
Vol. 71 No. 3s 2 (2022) 
http://philstat.org.ph 

Mathematical Statistician and Engineering Applications 

  ISSN: 2094-0343 

  2326-9865 

   1091 

Zero-Day Attack Path Identification using Probabilistic and Graph 

Approach based Back Propagation Neural Network in Cloud 
 

Swathy Akshaya M.1, Padmavathi G.2 

1Research Scholar, Department of Computer Science, Avinashilingam Institute for Home 

Science and Higher Education for Women, Coimbatore, akshayakulandaivel@gmail.com 
2Professor, Department of Computer Science, Avinashilingam Institute for Home Science and 

Higher Education for Women, Coimbatore, padmavathy.avinashilingam@gmail.com 

 

Article Info 

Page Number: 1091 – 1106 

 Publication Issue: 

Vol. 71 No. 3s2 (2022) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Article History 

Article Received: 28 April 2022 

Revised: 15 May 2022 

Accepted: 20 June 2022 

Publication: 21 July 2022 

Abstract:  

In the current environment, Networks are generally installed and 

employed by fundamental security defense procedures like firewalls, 

Intrusion Detection Systems. It is generally not stress-free for adversaries' 

to break down the machine. Rather than targets, it usually depends on an 

attack events chain to flourish threats. A zero-day attack is defined as 

unknown threats in software for which either patch is not issued or 

developers are not aware of it. Among many other attacks, this attack is 

considered as most susceptible one. The number of these exploits 

discovered remains rising at an increasing rate in the current situation. 

When these exploits happen in an attack path, the path remains a zero-day 

attack. The proposed work is developed to identify the Zero-Day Attack 

path using Probabilistic and Graph Approach based Back Propagation-

Neural Network. If specific attack actions avoid system calls, proposed 

instance graphs capture the complete zero-day attack paths. An approach 

based on Back Propagation Neural Network outperforms the existing 

Accuracy, Correctness, and Misclassification parameters. The 

experimental result shows the effectiveness of the proposed work Back 

Propagation-Neural Network for zero-day attack path identification, which 

achieves a better result than the existing work. 

Index Terms: Zero-day Attack, Path Identification, Cloud Security, 

Infected Nodes, System Object Dependency Graph (SODG), Back 

Propagation Neural Network (BP-NN), Probability Inference. 

 

1. Introduction 

In the current scenario, technologies and IT environments are growing very fast. Therefore, 

threats of exploits are raised more than before. Many companies are ready to work on 

identifying the known threats using particular security implements like antivirus devices, 

anti-malware devices, vulnerability assessment tools. 

A zero-day exploit may frequently impact resources such as the system or internal users. 

Placing a Source is infeasible work if not having the forensics capabilities to recognize 

related elements. Each attack chain is an exploit’s order that becomes an attack path. An 

exploit is facilitated by an unseen vulnerability called a zero-day exploit. Whenever 

malicious activity is on this path, it converts to a zero-day attack path. In the current situation, 

number of these exploits discovered remains rising at an increasing rate. As per Symantec’s 

Internet Security Report of 2014, zero-day vulnerabilities were identified in 2013, which is 
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higher than the former year. “Identified twenty-three zero-day vulnerabilities indicates 61% 

rise over 2012 which is higher than combined two preceding years. 

In 2017, these attacks grew from 8 in the preceding year. In 2016, Zero Day Initiative 

identified numerous threats, such as 50 in Apple products, 76 in Microsoft products, and 135 

in Adobe products. At the Equifax breach, attackers expanded access to data from the 

primary consumer credit reporting agency in September 2017. In the Equifax database, the 

Personal information of more than 143 million people is stolen. The Famous WannaCry 

ransomware attack threatened most of the world in September 2017 because of a zero-day 

exploit. 

Tactlessly, specialists forecast the occurrence of these threats, which is going to degrade with 

technology. In 2015, there was about one per week. Cyber security Ventures foresaw that 

there would be one new exploit that will occur every day in 2021. Identified attacks emerged 

from eight in 2011 to eighty-four in 2016 [1]. When it continues like this, a new zero-day 

attack will be identified every day of 2022. Each of these activities signifies a vulnerability 

that may consequence in a tremendously dangerous zero-day attack that has the capability of 

striking complete industries. 

