
Vol. 71 No. 3s 2 (2022)
http://philstat.org.ph

Mathematical Statistician and Engineering Applications

 ISSN: 2094-0343

 2326-9865

 1091

Zero-Day Attack Path Identification using Probabilistic and Graph

Approach based Back Propagation Neural Network in Cloud

Swathy Akshaya M.1, Padmavathi G.2

1Research Scholar, Department of Computer Science, Avinashilingam Institute for Home

Science and Higher Education for Women, Coimbatore, akshayakulandaivel@gmail.com
2Professor, Department of Computer Science, Avinashilingam Institute for Home Science and

Higher Education for Women, Coimbatore, padmavathy.avinashilingam@gmail.com

Article Info

Page Number: 1091 – 1106

 Publication Issue:

Vol. 71 No. 3s2 (2022)

Article History

Article Received: 28 April 2022

Revised: 15 May 2022

Accepted: 20 June 2022

Publication: 21 July 2022

Abstract:

In the current environment, Networks are generally installed and

employed by fundamental security defense procedures like firewalls,

Intrusion Detection Systems. It is generally not stress-free for adversaries'

to break down the machine. Rather than targets, it usually depends on an

attack events chain to flourish threats. A zero-day attack is defined as

unknown threats in software for which either patch is not issued or

developers are not aware of it. Among many other attacks, this attack is

considered as most susceptible one. The number of these exploits

discovered remains rising at an increasing rate in the current situation.

When these exploits happen in an attack path, the path remains a zero-day

attack. The proposed work is developed to identify the Zero-Day Attack

path using Probabilistic and Graph Approach based Back Propagation-

Neural Network. If specific attack actions avoid system calls, proposed

instance graphs capture the complete zero-day attack paths. An approach

based on Back Propagation Neural Network outperforms the existing

Accuracy, Correctness, and Misclassification parameters. The

experimental result shows the effectiveness of the proposed work Back

Propagation-Neural Network for zero-day attack path identification, which

achieves a better result than the existing work.

Index Terms: Zero-day Attack, Path Identification, Cloud Security,

Infected Nodes, System Object Dependency Graph (SODG), Back

Propagation Neural Network (BP-NN), Probability Inference.

1. Introduction

In the current scenario, technologies and IT environments are growing very fast. Therefore,

threats of exploits are raised more than before. Many companies are ready to work on

identifying the known threats using particular security implements like antivirus devices,

anti-malware devices, vulnerability assessment tools.

A zero-day exploit may frequently impact resources such as the system or internal users.

Placing a Source is infeasible work if not having the forensics capabilities to recognize

related elements. Each attack chain is an exploit’s order that becomes an attack path. An

exploit is facilitated by an unseen vulnerability called a zero-day exploit. Whenever

malicious activity is on this path, it converts to a zero-day attack path. In the current situation,

number of these exploits discovered remains rising at an increasing rate. As per Symantec’s

Internet Security Report of 2014, zero-day vulnerabilities were identified in 2013, which is

http://philstat.org.ph/
mailto:akshayakulandaivel@gmail.com
mailto:padmavathy.avinashilingam@gmail.com

Vol. 71 No. 3s 2 (2022)
http://philstat.org.ph

Mathematical Statistician and Engineering Applications

 ISSN: 2094-0343

 2326-9865

 1092

higher than the former year. “Identified twenty-three zero-day vulnerabilities indicates 61%

rise over 2012 which is higher than combined two preceding years.

In 2017, these attacks grew from 8 in the preceding year. In 2016, Zero Day Initiative

identified numerous threats, such as 50 in Apple products, 76 in Microsoft products, and 135

in Adobe products. At the Equifax breach, attackers expanded access to data from the

primary consumer credit reporting agency in September 2017. In the Equifax database, the

Personal information of more than 143 million people is stolen. The Famous WannaCry

ransomware attack threatened most of the world in September 2017 because of a zero-day

exploit.

Tactlessly, specialists forecast the occurrence of these threats, which is going to degrade with

technology. In 2015, there was about one per week. Cyber security Ventures foresaw that

there would be one new exploit that will occur every day in 2021. Identified attacks emerged

from eight in 2011 to eighty-four in 2016 [1]. When it continues like this, a new zero-day

attack will be identified every day of 2022. Each of these activities signifies a vulnerability

that may consequence in a tremendously dangerous zero-day attack that has the capability of

striking complete industries.

