a scale factor 

by expanding it through the Taylor series w.r.t. the cosmic time; or the study of the 

kinematics of the Universe, is considered to be one of the most fascinating aspects of this 

discipline. The distance-redshift relation can be determined by this type of expansion, which 

is independent of the solution of the motion equation in cosmological models. To study 

cosmography, it is worth introducing the cosmographic parameters as follows: 

     H =
1

a

da

dt
,      

 (38) 

     q = −
1

a

d2a

dt2
H−2,     

 (39) 

     j =
1

a

d3a

dt3
H−3,      

 (40) 

     s =
1

a

d4a

dt4
H−4,      

 (41) 

     l =
1

a

d5a

dt5
H−5,      

 (42) 
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where H, q and l are the Hubble, the deceleration and the lerk parameters respectively, and 

jerk j and snap s form the state finder pair.  

 

 j =
α3+(3βt−3)α2+(3β2t2−3βt+2)α+t3β3

(βt+α)3
, (43) 

 s =
α4+(4βt−6)α3+(6β2t2−12βt+11)α2+(4t3β3−6t2β2+8tβ−6)α+t4β4

(βt+α)4
, (44) 

 and  l =
1

(βt+α)5
× (α5 + (5βt − 10)α4 + (10β2t2 − 30βt + 35)α3 (45) 

 +(10β3t3 − 30β2t2 + 55βt − 50)α2 + (5t4β4 − 10t3β3 + 20β2t2 −
30tβ + 24)α + t5β5). 
 

   

Figure 8: Cosmographic parameters v/s 

redshift(z) 

Figure 9: Squared speed sound (v2) v/s 

redshift (z) 

 

Model’s Stability: The stability of model discussed by means of squared sound speed 

parameter is defined as 

                           vs
2 =

ṗ

ρ̇
.         

 (46)  

 

The stability of the DE models can be ascertained with the help of this parameter, as the 

positive action of this parameter gives a stable model, while on contrary, the negative behavior 

gives an unstable model. The squared sound speed can be calculated by substituting and 

simplifying  

 corresponding expressions for the parameters in the Eq.(46),  
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vs
2 = −(16(ζ − Ψ − 1)κt3(m +

1

2
)3)/(16nF0(nt

3β3((n −
3

2
)m +
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 (47) 

 

Energy conditions: The energy conditions (ECs) are the necessary to understand the 

geodesics of the Universe. These take the following form that are derived from the familiar 

Raychaudhury equations [60],  

          - WEC: ρ ≥ 0  

        - NEC: ρ + p ≥ 0  

        - DEC: ρ − p ≥ 0  

        - SEC:ρ + 3p ≥ 0  

Here, the weak energy condition, null energy condition, dominant energy condition and 

strong energy condition are denoted by WEC, NEC, DEC and SEC respectively. The main 

purpose of these energy conditions is to check the expansion of the Universe. Several 

authors have worked on these energy conditions particularly Salti et al. [61], Sahoo et al. 

[62], Hegazy and Rahaman [63], Kumar and Singh [64], Bhar et al. [65], Mishra et al. [66, 

67], Aziz et al. [68], Mollah and Singh [69]. 

 

 
 

Figure  10: Energy conditions v/s redshift (z) 
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4 Results and Discussion 

There has been a detailed discussion in the article on “the Marder type bulk viscous 

cosmological model in a modified theory”, with hybrid expansion law suggested by Akarsu et 

al. [54]. Here we have derived expressions for the some geometric and physical parameters 

for better understanding of the model. The conclusions of this work are being presented in 

figures(figure (1)-(10)) with the following values: m = 2.75, α = 0.11, 0.14, 0.17, β = 0.39, 0.049, 

0.059, κ = 1, F0 = −0.25, n = 6.25, 

ω = −0.99, ω0 = −1.33, Ψ = 1/3, 0, 1 and ζ = 0.1. We have the following description of the results,  

in accordance with the graphical description : 

• In figure (1), (2)(left panel),(3)(left panel) represents string density Λ, energy density ρ, 

particle energy density ρp versus redshift(z) respectively and they vary in positive region 

throughout the evolution of the Universe and increasing against redshift irrespective of the 

values of α and β . In figures (2)(right panel) and (3)(right panel) represents plots of 

energy density(ρ) and particle energy density(ρp) versus redshift for various periods of 

cosmos with α = 0.11 and β = 0.039, we observe various eras of cosmos such as matter 

dominated (Ψ = 0), radiation dominated (Ψ = 1/3) and stiff fluid (Ψ = 1) eras vary in 

positive regions through out the Universe’s evolution against redshift(z). 