 The objective of this research work is to identify the zero-day attack path. In this work, a 

probabilistic and graph approach based Back Propagation Neural Network is proposed for 

identifying the zero-day attack path. If specific attack actions evade system calls, proposed 

instance graphs capture the complete zero-day attack paths.  

This work is organized as follows:  

1. Section 1 briefly discussed the introduction, motivation, objective of the paper, and 

organization of the paper.  

2. Section 2 describes previous approaches applied for zero-day detection. 

3. Section 3 illustrates the proposed approach in detail.  

4. Section 4 presents the experimental results by comparing the proposed method with the 

existing approach.  

5. Section 5 accounts for the conclusion and future scope. 

2. Recent Statistics of Zero-day Attack 

Some of the recent impacts and statistics of zero-day attacks are represented in Table.1 

Table 1. Recent Impact and Statistics of Zero-Day Attack 

Year Zero-Day Attacks Infection 

 

2021 

 

30 Zero-Day 

Vulnerabilities Discovered 

 

Multiple Vulnerabilities appeared in Apple 

macOS, Google Chrome, Microsoft 

Windows, and other industries. 

 

2020 

 

38 Zero-Day  

Vulnerabilities Discovered 

 

Security Restrictions Bypass and 

Authentication Bypass. 

 

2019 

 

Discovered 28 Zero-Day 

Vulnerabilities 

 

Remote code execution in organizations. 
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2018 

 

Six Undisclosed Zero-Day 

Vulnerabilities 

 

3 Manage Engine Products. The application 

includes log 360 and even log application 

manager. 

 

2017 

 

WannaCry Ransomware 

Attack 

 

Hitting several orientations worldwide, 

including UK national health servers. 

 

2017 

 

Zero-Day Attack 

 

The application attack surface is raised by 111 

billion new lines of software code per year. 

 

2016 

Discover Zero-Day 

Exploits 

Hitting entire 84 industries. 

2016 Zero-Day Attack 135 vulnerabilities in Adobe and 76 

vulnerabilities in Microsoft products. 

2014 Zero-Day Attack 23 Zero-day vulnerabilities identified indicate 

a 61% growth over 2012. 

2011 Discover Zero-Day 

Exploits 

Hitting entire 8 industries. 

Due to signatures are not generated, these exploits may not be identified by anti-malware or 

IDS/IPS devices [2]. Though zero-day attacks are formidable to discover and identify, 

numerous strategies have emerged. According to Ratinder Kaur et al., every attack follows 

the basic detection strategies given below in Figure. 1. 

 
Figure.1 Detection Strategies for Zero-Day Attack 

 

1. Statistical Detection- This method uses machine learning approaches to collect data from 

formerly identified exploits and produce a model for safe system behavior. These techniques 

provide limited effectiveness and false positives/negatives. Security administrators have trust 

in behavior-based detection approaches without particular detection capabilities. 

2. Signature Detection- The threat scanning process practices previously used malware 

databases and their behavior as a reference in this method. After analyzing using the machine 

learning approach and generating signatures for previously available malware, necessary to 

utilize the signatures to identify the formerly unidentified attacks. This method comprises a 

search of bytes sequence within a malicious executable and files previously affected by this 

particular malware. This method gives better results only if threats are identified earlier. Only 

after an instance of this malware has affected the networks and systems can an expert specify 
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a signature for new malware executables. Due to malicious software unnoticed earlier, this 

method cannot manage the zero-day attacks [3]. 

3. Behavior Detection- This method identifies malware depending on its interactions with the 

target system. If it is the consequence of a malicious attack, it examines its interactions with 

present software to identify. 

4. Hybrid Detection- This method integrates the methods mentioned earlier to use the benefit 

of its strengths. 

3. Related Works 

Avasarala et al. (2017) proposed a class matching approach with a procedure for recognizing 

the number of suspect objects that encompasses data regarding the network transactions or 

computer operations likely related to a security threat. Suspicious objects are transferred to an 

inspection service operating that implement on 1 or a few common-purpose computers. 