 The objective of this research work is to identify the zero-day attack path. In this work, a

probabilistic and graph approach based Back Propagation Neural Network is proposed for

identifying the zero-day attack path. If specific attack actions evade system calls, proposed

instance graphs capture the complete zero-day attack paths.

This work is organized as follows:

1. Section 1 briefly discussed the introduction, motivation, objective of the paper, and

organization of the paper.

2. Section 2 describes previous approaches applied for zero-day detection.

3. Section 3 illustrates the proposed approach in detail.

4. Section 4 presents the experimental results by comparing the proposed method with the

existing approach.

5. Section 5 accounts for the conclusion and future scope.

2. Recent Statistics of Zero-day Attack

Some of the recent impacts and statistics of zero-day attacks are represented in Table.1

Table 1. Recent Impact and Statistics of Zero-Day Attack

Year Zero-Day Attacks Infection

2021

30 Zero-Day

Vulnerabilities Discovered

Multiple Vulnerabilities appeared in Apple

macOS, Google Chrome, Microsoft

Windows, and other industries.

2020

38 Zero-Day

Vulnerabilities Discovered

Security Restrictions Bypass and

Authentication Bypass.

2019

Discovered 28 Zero-Day

Vulnerabilities

Remote code execution in organizations.

http://philstat.org.ph/

Vol. 71 No. 3s 2 (2022)
http://philstat.org.ph

Mathematical Statistician and Engineering Applications

 ISSN: 2094-0343

 2326-9865

 1093

2018

Six Undisclosed Zero-Day

Vulnerabilities

3 Manage Engine Products. The application

includes log 360 and even log application

manager.

2017

WannaCry Ransomware

Attack

Hitting several orientations worldwide,

including UK national health servers.

2017

Zero-Day Attack

The application attack surface is raised by 111

billion new lines of software code per year.

2016

Discover Zero-Day

Exploits

Hitting entire 84 industries.

2016 Zero-Day Attack 135 vulnerabilities in Adobe and 76

vulnerabilities in Microsoft products.

2014 Zero-Day Attack 23 Zero-day vulnerabilities identified indicate

a 61% growth over 2012.

2011 Discover Zero-Day

Exploits

Hitting entire 8 industries.

Due to signatures are not generated, these exploits may not be identified by anti-malware or

IDS/IPS devices [2]. Though zero-day attacks are formidable to discover and identify,

numerous strategies have emerged. According to Ratinder Kaur et al., every attack follows

the basic detection strategies given below in Figure. 1.

Figure.1 Detection Strategies for Zero-Day Attack

1. Statistical Detection- This method uses machine learning approaches to collect data from

formerly identified exploits and produce a model for safe system behavior. These techniques

provide limited effectiveness and false positives/negatives. Security administrators have trust

in behavior-based detection approaches without particular detection capabilities.

2. Signature Detection- The threat scanning process practices previously used malware

databases and their behavior as a reference in this method. After analyzing using the machine

learning approach and generating signatures for previously available malware, necessary to

utilize the signatures to identify the formerly unidentified attacks. This method comprises a

search of bytes sequence within a malicious executable and files previously affected by this

particular malware. This method gives better results only if threats are identified earlier. Only

after an instance of this malware has affected the networks and systems can an expert specify

http://philstat.org.ph/

Vol. 71 No. 3s 2 (2022)
http://philstat.org.ph

Mathematical Statistician and Engineering Applications

 ISSN: 2094-0343

 2326-9865

 1094

a signature for new malware executables. Due to malicious software unnoticed earlier, this

method cannot manage the zero-day attacks [3].

3. Behavior Detection- This method identifies malware depending on its interactions with the

target system. If it is the consequence of a malicious attack, it examines its interactions with

present software to identify.

4. Hybrid Detection- This method integrates the methods mentioned earlier to use the benefit

of its strengths.

3. Related Works

Avasarala et al. (2017) proposed a class matching approach with a procedure for recognizing

the number of suspect objects that encompasses data regarding the network transactions or

computer operations likely related to a security threat. Suspicious objects are transferred to an

inspection service operating that implement on 1 or a few common-purpose computers.

Digital data is transmitted to an analytical service operating that implement on 1 or a few

common purpose computers. 1 or few scores are transmitted to a correlation facility that

groups a scores plurality, supplementary data regarding each suspicious object together form

a cumulative data that represents 1 or few cumulative features of suspicious objects in

plurality form, producing an infection verification pack that contain routines, during execute

on an end-point machine in the computer network setting, thus reducing the mistrusted

security risk [4].