• In (4) pressure against redshift(z) has been considered. From (4)(left panel) we observe 

that pressure decreases against redshift irrespective of the values of α and β . Figure 

(4))(right panel) shows the same behaviour for different phases of the Universe(for Ψ = 0, 

1/3, 1) against redshift for α and β . 

• DP (q) versus redshift(z) is taken in (5) and in the present model (29) the parameter is 

time-dependent, exhibiting a transition from previous decelerated phase to present 

accelerated phase of the Universe for three different values of α and β . The present values 

of DP (q) for our obtained model is q ≈ −0.738, −0.7898, −0.8245 which is consistent with 

the various astrophysical observations. 

• Figure (6) indicates the statefinder plane r − s and we observe that the trajectories of (r, s) 

begin from chaplygin gas region (r > 1, s < 0), turns towards the ΛCDM point (r = 1, s = 0) by  

crossing quintessence and phantom (r < 1, s > 0) regions, Hence, the cosmos projects a 

ΛCDM model for the corresponding model. 

 

• Figure (7) indicates r − q plane’s evolution. In q − r plane, radiation dominated era, matter 

dominated era and de-Sitter era lines are represented by q = 1, 0.5, −1 respectively. Also r= 

1 represents ΛCDM line. Figure (7) explains the began of matter dominated phase 

and evolving to de-Sitter phase, showing the phase transition of the cosmos, as there is a 

signature change from positive to negative. 

• We have plotted cosmographic parameters versus redshift in figure (8). It is observed 

that the cosmographic parameters jerk( j) and lerk(l) are varying in positive region 

against redshift(z) irrespective of the values of α and β . Whereas, the cosmographic 

parameter snap(s) shows sign change from previous negative values to current positive 

ones which agrees well with the recent observational data. 

• In figure (9) we have plotted squared speed of sound(v2) versus redshift(z). We observe 

that 

the trajectories of v2 are positive throughout the evolution and increasing against 
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irrespective of the values of α and β , which indicates the stable behavior of our model. 

 

• As observed from figure (10), the nature of the energy conditions for the constructed 

model is well satisfied throughout the cosmic evolution for the DEC. However in late 

times, there is a violation for NEC and SEC. In the modified theory of gravity, the 

violation of SEC indicates an accelerate expansion of the Universe. 

 

5 Conclusions 

To investigate the phenomenon of accelerated expansion of the cosmos, we have studied bulk 

viscous string cosmological model in f (R) theory of gravity with anisotropic Marder space-

time, by taking hybrid expansion law. In the process we have investigated DP (q) and 

cosmographic parameters, squared speed of sound (v2) and cosmic planes like state finder r −s 

and r −q for the model. For the corresponding model we have also investigated the energy 

conditions. 

We have noticed that the model behaves like point type singularity at t = 0, ensuring the 

divergence of the kinematical and physical parameters, as the spacial volume V → 0 at t = 0. At t 

→ ∞, spatial volume becomes infinite establishing the Universe’s expansion at constant rate. 

For the model, the 

anisotropic parameter Ah /= 0 implying the anisotropic behavior of the model all over the 

cosmic evolution. Also, as cosmic time t  approaches to ∞, the expansion scalar (θ ), shear 

scalar (σ 2) and the mean Hubble’s parameter H converges to a constant value i.e. the 

Universe is expanding in a constant rate. The energy density(ρ), particle energy density(ρm) 

and string density(λ ) are all positive and increasing functions, where as pressure(p) is 

negative and decreasing function of the model. In correspondence with the current 

observations, the DP (q) depicts a transition from the initial deceleration phase to the current 

acceleration phase. The state finder parameters corresponds to ΛCDM limit and besides 

showing Chaplgyin gas, quintessence and phantom like behavior. The r − q plane of our 

model shows SCDM in the past and de-Sitter phase of the Cosmos in future.  

The squared speed of sound(v2)show a stable behavior for our model. For our model (29), 

DEC obeyed, but NEC and SEC are violated. In our model the cosmographic parameters jerk 

and lerk vary in positive regions whereas snap parameter shows signature flipping nature 

from previous deceleration to present acceleration. 
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