Digital data is transmitted to an analytical service operating that implement on 1 or a few 

common purpose computers. 1 or few scores are transmitted to a correlation facility that 

groups a scores plurality, supplementary data regarding each suspicious object together form 

a cumulative data that represents 1 or few cumulative features of suspicious objects in 

plurality form, producing an infection verification pack that contain routines, during execute 

on an end-point machine in the computer network setting, thus reducing the mistrusted 

security risk [4]. 

Nahid Hossain et al. (2017) presented tag-based methods to identify the attack and 

reconstruction that contain identification of source and analysis of influence. The new 

techniques are proposed to disclose the giant depiction of attacks through compact 

construction and visual graphs of attack phases. This model contributed to a red team 

assessment run by DARPA and detected and reconstructed the information of the red team's 

attacks on hosts, which run on Linux, FreeBSD and Windows successfully [7]. 

Shiqing Ma et al. (2017) proposed semantics aware program annotation and instrumentation 

method. This method splits work performance depending on application explicit high-level 

task structures, thus preventing training, producing execution partitions with rich semantic 

info, and offering numerous perceptions of the attack. A prototype is developed and 

integrated by three dissimilar provenance systems: ProTracer, Linux Audit system, and LPM-

HiFi system. This method produces cleaner attack graphs having rich high-level semantics 

and gives low time overheads and space [8]. BEEP ProTrace and MPI seek to achieve higher 

precision than Backtracker, but they have inadequate scalability because they are not always 

automated instrumentation. SLEUTH provides more effective event storage and analysis.  

Xiaoyan Sun et al. (2016) identified a zero-day attack path using the probabilistic method and 

used ZePro and Patrol's prototype system. Analyzing the system calls built a Bayesian 

network depending on the instance graph to disclose the zero-day attack paths. This method 

calculates the possibilities to get the object instances infected. The high probability instances 

are connected using dependency relations that create zero-day attacks [10]. This system 

revealed parts of the attack paths only. 

Mishra and Gupta (2014) introduced a combined solution that employs the CSS and URI 

matching concepts to guard against a zero-day phishing attack. These attacks are viral and 

severe hazards on the Internet that are utilized to cheat users and snip their data through 
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spoofed emails, fake websites, or both. A hybrid solution is proposed to defend against this 

attack. In this work, the matching concept is used for every URI with trusted domains using 

the Link Guard algorithm, and the concept of CSS matching is used from the Bait Alarm 

scheme. This approach is practical and provides security to various types of website phishing 

attacks, and produces a false-positive rate in less amount [5]. 

Wang et al. (2014) proposed certain demonstrative mechanisms on determining the zero-day 

attack to estimate the strength of networks modeled network diversity and then introduced 

two complementary diversity metrics. k-zero-day safety is a diversity metric to discourse this 

problem. This metric computes how many vulnerabilities are necessary for compromising 

network resources; a large amount infers high security due to the possibility of having more 

unidentified vulnerabilities at the identical time that can below. The complementary diversity 

metrics are proposed based on the least average attacking efforts [6]. 

Ratinder Kaur et al. (2014) proposed a Hybrid Technique for Detecting Zero-Day 

Polymorphic Worms by using Signature and Anomaly Detection. It has some difficulties 

detecting zero-day through signatures. Because signatures are hard to detect, a zero-day 

attack has new signatures for each new attack, and thus it becomes complex. 

4. Literature Review 

Some of the significant works of zero-day attacks provide a detailed view of literature are 

reviewed and presented in the following Table. II. 

Table II. Review of Literature for Zero-Day Attack Identification 

Author Year Title Techniques Observation 

Avasarala 

et al. 

 

2017 

 

System and method for 

automated machine 

learning, zero-day 

malware detection 

[CNS]. 

Class matching 

approach. 

True positive and False 

positive detection rate low. 

The accuracy of detection 

needs to be improved. 

Xiaoyan 

Sun, et al. 

2016 Towards Probabilistic 

Identification of Zero-

day Attack Paths 

[IEEE]. 

Bayesian 

Networks. 

 

If an attack evades System 

calls or attack span time 

exceeds the given period, the 

current system may not 

detect a Zero-day attack. 

Chanchala 

Joshi, et.al.  

2016 ZDAR System: 

Defending Against the 

Unknown [IJCSMC]. 

Supervised and 

Unsupervised 

Classification. 

Signature generation of 

unknown activities is 

complex, the false alarming 

rate of anomalous behavior. 