Nahid Hossain et al. (2017) presented tag-based methods to identify the attack and

reconstruction that contain identification of source and analysis of influence. The new

techniques are proposed to disclose the giant depiction of attacks through compact

construction and visual graphs of attack phases. This model contributed to a red team

assessment run by DARPA and detected and reconstructed the information of the red team's

attacks on hosts, which run on Linux, FreeBSD and Windows successfully [7].

Shiqing Ma et al. (2017) proposed semantics aware program annotation and instrumentation

method. This method splits work performance depending on application explicit high-level

task structures, thus preventing training, producing execution partitions with rich semantic

info, and offering numerous perceptions of the attack. A prototype is developed and

integrated by three dissimilar provenance systems: ProTracer, Linux Audit system, and LPM-

HiFi system. This method produces cleaner attack graphs having rich high-level semantics

and gives low time overheads and space [8]. BEEP ProTrace and MPI seek to achieve higher

precision than Backtracker, but they have inadequate scalability because they are not always

automated instrumentation. SLEUTH provides more effective event storage and analysis.

Xiaoyan Sun et al. (2016) identified a zero-day attack path using the probabilistic method and

used ZePro and Patrol's prototype system. Analyzing the system calls built a Bayesian

network depending on the instance graph to disclose the zero-day attack paths. This method

calculates the possibilities to get the object instances infected. The high probability instances

are connected using dependency relations that create zero-day attacks [10]. This system

revealed parts of the attack paths only.

Mishra and Gupta (2014) introduced a combined solution that employs the CSS and URI

matching concepts to guard against a zero-day phishing attack. These attacks are viral and

severe hazards on the Internet that are utilized to cheat users and snip their data through

http://philstat.org.ph/

Vol. 71 No. 3s 2 (2022)
http://philstat.org.ph

Mathematical Statistician and Engineering Applications

 ISSN: 2094-0343

 2326-9865

 1095

spoofed emails, fake websites, or both. A hybrid solution is proposed to defend against this

attack. In this work, the matching concept is used for every URI with trusted domains using

the Link Guard algorithm, and the concept of CSS matching is used from the Bait Alarm

scheme. This approach is practical and provides security to various types of website phishing

attacks, and produces a false-positive rate in less amount [5].

Wang et al. (2014) proposed certain demonstrative mechanisms on determining the zero-day

attack to estimate the strength of networks modeled network diversity and then introduced

two complementary diversity metrics. k-zero-day safety is a diversity metric to discourse this

problem. This metric computes how many vulnerabilities are necessary for compromising

network resources; a large amount infers high security due to the possibility of having more

unidentified vulnerabilities at the identical time that can below. The complementary diversity

metrics are proposed based on the least average attacking efforts [6].

Ratinder Kaur et al. (2014) proposed a Hybrid Technique for Detecting Zero-Day

Polymorphic Worms by using Signature and Anomaly Detection. It has some difficulties

detecting zero-day through signatures. Because signatures are hard to detect, a zero-day

attack has new signatures for each new attack, and thus it becomes complex.

4. Literature Review

Some of the significant works of zero-day attacks provide a detailed view of literature are

reviewed and presented in the following Table. II.

Table II. Review of Literature for Zero-Day Attack Identification

Author Year Title Techniques Observation

Avasarala

et al.

2017

System and method for

automated machine

learning, zero-day

malware detection

[CNS].

Class matching

approach.

True positive and False

positive detection rate low.

The accuracy of detection

needs to be improved.

Xiaoyan

Sun, et al.

2016 Towards Probabilistic

Identification of Zero-

day Attack Paths

[IEEE].

Bayesian

Networks.

If an attack evades System

calls or attack span time

exceeds the given period, the

current system may not

detect a Zero-day attack.

Chanchala

Joshi, et.al.

2016 ZDAR System:

Defending Against the

Unknown [IJCSMC].

Supervised and

Unsupervised

Classification.

Signature generation of

unknown activities is

complex, the false alarming

rate of anomalous behavior.

Ravinder

Kaur et.al.

2014 Hybrid Technique for

Detecting Zero-Day

Polymorphic Worms

[IEEE].

Signature and

Anomaly

Detection.

Signatures are hard to detect,

and the zero-day attack has

new signatures for each new

attack.

Wang et al. 2014 k-Zero-Day Safety: A

Network Security

Metric for Measuring

the Risk of Unknown

Vulnerabilities [IEEE].

k-zero-day

safety as

shortest paths in

a DAG.

Complexity of computing.

http://philstat.org.ph/

Vol. 71 No. 3s 2 (2022)
http://philstat.org.ph

Mathematical Statistician and Engineering Applications

 ISSN: 2094-0343

 2326-9865

 1096

Observations due to Literature Study

 Among this literature, the significant findings of zero-day attacks are listed below.

1. According to Xiaoyan Sun et al., if attack span time exceeds the given period, the system

may not detect a Zero-day attack.

2. According to Ravinder Kaur et al., signatures are hard to detect, and a zero-day attack has

new signatures for each new attack.

The limitations can be overcome by being capable of detecting the zero-day attack, and by

finding the zero-day attack path identification, the threat can be handled and reduced to a

certain extent.

5. Proposed Methodology

System call auditing is done in each host, gathered its traces, and transferred to the central

investigation machine for offline instance graph grounded BN construction and attack path

detection. The proposed flow diagram is given in figure 2.

Figure.2 Flow Diagram for Proposed Work

5.1 Proposed Methodology

a) Procedure

1. First, build a network-wide supergraph from system calls.

2. Identify the zero-day attack path (subgraph) hidden in the supergraph.

b) Steps

1. Step 1: Logging- The execution of the program and its communication are logged. The

process involved and communication between two processes or files can be seen in the log

file.

2. Step 2: Parsing system call- Each host file can be parsed into system objects, such as File,

Process, and Socket.

3. Step 3: System Object Dependency Graph: It is built as a super graph to identify the

intrusion propagation by investigating the system calls.

a. Dep ∈ {(src ← sink), (src → sink), (src ↔ sink)}, src and sink indicates OS objects, then

Vx= VxU{src, sink} and Ex= ExU{dep}. dep gets start and end timestamps from syscall.

http://philstat.org.ph/

Vol. 71 No. 3s 2 (2022)
http://philstat.org.ph

Mathematical Statistician and Engineering Applications

 ISSN: 2094-0343

 2326-9865

 1097

4. Step 4: Parsing system object instances- If system call trace T [tbegin, tend] in a time

window is indicated as ∑T and system objects set included in ∑T is indicated as OT, object

instance graph GT (V. E)

a. When syscall ∈ ∑T has parsed to 2 system object instances such as srcx, sinky, x, y ≥ 1, and

dependency relation depz: srcx → sinky in which srcx is indicated as xth instance of system

object src εOT and sinky indicated as yth instance of system object sink ∈ OT , V = V

∪{srcx, sinky }, E = E ∪ {depz}. The timestamps for syscall, depc,and sinkj are t_syscall,

t_depz, t_srcx, and t_sinky. The t_depz gets t_syscall from syscall.

5. Step 5: Graph Pruning: The complexity and speed of the processing are reduced by

instance graph pruning. The duplicate entries or dependency connections between system

objects are removed.

6. Step 6: Zero-Day Attack Identification- Infected nodes are predefined in the environment.

These nodes combine probability values for infected nodes and aid in recognizing these

attack paths.

a. Samples Set D = {(x1,t1), (x2,t2
) … (xi,ti

) … (xn,tn
)} with xi denotes ith input vector

are trained and ti denotes equivalent output one.

b. Using BP neural network, predicting result can be written as:

tî = ∑ ω2(j)tanh (∑ ω1

r

j−1

M

j−1

(j, k)xjk + θ1(j)) + θ2

7. Step 7: Output- zero-day attack path is identified.

 The steps of the proposed methodology have been depicted in Figure.3.

Figure.3 Research Design

5.2 A Detailed View of the Proposed Methodology

a) Logging: On each host, a System call is observed towards all executing processes.

The execution of the program and its communication are logged. The process involved and

communication between two processes or files can be seen in the log file. During system call

auditing, the following details can be kept: a) socket communications combine for every host

instance graphs b) node numbers and file absolute pathnames are OS-aware knowledge. c)

Timestamp for each system call. The bandwidth and CPU cost, which suffers due to

redundant or possibly innocent objects, are solved by System call filtering.