Ravinder 

Kaur et.al. 

2014 Hybrid Technique for 

Detecting Zero-Day 

Polymorphic Worms 

[IEEE].  

Signature and 

Anomaly 

Detection.  

Signatures are hard to detect, 

and the zero-day attack has 

new signatures for each new 

attack. 

Wang et al. 2014 k-Zero-Day Safety: A 

Network Security 

Metric for Measuring 

the Risk of Unknown 

Vulnerabilities [IEEE]. 

k-zero-day 

safety as 

shortest paths in 

a DAG. 

Complexity of computing.  
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Observations due to Literature Study 

 Among this literature, the significant findings of zero-day attacks are listed below. 

1. According to Xiaoyan Sun et al., if attack span time exceeds the given period, the system 

may not detect a Zero-day attack. 

2. According to Ravinder Kaur et al., signatures are hard to detect, and a zero-day attack has 

new signatures for each new attack. 

The limitations can be overcome by being capable of detecting the zero-day attack, and by 

finding the zero-day attack path identification, the threat can be handled and reduced to a 

certain extent. 

 

5. Proposed Methodology 

System call auditing is done in each host, gathered its traces, and transferred to the central 

investigation machine for offline instance graph grounded BN construction and attack path 

detection. The proposed flow diagram is given in figure 2. 

 

Figure.2 Flow Diagram for Proposed Work 

5.1 Proposed Methodology 

a) Procedure 

1. First, build a network-wide supergraph from system calls. 

2. Identify the zero-day attack path (subgraph) hidden in the supergraph. 

b) Steps 

1. Step 1: Logging- The execution of the program and its communication are logged. The 

process involved and communication between two processes or files can be seen in the log 

file. 

2. Step 2: Parsing system call- Each host file can be parsed into system objects, such as File, 

Process, and Socket. 

3. Step 3: System Object Dependency Graph: It is built as a super graph to identify the 

intrusion propagation by investigating the system calls. 

a. Dep ∈ {(src ← sink),  (src → sink), (src ↔ sink)}, src and sink indicates OS objects, then 

Vx= VxU{src, sink} and Ex=  ExU{dep}.   dep gets start and end timestamps from syscall. 
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4. Step 4: Parsing system object instances- If system call trace T [tbegin, tend]  in a time 

window is indicated as ∑T and system objects set included in ∑T is indicated as OT, object 

instance graph GT (V. E) 

a. When syscall ∈ ∑T has parsed to 2 system object instances such as srcx, sinky, x, y ≥ 1, and 

dependency relation depz:  srcx → sinky in which srcx is indicated as xth instance of system 

object src εOT  and sinky  indicated as yth  instance of system object sink ∈ OT , V = V 

∪{srcx, sinky }, E = E ∪ {depz}. The timestamps for syscall, depc,and sinkj  are t_syscall, 

t_depz, t_srcx, and t_sinky. The t_depz gets t_syscall from syscall. 

5. Step 5: Graph Pruning: The complexity and speed of the processing are reduced by 

instance graph pruning. The duplicate entries or dependency connections between system 

objects are removed. 

6. Step 6: Zero-Day Attack Identification- Infected nodes are predefined in the environment. 

These nodes combine probability values for infected nodes and aid in recognizing these 

attack paths. 

a. Samples Set D = {(x1,t1), (x2,t2
) … (xi,ti

) … (xn,tn
)} with xi  denotes ith input vector 

are trained and ti denotes equivalent output one. 

b. Using BP neural network, predicting result can be written as: 

tî = ∑ ω2(j)tanh (∑ ω1

r

j−1

M

j−1

(j, k)xjk + θ1(j)) + θ2 

7. Step 7: Output- zero-day attack path is identified. 

       The steps of the proposed methodology have been depicted in Figure.3. 

 

 

 

 

 

 

 

 

 

 

 

Figure.3 Research Design 

5.2 A Detailed View of the Proposed Methodology 

a) Logging: On each host, a System call is observed towards all executing processes. 

The execution of the program and its communication are logged. The process involved and 

communication between two processes or files can be seen in the log file. During system call 

auditing, the following details can be kept: a) socket communications combine for every host 

instance graphs b) node numbers and file absolute pathnames are OS-aware knowledge. c) 

Timestamp for each system call. The bandwidth and CPU cost, which suffers due to 

redundant or possibly innocent objects, are solved by System call filtering. 

Filter the System Call 

(input) 

 Parsing System Call Extract Dependencies from 

the System 

 Graph Generations Find Graph Instances in the 

System 

 

Heuristic Algorithm to 

Construct Graph Network 

Find probabilities Probability-based on 

Inferences  

If probability Greater than 

Threshold Consider it as an 

Infected Node 

Use DBDS to Highlight the 

Nodes in Instance Graph 
Build Instance Graph 

Attack Path Identification 
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b) Parsing into System Object: The OS object instances and dependency relations are 

parsed through a system call.   These parameters are also involved in the parsing. It 

distinctively identifies and names the nodes and supports to conclude the edge direction 

between them. Each host file can be parsed into system objects.  

c) Instance Graph: These parsed things are turned to be nodes and directed edges from 

the system call parsing. The procedure of producing the object instance graph from system 

object dependencies is provided below. 

d) Construct Dependency Objects: It is built as a super graph to identify the intrusion 

propagation by investigating the system calls. 

System Object Dependency Graph  

1. When the system call trace for xth host is represented as ∑ x, this graph becomes 

directed graph G (Vx,  Ex) for this host in which vx indicates nodes set, initialized to {∅}; 

and Ex indicates directed edges set, initialized to {∅}. When the system calls syscalls and dep, 

the dependency relation parsed from syscall. As per dependency rules, Dep  ∈ {(src ←

sink) ,  (src → sink),  ( src ↔ sink)},  src and sink indicate OS objects, then Vx = 

VxU{src, sink} and Ex=  ExU{dep}.   dep gets start and end timestamps from syscall. 

2. When (a→ b) ∈ Expand (bc)∈ Ex, then c transitively based on a. System calls have 

parsed into system objects and dependencies. The dependency rules are given to parse system 

calls. Depending on these rules, the system calls are parsed into 3 portions: an src object, a 

sink object, and dep relation. The objects and dependency relations are united to form a 

directed graph. 

 

 
Figure.4 Dependency Objects 

e) Construct Object Instance Graph: Object instance graph stands kind of dependency 

graph. Node is an object instance with a particular timestamp. Moreover, different instances 

have different versions of an identical object at different time points, with a different 

infection state. This graph has an equivalent or larger size.  
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If system call trace T [tbegin, tend] in a time window is indicated as ∑T  and system objects 

set included in ∑T is indicated asOT, object instance graph GT(V. E). in which V denotes 

node-set, initialized to {∅} and E denotes directed edges set, initialized to {∅}. 

1.  When syscall ∈ ∑T has parsed into 2 system object instances such as srcx, sinky, x, 

y ≥ 1, and dependency relation depz:  srcx → sinky in which srcx is indicated as xth instance 

of system object src εOT and sinky indicated as yth instance of system object sink∈ OT, V = 

V ∪{srcx, sinky}, E = E ∪ {depz}. The timestamps for syscall,  depc, and sinkj are t_syscall, 

t_depz, t_srcx, and t_sinky. The t_depz gets t_syscall from syscall. Before appending srcx 

and sinky into V, the x and y indexes are analyzed. 

2. For  ∀srcx , sinky ∈  V, i, j ≥  1, when xmax  and ymax are maximum indexes of 

instances for  src and sink; 

3. When ∃srcz V, z ≥1,then  x = xmax, and t_srcx remains identical; else, x = 1, and 

t_srcx  is changed to t_syscall Ifi ∋ sinki V, i≥1, then y = ymax; else, y = 1.  t _sink y has 

changed to t_syscall, If j  is equal to 2, then E  is equal to E U{deps: sinky − 1 → sinky}. 

4. When a→b ∈ E and bc ∈ E, then c transitively based on a new instance 

First, the instance graph can reflect correct infection causality relations by implying time 

information stamped onto specific instances. Second, the instance graph can break the cycles 

contained in SODG. 