Filter the System Call

(input)

 Parsing System Call Extract Dependencies from

the System

 Graph Generations Find Graph Instances in the

System

Heuristic Algorithm to

Construct Graph Network

Find probabilities Probability-based on

Inferences

If probability Greater than

Threshold Consider it as an

Infected Node

Use DBDS to Highlight the

Nodes in Instance Graph
Build Instance Graph

Attack Path Identification

http://philstat.org.ph/

Vol. 71 No. 3s 2 (2022)
http://philstat.org.ph

Mathematical Statistician and Engineering Applications

 ISSN: 2094-0343

 2326-9865

 1098

b) Parsing into System Object: The OS object instances and dependency relations are

parsed through a system call. These parameters are also involved in the parsing. It

distinctively identifies and names the nodes and supports to conclude the edge direction

between them. Each host file can be parsed into system objects.

c) Instance Graph: These parsed things are turned to be nodes and directed edges from

the system call parsing. The procedure of producing the object instance graph from system

object dependencies is provided below.

d) Construct Dependency Objects: It is built as a super graph to identify the intrusion

propagation by investigating the system calls.

System Object Dependency Graph

1. When the system call trace for xth host is represented as ∑ x, this graph becomes

directed graph G (Vx, Ex) for this host in which vx indicates nodes set, initialized to {∅};

and Ex indicates directed edges set, initialized to {∅}. When the system calls syscalls and dep,

the dependency relation parsed from syscall. As per dependency rules, Dep ∈ {(src ←

sink) , (src → sink), (src ↔ sink)}, src and sink indicate OS objects, then Vx =

VxU{src, sink} and Ex= ExU{dep}. dep gets start and end timestamps from syscall.

2. When (a→ b) ∈ Expand (bc)∈ Ex, then c transitively based on a. System calls have

parsed into system objects and dependencies. The dependency rules are given to parse system

calls. Depending on these rules, the system calls are parsed into 3 portions: an src object, a

sink object, and dep relation. The objects and dependency relations are united to form a

directed graph.

Figure.4 Dependency Objects

e) Construct Object Instance Graph: Object instance graph stands kind of dependency

graph. Node is an object instance with a particular timestamp. Moreover, different instances

have different versions of an identical object at different time points, with a different

infection state. This graph has an equivalent or larger size.

http://philstat.org.ph/

Vol. 71 No. 3s 2 (2022)
http://philstat.org.ph

Mathematical Statistician and Engineering Applications

 ISSN: 2094-0343

 2326-9865

 1099

If system call trace T [tbegin, tend] in a time window is indicated as ∑T and system objects

set included in ∑T is indicated asOT, object instance graph GT(V. E). in which V denotes

node-set, initialized to {∅} and E denotes directed edges set, initialized to {∅}.

1. When syscall ∈ ∑T has parsed into 2 system object instances such as srcx, sinky, x,

y ≥ 1, and dependency relation depz: srcx → sinky in which srcx is indicated as xth instance

of system object src εOT and sinky indicated as yth instance of system object sink∈ OT, V =

V ∪{srcx, sinky}, E = E ∪ {depz}. The timestamps for syscall, depc, and sinkj are t_syscall,

t_depz, t_srcx, and t_sinky. The t_depz gets t_syscall from syscall. Before appending srcx

and sinky into V, the x and y indexes are analyzed.

2. For ∀srcx , sinky ∈ V, i, j ≥ 1, when xmax and ymax are maximum indexes of

instances for src and sink;

3. When ∃srcz V, z ≥1,then x = xmax, and t_srcx remains identical; else, x = 1, and

t_srcx is changed to t_syscall Ifi ∋ sinki V, i≥1, then y = ymax; else, y = 1. t _sink y has

changed to t_syscall, If j is equal to 2, then E is equal to E U{deps: sinky − 1 → sinky}.

4. When a→b ∈ E and bc ∈ E, then c transitively based on a new instance

First, the instance graph can reflect correct infection causality relations by implying time

information stamped onto specific instances. Second, the instance graph can break the cycles

contained in SODG.

Algorithm 1- Object Instance Graph Generation

Input: system object dependencies set D,

Output: G (V, E) instance graph

For each dep: src→sink∈D Do

 Look up the most recent instance srck of src, sinkz

of sink in V

 If sinkz ∉V then

 Create new instances sink1

 V←V U {sink1 }

 If srck ∉ 𝐭𝐡𝐞𝐧

 Create new instances src1

 V←V U {sink1}:

 E←EU {src1→sink1}

 Else

 E←E U {srck → sink1}

 End if

End if

If sinkz ∈ V 𝐭𝐡𝐞𝐧

 Create new instancesinkz+1

 V ← V U {sinkz+1}

 E ← E U {sinkz → sinkz+1 }

 If srck ∉ V 𝐭𝐡𝐞𝐧

 Create new instances src1

http://philstat.org.ph/

Vol. 71 No. 3s 2 (2022)
http://philstat.org.ph

Mathematical Statistician and Engineering Applications

 ISSN: 2094-0343

 2326-9865

 1100

 V ← V U {src1 }

 E ← E U {src1 → sinkz+1 }

 Else

 E ← E U {srck → sinkz+1 }

 End if

 End if

End for

Figure.5 Object Instance Graph

f) Instance Graph Pruning: The complexity and speed of the

processing are reduced by instance graph pruning. The duplicate entries or dependency

connection between system objects is removed. Although different system calls can trigger it,

it is not uncommon that a similar dependency can happen various times between any pair of

system objects.