Algorithm 1- Object Instance Graph Generation 

Input: system object dependencies set D, 

Output: G (V, E) instance graph  

For each dep: src→sink∈D Do 

   Look up the most recent instance srck of src, sinkz 

of sink in V 

   If sinkz ∉V then 

       Create new instances sink1 

       V←V U {sink1 } 

   If srck ∉ 𝐭𝐡𝐞𝐧 

       Create new instances src1 

       V←V U {sink1}: 

        E←EU {src1→sink1} 

   Else  

        E←E U {srck → sink1} 

   End if 

End if 

If sinkz ∈ V 𝐭𝐡𝐞𝐧 

        Create new instancesinkz+1 

        V ← V U {sinkz+1} 

        E ← E U {sinkz → sinkz+1 } 

    If  srck ∉ V 𝐭𝐡𝐞𝐧 

         Create new instances src1 
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          V ← V U {src1 } 

           E ← E U {src1 → sinkz+1 } 

    Else 

           E ← E U   {srck → sinkz+1 } 

    End if 

  End if 

End for 

 

 
Figure.5 Object Instance Graph 

f) Instance Graph Pruning: The complexity and speed of the 

processing are reduced by instance graph pruning. The duplicate entries or dependency 

connection between system objects is removed. Although different system calls can trigger it, 

it is not uncommon that a similar dependency can happen various times between any pair of 

system objects.  
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g) Incorporate Evidence: In the environment, infected nodes are predefined. These 

nodes combine probability values for infected nodes and aid in recognizing these attack 

paths. This module combines evidence into instance-graph grounded BP-Neural Network by 

labeling the contamination state of the involved object instance as infected or appending the 

Local Observation Model node as a child node to an instance of the object for modeling the 

uncertainty towards observations. 

h) Back Propagation-Neural Network: Using a training set, this method calculates 

probability from Neural Network. Through these training sets, the affected rate of the test 

node is identified and shown in Figure.6. 

It contains an input layer, single or numerous hidden, and one output layer.  

Set of Sample say D={(x1,t1), (x2,t2
) … (xi,ti

) … (xn,tn
)}with xi denotes ith input vector are 

trained and t i denotes equivalent output one. 

Using BP neural network, predicting result can be written as: 

tî = ∑ ω2(j)tanh (∑ ω1

r

j−1

M

j−1

(j, k)xjk + θ1(j)) + θ2 

Where the number of input neurons and hidden neurons are indicated by P and M, biases OJ 

and 82, weights joining hidden and output layer (J), (j), the weights joining input and hidden 

layer (J), (j, k) and kth elements of jth input are denoted by xj = [xjk,k = 1,2, . . . P]. 

It has a description of layer quantity and neuron quantity per layer, and every neuron employs 

activation function type and existing association CV among the neural units. The error term is 

minimized by 

Ep =
1

2
∑ (ti

n
req -tî)

2 =
1

2  
∑ ei

2n
err  

 

 

 

 

 

 

 

 

 

Figure.6 Back Propagation-Neural Network 

 

It is used to evaluate BP Neural Network parameters. The weight decay is known as network 

error function, which can be followed as 

F (W) =βEp
̅̅ ̅  +  αEω

̅̅ ̅̅  

With e∞ =
1

2
∑ ω1,2

m
j=1 (f)2,

α and β are called hyperparameters, weight between hidden and 

output layer and weight between input and hidden layer are denoted by CV. Weight CV for 

posterior probability function in Bayesian rule is 

P (ω|D, α, β, H) =
p(D|ω,β,H)p(|ω|α,H)

p(D|α,β,H)
 

Then, 

Weight calculated using 

training 

Probability inference of 

each node 

Testing nodes 

 

T
ra

in
in

g
 n

o
d
es

 

 

Output 

 

Back Propagation 

 

BP-NN 

Hidden Layer 
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 P (D|α, β, H) =
p(D|ω, β, H)p(ω|α,H)

p(ω|D,α,β,H)
 

i) Zero-Day Path Identification: Zero-day attack paths are identified by inferred 

probabilities and the nodes having high probabilities and edges inter-linking the instance 

graph. These paths are shown in Figure.7. It has a high probability on its own or both 

descendant and ancestor having high probabilities to motivation on these nodes in instance 

graph. These emphasized nodes are involved in the infection propagation, and therefore it 

must be kept and shown in Figure.8 (a) & (b). A high probability called a tuning parameter 

(threshold) is applied to control the bottom probability. Output stored in graphml format. It 

can be viewed in yed Editor. 