http://philstat.org.ph/

Vol. 71 No. 3s 2 (2022)
http://philstat.org.ph

Mathematical Statistician and Engineering Applications

 ISSN: 2094-0343

 2326-9865

 1101

g) Incorporate Evidence: In the environment, infected nodes are predefined. These

nodes combine probability values for infected nodes and aid in recognizing these attack

paths. This module combines evidence into instance-graph grounded BP-Neural Network by

labeling the contamination state of the involved object instance as infected or appending the

Local Observation Model node as a child node to an instance of the object for modeling the

uncertainty towards observations.

h) Back Propagation-Neural Network: Using a training set, this method calculates

probability from Neural Network. Through these training sets, the affected rate of the test

node is identified and shown in Figure.6.

It contains an input layer, single or numerous hidden, and one output layer.

Set of Sample say D={(x1,t1), (x2,t2
) … (xi,ti

) … (xn,tn
)}with xi denotes ith input vector are

trained and t i denotes equivalent output one.

Using BP neural network, predicting result can be written as:

tî = ∑ ω2(j)tanh (∑ ω1

r

j−1

M

j−1

(j, k)xjk + θ1(j)) + θ2

Where the number of input neurons and hidden neurons are indicated by P and M, biases OJ

and 82, weights joining hidden and output layer (J), (j), the weights joining input and hidden

layer (J), (j, k) and kth elements of jth input are denoted by xj = [xjk,k = 1,2, . . . P].

It has a description of layer quantity and neuron quantity per layer, and every neuron employs

activation function type and existing association CV among the neural units. The error term is

minimized by

Ep =
1

2
∑ (ti

n
req -tî)

2 =
1

2
∑ ei

2n
err

Figure.6 Back Propagation-Neural Network

It is used to evaluate BP Neural Network parameters. The weight decay is known as network

error function, which can be followed as

F (W) =βEp
̅̅ ̅ + αEω

̅̅ ̅̅

With e∞ =
1

2
∑ ω1,2

m
j=1 (f)2,

α and β are called hyperparameters, weight between hidden and

output layer and weight between input and hidden layer are denoted by CV. Weight CV for

posterior probability function in Bayesian rule is

P (ω|D, α, β, H) =
p(D|ω,β,H)p(|ω|α,H)

p(D|α,β,H)

Then,

Weight calculated using

training

Probability inference of

each node

Testing nodes

T
ra

in
in

g
 n

o
d
es

Output

Back Propagation

BP-NN

Hidden Layer

http://philstat.org.ph/

Vol. 71 No. 3s 2 (2022)
http://philstat.org.ph

Mathematical Statistician and Engineering Applications

 ISSN: 2094-0343

 2326-9865

 1102

 P (D|α, β, H) =
p(D|ω, β, H)p(ω|α,H)

p(ω|D,α,β,H)

i) Zero-Day Path Identification: Zero-day attack paths are identified by inferred

probabilities and the nodes having high probabilities and edges inter-linking the instance

graph. These paths are shown in Figure.7. It has a high probability on its own or both

descendant and ancestor having high probabilities to motivation on these nodes in instance

graph. These emphasized nodes are involved in the infection propagation, and therefore it

must be kept and shown in Figure.8 (a) & (b). A high probability called a tuning parameter

(threshold) is applied to control the bottom probability. Output stored in graphml format. It

can be viewed in yed Editor.