Algorithm 2- Identification of Zero-day Attack Path 

Input: G (V, E) instance graph and v ∈ V vertex 

Output:  Gz(Vz, Ez) zero-day attack path  

  Function DFS (G, v,direct) 

       Initially V is marked as visited 

       If (direct = ancestor)  

              nextv= parent of v that nextv → vϵE 

             Flag = high probability ancestor 

       Else if (direct = descendant)  

               nextv=child of v that v → nextvϵE 

              Flag = high probability descendant 

       End if 

       Do   

              If nextv has not marked as visited  

                   If  (prob [nextv]  ≥ threshold or nextv) = flag find high probability 

=True 

                   Else 

                        DFS (G, nextv,direct) 

                    End if 

               End if 

               If find_high_probability =True, then v is marked as flag 

               End if 

        While (all nextv of v) 

End function 

Do  

          DFS (G, v, ancestor) 

          DFS (G, v, descendant) 

While(𝐚𝐥𝐥 v ∈ E) 

Do 

          If prob [ v] ≥ threshold or (v is labeled as has high probability ancestor 

and v is labeled as has high probability descendant) Vz ← Vz ⋃ v 

                    Vz ← Vz ⋃ vVz ← Vz ⋃ v 

          End if 
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While (𝐚𝐥𝐥 v ∈V) 

Do 

           If v ∈ Vzandω ∈ Vzthen 

                    Ez ← Ez ⋃ e 

           End if 

While (e:v → ω ∈ E) 

 

 
Figure.7 Zero-Day Attack Detection 

 
Figure.8 (a)                                                                                                        Figure.8 (b) 

Figure.8 (a) and (b) is Yed Editor for showing output. 

 

6. Experimental Result 

The proposed method is implemented using a cloud simulator where Java is the 

programming language, and SQL Server is the database. CloudSim is combined with Java 

based IDEs such as Net Beans and Eclipse. The CloudSim library can be accessed. A 

software component generates and performs the virtual machines called Virtual Machine 
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Monitor (VMM). In this tool, Simulation parameters are used for estimating the existing and 

proposed techniques. It is a standard tool that offers a generalized simulation framework that 

permits the Cloud Computing environment and application services research. yEd is a 

common diagramming platform with a multi-document interface. It is a cross-platform 

application written in Java and used to draw various categories of diagrams such as entity-

relationship diagrams, network diagrams, flowcharts. It permits the use of custom vector and 

raster graphics as diagram elements. The performance of the proposed method is evaluated 

using the various parameters, and the results obtained are explained in the section below. 

Performance Metrics 

The performance of the proposed work is estimated using the following metrics and shown in 

Figure.9. 

a) Accuracy- Accuracy provides the required related results used for classification. 

Accuracy =
TruePositive + TrueNegative

TruePositive + FalsePositive + TrueNegative + FalseNegative
 

To compare the expected zero-day path vs. predicted, calculate correctness and 

misclassification. 

b) Correctness- Correctness is defined as a number of correctly classified nodes by a 

total number of nodes. 

Correctness=   Number of Correctly Classified Nodes/Total Nodes 

c) Misclassification- It is defined as the sum of False Positive and Negative, divided by 

the total number of nodes. 

Misclassification Rate: (False Positive +False Negative)/Total 

 
Figure.9 Performance chart 

Expected Outcomes   

1. Increased Efficiency in terms of Accuracy and Correctness. 

2. Enhanced Data Security by accurate detection of the attack. 

3. Prevent Loss of Revenue for the Organization. 

4. Increases time range for accurate detection and reduces misclassification. 
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7. Conclusion 

In the past few years, Due to the growth of Internet popularity and security-unaware, users 

are familiar sources for the speedy growth of attackers in the network. This work employs the 

hybrid detection technique to identify a zero-day attack path. This paper presented a new 

method that resulted from integrating several software tools aiming to observe and collect 

information about zero-day attacks. Experimental result shows that the proposed work 

achieves a better result and is comparatively far better than the existing work. In the network, 

numerous chain of attacks sequences are identified in the path, which consists of both zero-

day exploits and non-zero day exploits is considered as the limitation. Future enhancement is 

to predict only the zero-day exploits and prevent further zero-day attacks. 
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