Algorithm 2- Identification of Zero-day Attack Path

Input: G (V, E) instance graph and v ∈ V vertex

Output: Gz(Vz, Ez) zero-day attack path

 Function DFS (G, v,direct)

 Initially V is marked as visited

 If (direct = ancestor)

 nextv= parent of v that nextv → vϵE

 Flag = high probability ancestor

 Else if (direct = descendant)

 nextv=child of v that v → nextvϵE

 Flag = high probability descendant

 End if

 Do

 If nextv has not marked as visited

 If (prob [nextv] ≥ threshold or nextv) = flag find high probability

=True

 Else

 DFS (G, nextv,direct)

 End if

 End if

 If find_high_probability =True, then v is marked as flag

 End if

 While (all nextv of v)

End function

Do

 DFS (G, v, ancestor)

 DFS (G, v, descendant)

While(𝐚𝐥𝐥 v ∈ E)

Do

 If prob [v] ≥ threshold or (v is labeled as has high probability ancestor

and v is labeled as has high probability descendant) Vz ← Vz ⋃ v

 Vz ← Vz ⋃ vVz ← Vz ⋃ v

 End if

http://philstat.org.ph/

Vol. 71 No. 3s 2 (2022)
http://philstat.org.ph

Mathematical Statistician and Engineering Applications

 ISSN: 2094-0343

 2326-9865

 1103

While (𝐚𝐥𝐥 v ∈V)

Do

 If v ∈ Vzandω ∈ Vzthen

 Ez ← Ez ⋃ e

 End if

While (e:v → ω ∈ E)

Figure.7 Zero-Day Attack Detection

Figure.8 (a) Figure.8 (b)

Figure.8 (a) and (b) is Yed Editor for showing output.

6. Experimental Result

The proposed method is implemented using a cloud simulator where Java is the

programming language, and SQL Server is the database. CloudSim is combined with Java

based IDEs such as Net Beans and Eclipse. The CloudSim library can be accessed. A

software component generates and performs the virtual machines called Virtual Machine

http://philstat.org.ph/

Vol. 71 No. 3s 2 (2022)
http://philstat.org.ph

Mathematical Statistician and Engineering Applications

 ISSN: 2094-0343

 2326-9865

 1104

Monitor (VMM). In this tool, Simulation parameters are used for estimating the existing and

proposed techniques. It is a standard tool that offers a generalized simulation framework that

permits the Cloud Computing environment and application services research. yEd is a

common diagramming platform with a multi-document interface. It is a cross-platform

application written in Java and used to draw various categories of diagrams such as entity-

relationship diagrams, network diagrams, flowcharts. It permits the use of custom vector and

raster graphics as diagram elements. The performance of the proposed method is evaluated

using the various parameters, and the results obtained are explained in the section below.

Performance Metrics

The performance of the proposed work is estimated using the following metrics and shown in

Figure.9.

a) Accuracy- Accuracy provides the required related results used for classification.

Accuracy =
TruePositive + TrueNegative

TruePositive + FalsePositive + TrueNegative + FalseNegative

To compare the expected zero-day path vs. predicted, calculate correctness and

misclassification.

b) Correctness- Correctness is defined as a number of correctly classified nodes by a

total number of nodes.

Correctness= Number of Correctly Classified Nodes/Total Nodes

c) Misclassification- It is defined as the sum of False Positive and Negative, divided by

the total number of nodes.

Misclassification Rate: (False Positive +False Negative)/Total

Figure.9 Performance chart

Expected Outcomes

1. Increased Efficiency in terms of Accuracy and Correctness.

2. Enhanced Data Security by accurate detection of the attack.

3. Prevent Loss of Revenue for the Organization.

4. Increases time range for accurate detection and reduces misclassification.

http://philstat.org.ph/

Vol. 71 No. 3s 2 (2022)
http://philstat.org.ph

Mathematical Statistician and Engineering Applications

 ISSN: 2094-0343

 2326-9865

 1105

7. Conclusion

In the past few years, Due to the growth of Internet popularity and security-unaware, users

are familiar sources for the speedy growth of attackers in the network. This work employs the

hybrid detection technique to identify a zero-day attack path. This paper presented a new

method that resulted from integrating several software tools aiming to observe and collect

information about zero-day attacks. Experimental result shows that the proposed work

achieves a better result and is comparatively far better than the existing work. In the network,

numerous chain of attacks sequences are identified in the path, which consists of both zero-

day exploits and non-zero day exploits is considered as the limitation. Future enhancement is

to predict only the zero-day exploits and prevent further zero-day attacks.

Significant References

1. Xiaoyan Sun, Jun Dai, Peng Liu, Anoop Singhal, and John Yen., "Using Bayesian Networks

for Probabilistic Identification of Zero-day Attack Paths," IEEE Transactions on Information

Forensics and Security, IEEE, 2018.

2. Pawan Kumar Tiwari, P. S. . (2022). Numerical Simulation of Optimized Placement of

Distibuted Generators in Standard Radial Distribution System Using Improved

Computations. International Journal on Recent Technologies in Mechanical and Electrical

Engineering, 9(5), 10–17. https://doi.org/10.17762/ijrmee.v9i5.369

3. Nahid Hossain et al. "SLEUTH: Real-time Attack Scenario Reconstruction from COTS Audit

Data," USENIX Security Symposium, 2017.

4. Ghazaly, N. M. . (2022). Data Catalogue Approaches, Implementation and Adoption: A

Study of Purpose of Data Catalogue. International Journal on Future Revolution in Computer

Science &Amp; Communication Engineering, 8(1), 01–04.

https://doi.org/10.17762/ijfrcsce.v8i1.2063

5. Shiqing Ma et al. "MPI: Multiple Perspective Attack Investigation with Semantics Aware

Execution Partitioning" Proceedings of the 26th USENIX Security Symposium, 2017.

6. Bhargav R. Avasarala, Brock D. BOSE, John C. Day Donald Steiner," System and method

for automated machine-learning, zero-day malware detection," BlueVectorInc, United States

Patent, 2017.

7. Arellano-Zubiate, J. ., J. . Izquierdo-Calongos, A. . Delgado, and E. L. . Huamaní. “Vehicle

Anti-Theft Back-Up System Using RFID Implant Technology”. International Journal on

Recent and Innovation Trends in Computing and Communication, vol. 10, no. 5, May 2022,

pp. 36-40, doi:10.17762/ijritcc.v10i5.5551.

8. Singh et al. "Zero-day Attacks Detection and Prevention Methods – Apriorit," 2017.

9. Gill, D. R. . (2022). A Study of Framework of Behavioural Driven Development:

Methodologies, Advantages, and Challenges. International Journal on Future Revolution in

Computer Science &Amp; Communication Engineering, 8(2), 09–12.

https://doi.org/10.17762/ijfrcsce.v8i2.2068

10. Xiaoyan Sun, Jun Dai, Peng Liu, Anoop Singhal, John Yen, “Towards Probabilistic

Identification of Zero-day Attack Paths," CNS, 2016.

11. Ravinder Kaur and Maninder Singh, "A Survey on Zero-Day Polymorphic Worm Detection

Techniques," IEEE Communications Surveys and Tutorials, 2014.

http://philstat.org.ph/

Vol. 71 No. 3s 2 (2022)
http://philstat.org.ph

Mathematical Statistician and Engineering Applications

 ISSN: 2094-0343

 2326-9865

 1106

12. A. Mishra and B. B. Gupta," Hybrid Solution to Detect and Filter Zero-day Phishing

Attacks," International Conference on Emerging Research in Computing, Information,

Communication and Applications, Elsevier, 2014.

13. Wang et al. "k-Zero-Day Safety: A Network Security Metric for Measuring the Risk of

Unknown Vulnerabilities," IEEE Transactions on Dependable and Secure Computing,

Volume: 11, Issue: 1, P.no: 30 - 44, 2014.

14. Mikhail Zolotukhin and Timo Hamalainen, ”Detection of Zero-day Malware Based on the

Analysis of Opcode Sequences” IEEE 11th Consumer Communications and Networking

Conference (CCNC), 2014.

15. P. M. Paithane and D. Kakarwal, “Automatic Pancreas Segmentation using A Novel

Modified Semantic Deep Learning Bottom-Up Approach”, Int J Intell Syst Appl Eng, vol. 10,

no. 1, pp. 98–104, Mar. 2022.

16. Nouby M. Ghazaly, A. H. H. . (2022). A Review of Using Natural Gas in Internal

Combustion Engines. International Journal on Recent Technologies in Mechanical and

Electrical Engineering, 9(2), 07–12. https://doi.org/10.17762/ijrmee.v9i2.365

17. Jun Dai, Xiaoyan Sun, and Peng Liu, “Patrol: Revealing Zero-Day Attack Paths through

Network-Wide System Object Dependencies," Springer, 2013.

18. Ananthakrishnan, B., V. . Padmaja, S. . Nayagi, and V. . M. “Deep Neural Network Based

Anomaly Detection for Real Time Video Surveillance”. International Journal on Recent and

Innovation Trends in Computing and Communication, vol. 10, no. 4, Apr. 2022, pp. 54-64,

doi:10.17762/ijritcc.v10i4.5534.

19. Yuan Ning, Yufeng Liu, Qiang Ji., "Bayesian - BP Neural Network Based Short-term Load

Forecasting for Power System," 3rd International Conference on Advanced Computer Theory

and Engineering (1CACTE), IEEE, 2010.

http://philstat.org.ph/

